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Abstract. In applications like sensor network monitoring and location-
based services, due to limited network bandwidth and battery power, a
system cannot always acquire accurate and fresh data from the exter-
nal environment. To capture data errors in these environments, recent
researches have proposed to model uncertainty as a probability distribu-
tion function (pdf), as well as the notion of probabilistic queries, which
provide statistical guarantees on answer correctness. In this paper, we
present an entropy-based metric to quantify the degree of ambiguity of
probabilistic query answers due to data uncertainty. Based on this met-
ric, we develop a new method to improve the query answer quality. The
main idea of this method is to acquire (or probe) data from a selected set
of sensing devices, in order to reduce data uncertainty and improve the
quality of a query answer. Given that a query is assigned a limited num-
ber of probing resources, we investigate how the quality of a query answer
can attain an optimal improvement. To improve the efficiency of our solu-
tion, we further present heuristics which achieve near-to-optimal quality
improvement. We generalize our solution to handle multiple queries. An
experimental simulation over a realistic dataset is performed to validate
our approaches.

1 Introduction

In many emerging and important applications like wireless sensor networks and
location-based applications, the data obtained from the sensing devices are often
imprecise [10,17,18]. Consider a monitoring application that employs a sensor
network to obtain readings from external environments. Due to imperfection
of physical devices, as well as limited battery power and network delay, it is
often infeasible to obtain accurate readings. As a result, the data maintained in
the monitoring applications are often contaminated with noises (e.g., sampling
and measurement error). The uncertainty of these data should be modeled and
handled carefully, or else the quality of the services or queries provided to users
can be affected [4,10].

One commonly-used uncertainty model assumes that the exact value of a data
item is located within a closed region, together with a probability distribution
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Fig. 1. Probing of Sensor Data for Uncertainty Reduction

function (pdf) of that value in the region [10,13,21]. An example is shown in
Figure 1, where a monitoring server maintains the pdf of the temperature values
acquired from four wireless sensors (T1, . . . , T4). Each of these pdf’s is confined
within a closed range of possible values, to model the fact that the data has not
been updated for an extensive amount of time. These pdf’s could be derived
through techniques like time-series or model-based analysis [5,10]. In general, a
pdf which spans over a larger uncertainty region is more vague (or uncertain)
than the one with a smaller region.

To process uncertain data, probabilistic queries [4,21] have been proposed.
These are the “probabilistic” counterparts of spatial queries, such as range
queries and nearest neighbor queries. Probabilistic queries produce imprecise
results, which are essentially answers that are augmented with probability val-
ues to indicate the likelihood of their occurrences. For example, a probabilistic
range query, inquiring which of the four sensor data values in Figure 1 have non-
zero probabilities of being inside a specified range [10oC, 20oC], may produce
an answer like: {(T1, 0.9), (T2, 0.5)}. This answer indicates that T1 (T2) has a
chance of 0.9(respectively 0.5) for having a value between [10oC, 20oC].

How can we interpret the probability values of these query answers? Intu-
itively, these values reflect the ambiguity of a query result, due to the imprecise-
ness of the data being evaluated. In the previous example, since T1 has a chance
of 0.9 for satisfying the query, we know that T1 is very likely to be located
inside [10oC, 20oC]. The case of T2 is more vague: it could either be inside or
outside the specified range, with equal probabilities. In general, a query answer
may consists of numerous probability values, making it hard for a query user
to interpret the likelihood of their answers. A quality metric is desired, which
computes a real-valued score for a probabilistic query answer [4,15]. This metric
serves as a convenient indicator for the user to understand how vague his/her
answer is, without the need of interpreting all the probabilities present in the
answer. For example, if the score of his/her query answer is high, the user can
immediately understand that the quality of his/her answer is good. In this paper,
we define a quality score for a probabilistic range query based on the definition
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of entropy [20]. This metric quantifies the degree of query answer uncertainty by
measuring the amount of information presented in a query.

More importantly, the quality score definition enables us to address the ques-
tion: “how can the quality of my query answer be improved?” Let us consider
the sensor network example in Figure 1 again. Suppose that the sensors have
not reported their values for a long time. As a result, the sensor data kept in the
server have a large degree of uncertainty. Consequently, the query answer quality
is low (i.e., the query answers are vague), and a user may request the server to
give him/her an answer with a higher quality. To satisfy the user’s request, the
system can acquire (or probe) the current data from the sensors, in order to
obtain more precise information (i.e., possibly with a smaller uncertainty inter-
val). A higher quality score for the query user’s answer can then potentially be
attained. In fact, if all the items (T1, . . . , T4) are probed, then the server will have
up-to-date knowledge about the external world, thereby achieving the highest
query quality.

In reality, it is unlikely that a system can always maintain an accurate state of
the external environment, since probing a data item requires precious resources
(e.g., network bandwidth and energy). It is thus not possible for the system
to probe the data from all the sources in order to improve the quality of a
query request. A more feasible assumption is that the system assigns to the
user a certain amount of “resource budget”, which limits the maximum amount
of resources invested for a particular query. The question then becomes “how
can the quality of a probabilistic query be maximized with probing under tight
resource constraints?” To illustrate, let us consider Figure 1, where c1, . . . , c4 are
the respective costs for probing T1, . . . , T4. The cost value of each sensor may
represent the number of hops required to receive a data value from the sensor.
Let us also assume that a query is associated with a resource budget of 8 units.
If we want to improve the quality for this query, there are five probing sets,
namely {T1}, {T2}, {T3}, {T1, T2} and {T2, T3}. Each of these sets describe the
identities of the sensors to be probed. Moreover, the total sum of their probing
costs is less than 8 units. Now, suppose the probing of T2 and T3 will yield the
highest quality improvement. Then the system only needs to probe these two
sensors, to ensure the maximum benefit.

Since testing the possible candidates in a brute-force manner requires an
exponential-time complexity, we propose a polynomial-time solution based on
dynamic programming. We also present a greedy solution to enhance scalability.
Our experimental results show that the greedy solution achieves almost the same
quality as the dynamic-programming solution. We study this problem for prob-
abilistic range queries, which return the items within a user-defined region. This
query is one of the most important queries commonly found in location-based
services and sensor applications. Our solution can generally be applied to any
multi-dimensional uncertain data, where the pdf’s are arbitrary.

The problem studied in this paper addresses the balance between query quality
and the amount of system resources consumed. A few related problems have been
studied in [10,16], where probing plans are used to direct the server to acquire
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the least number of data items required to achieve the highest quality. However,
these work do not consider the issue of maximizing quality under limited system
resources allocated to a user. We further consider the scenario in which a group
of query users share the same resource budget. This represents the case when a
system allocates its resources to users with the same priority. We explain how
our basic solution (tailored for a single query) can be extended to address this.
To our understanding, this has not been studied before.

To summarize, our major contributions are:

1. We propose an entropy-based quality metric for probabilistic range queries.
2. We develop optimal and approximate solutions that maximize the quality of

a probabilistic query under limited resource constraints.
3. We extend our solution to handle the case where multiple query users share

the same resource budget.
4. We conduct extensive experiments with realistic datasets to validate the

performance of our algorithms.

The rest of this paper is organized as follows. In Section 2, we present the
related work. Section 3 illustrates the system architecture. We discuss the de-
tails of quality and resource budget for probabilistic range queries in Section 4.
Then we give our solutions in Section 5. We report our experimental results in
Section 6. Section 7 concludes the paper.

2 Related Work

In this section, we summarize the work done in probing and evaluation of prob-
abilistic queries.

Probing Plans. In applications like sensor network monitoring, it is important
for a system to generate a probing plan that only requests relevant sources
to report their data values, in order to optimize the use of resources. In [19],
efficient algorithms are derived to fetch remote data items in order to generate
a satisfactory result quickly. Liu et al. [16] propose an optimal algorithm to find
the exact result for minimum and maximum queries by probing the smallest set
of data sources. The uncertainty model of a data item considered in these two
work is simply a one-dimensional interval. Since the pdf of the value within the
interval is not considered, the query results are “qualitative”, i.e. they are not be
augmented with probabilistic guarantees. Our paper, on the other hand, defines
a quality metric for probabilistic query answers, and use this measure to devise
probing plans. Although Madden et al. [8,10,11] consider the pdf of data values
in their uncertainty models, their methods do not consider the strict resource
constraints imposed on the system (e.g., the maximum amount of resources
that can be spent on a query). The quality metric they consider is based on a
simple probability threshold (e.g., the probability of the object should be higher
than 95%). Our work proposes a feasible probing plan that achieves the highest
quality under limited resource constraints. Our solutions can be applied to multi-
dimensional uncertain data with artibtrary pdfs. We also use the amount of



Quality-Aware Probing of Uncertain Data with Resource Constraints 495

information gain (i.e. entropy) as the quality metric in our probing solutions,
and this has not been studied before.

Probabilistic Queries. There are plenty of recent studies about efficient evalu-
ation of probabilistic queries for large uncertain databases. In [3,4,5], efficient al-
gorithms of evaluating probabilistic nearest-neighbor queries are proposed, which
evaluate uncertain location data and provide probabilistic guarantees in answers.
In [1], efficient methods for evaluating probabilistic location-dependent queries
are studied. Indexing of probabilistic range queries is considered in [7], and the
solution is extended to handle multi-dimensional uncertainty in [6,22]. The eval-
uation of probabilistic queries in sensor networks is considered in [2,10,14]. In
this paper, we illustrate our probing techniques by using the probabilistic query
evaluation methods in [4]. However, other advanced query evaluation or indexing
techniques can also be used together with our probing algorithm.

3 System Architecture

Figure 2 describes the architecture of the system used in this paper. The Data
Manager caches the value ranges and corresponding pdf of remote sensors. The
Query Register receives queries from the users. The Query Evaluator evaluates
the queries based on the information stored in the Data Manager. The Probing
Scheduler is responsible for generating a probing set for each query – essentially
the set of sensors to be probed. The benefits and costs of probing actions will
be taken into account by the Probing Scheduler in deciding the what sensors to
be consulted. More specifically, a user query is handled in four major steps:

– Step 1. The query is evaluated by the Query Evaluator based on the data
cached in the Data Manager.

– Step 2. The Probing Scheduler decides the content of probing set.
– Step 3. The Probing Scheduler sends probing commands to the sensors de-
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– Step 4. The Query Evaluator reevaluates the query based on the refreshed
data returned to the Data Manager, and returns results to the query issuer.

Uncertainty Model. We assume there are D data sources, namely Ti(i =
1, 2, ..., D). Each data source Ti has an actual value, denoted by Ti.v, where
Ti.v ∈ R. The uncertainty model of each Ti cached at the server consists of
an uncertain region [li, ui], together with a pdf fi. After probing, the value of
the data item becomes “precise” (i.e., has a pdf value equal to one inside an
infinitesimally-thin uncertain region). For simplicity, we illustrate our solution
with an uncertainty model for one-dimensional data, but our methods can easily
be extended to handle multi-dimensional data.

4 Quality and Resource Budget of Probabilistic Queries

In this section, we present the notion of Quality Score for probabilistic range
query, the query that we extensively study in this paper. Section 4.1 details the
definition and evaluation of probabilistic range queries. In Section 4.2 we present
a quality metric for probabilistic range queries. Section 4.3 then discusses the
metric of resource constraints, called Resource Budget, which is assigned to each
query as the maximum amount of resources allowed in the process of query
evaluation.

4.1 Probabilistic Range Query

The Probabilistic Range Query (PRQ)[4] returns a set of data objects, with
the probabilities that their attribute values are in the specified range, called
qualification probabilities:

Definition 1. Probabilistic Range Query (PRQ): Given a closed interval
[a, b], where a, b ∈ R and a ≤ b, a PRQ (denoted by Q), returns a set of tuples
(Ti, pi), where pi is the non-zero probability that Ti.v ∈ [a, b].

To illustrate, Figure 3 shows two PRQ’s on data items A, B, C and D. The
uncertainty region of each item is shown. For query Q1, three items (A, B and
C) are included in the result; item D is excluded since its uncertainty region
does not overlap with the query range, yielding zero qualification probability.
The result of Q1 becomes: (A, 0.25), (B, 0.5), (C, 0.75).

In general, the value of the qualification probability, i.e., pi, can be calculated
by using the Equation 1 [4].

pi =
∫

Ri

fi(x)dx (1)

where Ri is the overlapping region of the query range [a, b] and [li, ui], and fi(x)
is the uncertainty pdf of item Ti. In Figure 3, we shade the overlapping region
of all the data items with the query range of Q1 and Q2.
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4.2 Quality Score

Let us now present a metric to measure the quality of the answer of a probabilis-
tic range query. This metric is based on the notion of information entropy[20].
As a brief review, the information entropy measures the average number of bits
required to encode a message, or the amount of information carried in the mes-
sage:

Definition 2. Entropy: Let X1, ..., Xn be all possible messages, with respec-
tive probabilities p(X1), ..., p(Xn) such that

∑n
i=1 p(Xi) = 1. The entropy of a

message X ∈ {X1, ..., Xn} is:

H(X) = −
n∑

i=1

p(Xi)log2p(Xi) (2)

Recall that in the answer of PRQ, each value pi describes the probability that
object Ti satisfies it. Thus there are two possible events: (1) Ti satisfies the PRQ
with a probability as pi; (2) Ti does not satisfy the PRQ with a probability of
1 − pi. Using Definition 2, the entropy of Ti for satisfying a PRQ is

gi = −pilog2pi − (1 − pi)log2(1 − pi) (3)

We then use the sum of the entropy values for all the objects that satisfy the PRQ
with non-zero probabilities as the quality metric. More specifically, for a result
containing n answers (T1, p1), (T2, p2), ..., (Tn, pn), the quality score, denoted by
H , of this result is defined by

H = −
n∑

i=1

(pilog2pi + (1 − pi)log2(1 − pi)) (4)

By substituting Equation 3 into Equation 4, we have

H =
n∑

i=1

gi (5)
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A larger value of H implies a lower quality. In particular, H is equal to zero if
the result is precisely known, which happens when all the pi’s are equal to zero
or one. The range of H is [0, n]. Notice that after probing item Ti, its uncertainty
region shrinks to a point, and the server knows exactly whether Ti satisfies the
range query. Thus, pi equals to either zero or one. The corresponding ambiguity
caused by the answer (Ti, pi) is then “removed”, and the entropy of the overall
query result is reduced by an amount given by Equation 3 . We denote this
amount of entropy reduction as the gain of probing Ti, denoted by gi. As shown
in Equation 3 the value of gi only depends on the qualification probability of a
single object Ti. Moreover, the gain is only non-zero for we choose items that
have qualification probabilities in (0,1), and the gain of probing a set of items is
simply equal to the sum of their gains.

4.3 Resource Budget

We now present the resource budget model of a query, which limits the amount
of resources that can be used to probe the sensing devices for this query.

In general, there are several types of important resources for a wireless sensor
network, such as network bandwidth and the battery power used to transmit
data. Here we use a single metric, namely the number of transmitted messages,
to measure the cost. The number of transmitted messages for probing an item
is the major source of consumption of the important resources. The more num-
ber of times the sensors are probed, the more amount of network bandwidth
and battery power is required. Thus, we assume the server assigns to a query
the maximum number of transmitted messages allowed as its resource budget,
denoted as C.

The transmission cost of a data item can vary among the sensors. For example,
a message generated from a sensor may need different number of hops to reach
the base station. Figure 2 shows that four hops are required for probing item E
(the dashed path), whereas only one hop is needed to probe item A. Thus probing
E will cost more than A. We assume the server knows how many messages are

Table 1. Notations

Notation Description

T A remote stream source

T.v The exact value of T

[l, u] Lower and upper bounds of T.v

f Probability distribution function of the T.v

Q Probabilistic range query

C Resource constraint assigned to Q

c # of messages for probing T

H Precision quality (entropy)

p The probability that T satisfies Q

g The benefit of probing T

n # of items in the result set
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needed for probing an item. We also use ci to denote the number of messages
for probing Ti. We list the notations used in this paper in Table 1.

5 Maximizing Quality with Limited Resources

As we have mentioned in Section 4.2, probing items that have non-zero qualifi-
cation probabilities can often improve the quality of a query result. In general,
there can be a tremendous number of objects present in the answer. Moreover,
the amount of resource budget available probing is limited. In this section, we
discuss how query quality can be maximized with limited resource budgets.

In Section 5.1 we present the Single Query (SQ) problem, where we explain
how probing can be done efficiently for a query with limited resource budgets.
We then extend our solution to support a more complicated and practical sce-
nario, i.e. Multiple Queries with Shared Budget (MQSB), in Section 5.2. We give
heuristics which provide close-to-optimal performance in Section 5.3.

5.1 Single Query (SQ)

In this scenario, only one query, Q, needs to be considered when choosing sen-
sors. Suppose based on the cached data, the Query Evaluator has calculated the
qualification probabilities,{p1, p2, ..., pn}, of all the items Ti(i = 1, ..., n) such
that pi > 0. The cost of probing Ti is ci. Let the gain obtained by probing Ti be
gi (Equation 3). We formally define the Single Query (SQ) problem as follows.

Maximize
∑n

i=1 xi · gi

subject to
∑n

i=1 xi · ci ≤ C
xi ∈ {0, 1}, i = 1, 2, ..., n

Here we use an array X = x1, x2, ..., xn to record the choices. Initially, all the
values of xi are zero. If item Ti is chosen for probing, we set xi to 1.

To solve the SQ problem, we use dynamic programming. We observe that
this problem has the optimal substructure, meaning that the optimal solutions
of subproblems can be used to find optimal solutions of the SQ problem. Let us
rewrite the SQ problem as P (C, N), which is associated with a resource budget
C and items N = {T1, T2, ..., Tn}, whose pi’s are all nonzero. Suppose we have
found the optimal set S = {Tγ1 , Tγ2, ..., Tγm} (m ≤ n ∧γi ∈ [1, n]) for P (C, N):
among all the subsets of N whose costs are not larger than C, S is the one with
the highest gain. Now we define a subproblem by randomly removing an item, e.g.
Tγ1 , from the candidate item set, and reducing the budget to C−cγ1 . That is, we
consider a subproblem P (C−cγ1 , N/{Tγ1}). If S1 = S/{Tγ1} = {Tγ2 , ..., Tγm}, is
the optimal set for this subproblem, the SQ problem can be solved by using the
dynamic programming framework. Next we prove that S1 must be the optimal
set for P (C − cγ1 , N/{Tγ1}).
Proof. Suppose S1 is not the optimal set for P (C − cγ1 , N/{Tγ1}), then we can
find another set S′

1 �= S1 which meets two requirements: (1) the cost of probing
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S′
1 is not larger than C − cγ1 and (2) the gain of probing S′

1 is higher than
that of probing S1. Consider the set S′

1 ∪ {Tγ1}. Its cost is not larger than
C − cγ1 + cγ1 = C. The gain of probing it is higher than that of probing the
set S1 ∪ {Tγ1}, or S. Thus S′

1 ∪ {Tγ1} should be a better choice than S for the
overall problem, which violates the condition that S is the optimal set. So S1

must be the optimal set for P (C − cγ1 , N/{Tγ1}). ��

Algorithm DP. In this algorithm, we look for the optimal set for each subprob-
lem denoted by P (k, i), where the resource budget equals to k and the candidate
item set is {T1, ..., Ti}. There are totally n ·C subproblems. For the subproblems
with zero budget or empty candidate set, the optimal set is also an empty set.
We use an array s to store the optimal sets for the subproblems, where s[k, i]
is the optimal set for the subproblem P (k, i). Each element of s, e.g. s[k, i], is
also an array, where s[k, i][j] = 1 if Tj is chosen for probing, and zero other-
wise. We also use an array v to store the gain by probing the optimal set s[k, i].
For each data item Ti, there are two possible choices. Either Ti is not chosen
and s[k, i − 1] is considered as the optimal set for P (k, i), or this item is put
into the solution set which contributes gi to the solution gain but decrease the
budget remaining for items {T1, T2, ..., Ti−1} to k − ci. The optimal set for the
subproblem P (k − ci, i − 1) is s[k − ci, i − 1] with the gain v[k − ci, i − 1]. Thus
if Ti is chosen, the maximum possible gain is v[k − ci, i − 1] + gi. In Step 3, the
gains of these two possible choices are compared, and the one with larger gain is
taken as the optimal solution for current subproblem P (k, i). Steps 4-5 handle
the case that Ti is not chosen, while Steps 7-9 construct the optimal set and the
corresponding gain if Ti is chosen. Another point to notice is, in order to put Ti

into the solution set, the cost of probing Ti, i.e. ci, must be not larger than the
remaining budget k. Step 3 also tests whether this condition is satisfied.

Input An array of probing costs c = (c1, c2, ..., cn)
An array of gains g = (g1, g2, ..., gn)
The resource budget C

Output The optimal set

1. for i := 1 to n do
2. for k := 1 to C do
3. if ci > k or v[k, i − 1] > v[k − ci, i − 1] + gi

4. v[k, i] := v[k, i − 1]
5. s[k, i] := s[k, i − 1]
6. else
7. v[k, i] := v[k − ci, i − 1] + gi

8. s[k, i] := s[k − ci, i − 1]
9. s[k, i][i] := 1
10. return s[C, n]

Fig. 4. Algorithm DP for SQ
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Using Algorithm DP, we can find an optimal solution for the SQ problem. We
will show soon that Algorithm DP can also be used to solve the MQSB problem,
with little change to the calculation of gain.

Complexity. There are two for-loops in Algorithm DP. The computational com-
plexity is thus O(nC). The algorithm requires the storage of intermediate results,
i.e. the optimal sets and corresponding gains for the subproblems. The variable
s is a 3D array with space complexity of n2C, while v is a 2D array with the
size of nC. Thus the memory complexity of Algorithm DP is O(n2C).

5.2 Multiple Queries with Shared Budget (MQSB)

In many cases, more than one query are processed at the server simultaneously. A
data item Ti may be involved in the results of multiple queries. By probing Ti, all
queries containing it in their results will have a better quality. In order to apply
Algorithm DP in this scenario, we need to change the method of calculating
gain, i.e. Equation 3. Suppose there are m queries, Q1, Q2, ..., Qm, we can have
a set of m values for Ti, pi1, pi2, ..., pim, where pij(j = 1, 2, .., m) specifies the
probability that Ti satisfies Qj. After getting the exact value of Ti the result
precision of these queries will be improved by Hij . Here Hij , the gain for Qj

obtained by probing Ti, is equal to −pijlog2pij − (1 − pij)log2(1 − pij), where
j = 1, 2, ..., m(Equation 3). The gain of probing Ti is the sum of Hij , or

Gi =
m∑

j=1

Hij (6)

For example, as in Figure 3, item A overlaps with the ranges of both Q1 and
Q2, where pA1 = pA2 = 0.25. Thus gA = −2 · (0.25 · log20.25 + 0.75 · log20.75) =
1.62.

Suppose the server needs to process multiple queries in batches, and these
queries share a single resource budget C. We denote this scenario as Multiple
Queries with Shared Budget, MQSB. The formal definition of MQSB has the
same form as that of SQ. The only difference is the use of Gi (Equation 6) to
replace gi (Equation 3). Therefore, Algorithm DP is also suitable for solving
MQSB. Moreover, the approximate solutions, which will be discussed in Sec-
tion 5.3, can also be used for MQSB.

Complexity of DP (MQSB). Compared with the SQ scenario, the inputed
data size for the DP algorithm will be larger in the MQSB scenario. There are
m queries evaluated concurrently in the MQSB scenario. If we let n to be the
average size of the result sets for these m queries, the DP algorithm needs to
process nm data items. Moreover, there would be extra cost of computing the
gains by using Equation 6 in the MQSB scenario, which is O(nm). Thus, the
computational complexity of Algorithm DP would be O(nmC +nm) = O(nmC)
in the MQSB scenario, and the memory complexity is O((nm)2C).
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5.3 Approximate Solutions

Greedy. The dynamic programming solution, Algorithm DP, can find the op-
timal sets. However, its complexity can be quite high. To enhance its scalability,
we design a greedy algorithm. The general idea of Greedy is to make a locally
optimal choice. Every unit of cost should be allocated to the items which can
produce maximum benefit. To achieve this objective, we define a new metric
to describe the amount of gain obtained by consuming a unit of resource. This
metric is called efficiency, denoted by ei. Equation 7 shows how to compute the
value of ei.

ei =
gi

ci
(7)

Input An array of probing costs c = (c1, c2, ..., cn)
An array of gains g = (g1, g2, ..., gn)
The resource budget C

Output The optimal set

1. d := sort(c, g)
2. b := C
3. for i := 1 to n do
4. if b ≥ cd[i]

5. s[d[i]]:=1
6. b := b − cd[i]

7. return s

Fig. 5. Algorithm Greedy

In Step 1 of the Greedy algorithm, the items are sorted by their efficiencies
in descending order. The sorted indices are stored in an array d. Initially, the
remaining budget, i.e. b, is set to the value of C. We then check the items
sequentially in the order stored in d. If the remaining budget is not smaller than
the cost of probing this item (Step 4), it is put into array s (Step 5) and the
remaining budget is reduced by its cost (Step 6). Step 7 returns the probing set
stored in s.

The Greedy algorithm has a time complexity of O(n log n) (to sort the items).
The space requirement for Greedy is O(n). It is thus more efficient than DP.
However Greedy does not guarantee an optimal set can be found.We will compare
the performance of these two algorithms in Section 6.

Random and MaxVal. We also develop two other simpler heuristics, called
Random and MaxVal. The Random solution chooses items randomly until the
resource budget is exhausted. The MaxVal heuristic probes items sequentially
in descending order of their gains until the resource budget is exhausted.

Table 2 compares the complexities of the above algorithms in the SQ scenario.
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Table 2. Complexity of Four Algorithms (SQ)

Algorithm Computational Complexity Space Complexity

DP O(nC) O(n2C)

Greedy O(n log n) O(n)

Random O(n) O(n)

MaxVal O(n log n) O(n)

Table 3. Complexity of Four Algorithms (MQSB)

Algorithm Computational Complexity Space Complexity

DP O(nmC) O((nm)2C)

Greedy O((nm) log(nm)) O(nm)

Random O(nm) O(nm)

MaxVal O((nm) log(nm)) O(nm)

For MQSB, the complexities of the optimal and approximate solutions are
listed in Table 3. They are derived by substituting the value of n in Table 2
by nm.

6 Experimental Results

We have performed experimental evaluation on the effectiveness of our ap-
proaches. We first present our simulation model, followed by the detailed results.

6.1 Experiment Settings

We use a realistic data set, called Long Beach1, which contains 53K rectangles,
and each represents a region in the Long Beach country. The objects occupy a
2D space of 10, 000 ∗ 10, 000 units. We use the Long Beach data as an uncertain
object database. We also assume that the uncertainty pdf of any uncertain object
is a uniform distribution.

The cost of probing each item (i.e. ci) are uniformly distributed in [1, 10]. The
resource budget, C, ranges from 20 to 500. The performance metric is the result
quality improved by probing a set of result items. Each data point is an average
over 50 runs. Our experiments are run on a PC with 2.4GHz CPU and 512MB
of main memory. Our simulation is written in j2sdk1.4.2 11.

6.2 Results

Effectiveness Analysis. Figure 6 compares the quality improvement using dif-
ferent probing strategies for the SQ problem. The x-axis is the value of resource
budget which ranges from 20 to 500. The y-axis is the improved quality of query
1 Available at http://www.census.gov/geo/www/tiger/
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Fig. 6. Quality Improvement vs. Resource Budget (SQ)
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Fig. 7. Quality Improvement vs. Resource Budget (MQSB)

results. As shown in Figure 6, DP always outperforms MaxVal and Random.
This is because DP derives the probing set with optimal resource utilization.
The performance of Greedy is close to DP; in fact, DP performs about only
2% to 3% better than Greedy. This is because that the quality-aware probing
problem is a variant of the knapsack problem [9], and it has been shown in [12]
that the average performance of a greedy solution is close to the optimal one.

Figure 7 illustrates similar results for MQSB. In these experiments, 10 queries
are executed concurrently in a batch.
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Fig. 8. Time Spent in Different Phases during Query Processing (SQ)
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Fig. 9. Decision Time vs. Resource Budget (SQ)

Performance Analysis. Figure 8 shows a decomposition of the time spent in
the server: (1) Evaluation - the time required by the Query Evaluator to compute
the initial results (Step 1 in Section 3), and (2) Decision - the time for deciding
the probing set contents (Step 2 in Section 3). We have ignored the processing
time of Step 4 since after probing, the qualification probabilities will become
either zero or one for the data items in the probing set, and no extra effort
is needed to compute their qualification probabilities. Here, we use DP to find
optimal probing set in the Decision step. As shown in Figure 8, the Decision
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Fig. 10. Scalability of MQSB (Greedy)

step costs more time as the resource budget increases. The reason is that more
choices are available with a larger resource budget.

Figure 9 shows the time spent in the Decision step for the SQ problem. DP
uses more time to find the optimal probing sets, and the decision time of DP
increases fast with the resource budget. The decision time for heuristics (i.e.
Greedy, MaxVal and Random) are much less. The results in MQSB are similar
and are omitted here.

Compared with DP, Greedy gets similar quality improvement with less time.
In fact, Greedy performs very well under a large batch of queries in the MQSB
scenario. Figure 10 illustrates the time required for finding the probing sets using
the Greedy algorithm. The resource budget is set to 100. The number of queries
evaluated in a batch varies from 10 to 100. As shown in the figure, the decision
time increases gracefully with the query batch size.

7 Conclusions

The evaluation of probabilistic queries over uncertain data has attracted plenty
of research interest in recent years. In this paper, we investigated the problem
of optimizing the quality of probabilistic query answers with limited resources.
We further extended our solution to handle the case where the resource budget
is shared among multiple queries. While the DP algorithm provides an optimal
solution in polynomial times, our experiments show that the Greedy heuristic
can achieve close-to-optimal performance in less time. In the future, we will
investigate this problem for other types of queries.
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