Semantic Information Extraction: Overview and Basic Techniques

Shuming Shi
Microsoft Research Asia
Mar. 2012
Outline

• Overview
• Semantic class mining
• Semantic hierarchy construction
• Mining attribute names and values
• General relation extraction
• Demo
• Summary
Information Extraction (IE) Definitions

• In Wikipedia
 - A process to “extract structured information from unstructured and/or semi-structured machine-readable documents”
 - Sample
 • "Yesterday, New-York based Foo Inc. announced their acquisition of Bar Corp." ➔ MergeBetween(company1,company2,date)

• In “Speech and Language Processing” (D. Jurafsky & J.H. Martin)
 - “turns the unstructured information embedded in texts into structured data”
 - “an effective way to populate the contents of a relational database”
 - “extract limited kinds of semantic content from text”
IE and Semantic IE

Unstructured data
(plain text articles, sentences, query strings…)

Semi-structured data
(HTML documents, query logs, web search results, dictionaries, user interaction data…)

Semantic IE

IE

Structured data

Semantic knowledge
Semantic Information Extraction

• Motivations
 – Build “smarter” computer systems with the semantic knowledge-base
 – Better fulfill the information needs of programs & end users
 • Better web search
 • Better QA
 • Better machine translation
 • …
Semantic Information Extraction

- Major tasks
 - Named entity extraction
 - Named entity recognition (NER)
 - Co-reference resolution
 - Attribute extraction
 - Relation mining
 - Related terms and entities
 - Categorization
 - Relation detection and classification
 - Event mining
 - Event detection and classification
 - ...
Britney Jean Spears (born December 2, 1981) is an American recording artist and entertainer. Born in McComb, Mississippi, and raised in Kentwood, Louisiana, Spears began performing as a child, landing acting roles in stage productions and television shows. She signed with Jive Records in 1997 and...”

(from Wikipedia)
IE Task: Attribute Extraction

Beijing:
- **Country:** China
- **Time zone:** China Standard Time
- **Area:** 16,801.25 km²
- **Population:** 19,612,000
- **Elevation:** 43.5 m

Kinect:
- **Product family:** Xbox
- **Company:** Microsoft
- **Resolution:** 680*480
- **Release date:** Nov. 4, 2010
- **Games:** Kinect Sports, Kinect Adventures, Kinect Joy Ride, Kinectimals…

[Picture]:

Microsoft Research
IE Task: Relation & Event Extraction

- Related terms and entities
- Categorization
- Relation detection and classification
- Event detection and classification
- ...

- Similarity(significantly, substantially, 0.9)
- Synonym(China, People’s Republic of China)
- IsA(pear, fruit)
- Peer(Beijing, Shanghai, Guangzhou…)
- InClass(Beijing, C1)
- BornIn(Barack Obama, 1961)
- BornIn(PERSON, YEAR)
- LocatedIn(ORGANIZATION, LOCATION)
- DefeatedIn(Dallas Mavericks, Miami Heat, 2011 NBA Finals)
Outline

• Overview

➢ Semantic class mining
 • Semantic hierarchy construction
 • Mining attribute names and values
 • General relation extraction
 • Demo
 • Summary
Semantic Class Mining

• Goal
 - Discover peer terms (or coordinate terms)
 - Sample: \{C++, C#, Java, PHP, Perl, \ldots\}

• Main techniques
 - First-order co-occurrences
 • Standard co-occurrences
 • Patterns: Special first-order co-occurrences
 - Second-order co-occurrences
 • Distributional similarity
Pattern-Based (PB)

Hours may vary on holidays, such as Easter, Thanksgiving and Christmas.

Pattern: (such as | including) T {,T}* (and|.|.)

{Easter, Thanksgiving, Christmas}

Exploit first-order Co-occurrences

Pattern:

<select>
<option> T … <option> T
</select>

{Alabama, Alaska, Arizona…}
PB Implementation

- **RASC mining**
 - Employ predefined patterns to extract Raw Semantic Classes (RASCs)

<table>
<thead>
<tr>
<th>Type</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>T {, T}*{,} (and</td>
</tr>
<tr>
<td></td>
<td>(such as</td>
</tr>
<tr>
<td></td>
<td>T, T, T {,T}*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tag</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td> T ... T </td>
</tr>
<tr>
<td></td>
<td> T ... T </td>
</tr>
<tr>
<td></td>
<td><select> <option> T ...<option> T </select></td>
</tr>
<tr>
<td></td>
<td><table> <tr> <td> T </td> ... <td> T </td> </tr> ... </table></td>
</tr>
<tr>
<td></td>
<td>Other Html-tag repeat patterns</td>
</tr>
</tbody>
</table>
PB Implementation

• Compute Term Similarity
 - Based on the RASCs containing both terms

\[
Sim(a, b) = \sum_{i=1}^{m} \log(1 + \sum_{j=1}^{k_i} w(P(C_{i,j})))
\]

\[
Sim^*(a, b) = Sim(a, b) \cdot \sqrt{IDF(a) \cdot IDF(b)}
\]

\[
IDF(a) = \log(1 + N/N(a))
\]

(Zhang et al., ACL’09)
Distributional Similarity (DS)

- Distributional hypothesis (Harris, 1985): Terms occurring in analogous (lexical or syntactic) contexts tend to be similar

- Contexts shared by *Easter* and *Christmas*
 - the date _ is celebrated
 - _ is a religious festival
 - history of the _ festival
 - ...

- Contexts shared by *significantly* and *dramatically*
 - is _ improved by
 - unlikely to _ alter the
 - can _ increase health risks
 - ...

Exploit second-order Co-occurrences
DS Implementation

• Step-1: Define context
 - Syntactic context, lexical context…

• Step-2: Represent each term by a feature vector
 - Feature: A context in which the term appears
 - Feature value: “Weight” of the context w.r.t. the term

• Step 3: Compute term similarity
 - Term similarity = similarity between corresponding feature vectors
DS Implementation

<table>
<thead>
<tr>
<th>Contexts</th>
<th>Text window (window size: 2, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syntactic</td>
</tr>
<tr>
<td>Feature value</td>
<td>PMI</td>
</tr>
<tr>
<td>Similarity measure</td>
<td>Cosine, Jaccard</td>
</tr>
</tbody>
</table>

DS approaches implemented in the study:

Pointwise mutual information:

\[
f_{w,c} = \text{PMI}_{w,c} = \log \frac{F(w,c) \cdot F(*,*)}{F(w,*) \cdot F(*,c)}
\]

\[
\text{Cosine}(\tilde{x}, \tilde{y}) = \frac{\sum_i x_i y_i}{\sqrt{\sum_i x_i^2 \cdot \sum_i y_i^2}}
\]

\[
\text{Jaccard}(\tilde{x}, \tilde{y}) = \frac{\sum_i \min(x_i, y_i)}{\sum_i x_i + \sum_i y_i - \sum_i \min(x_i, y_i)}
\]
Compare DS and PB with Set Expansion

- Set Expansion: Problem statement
 - Given a list of seed terms in a semantic class
 \[Q = \{ s_1, s_2, \ldots, s_k \} \] (e.g. \[Q = \{ \text{Lent, Epiphany} \} \])
 - To find other members of the class
 - E.g., \{ \text{Advent, Easter, Christmas} \} ...

- Set Expansion with a similarity graph \(G \)
 - Select the terms most similar to the seeds
 \[
 f(t, Q) = \sum_{i=1}^{k} w_i \cdot \text{Sim}(t, s_i)
 \]
 \[
 \text{Sim}(t, s_i) = \frac{1}{\log(\lambda + R(t, s_i))}
 \]
Compare and Combine PB & DS (cont.)

- Corpus: ClueWeb (500 million English pages)
- Five term categories: proper nouns, common nouns, verbs, adjectives, adverbs
- Key observations: PB performs better for proper nouns; DS has better performance for other term categories
Samples (Query: significantly)

<table>
<thead>
<tr>
<th>Sample</th>
<th>PB Result</th>
<th>DS Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>significantly</td>
<td>187.419</td>
<td>0.121576</td>
</tr>
<tr>
<td>and</td>
<td>54.8759</td>
<td>0.0162357</td>
</tr>
<tr>
<td>slightly</td>
<td>23.4412</td>
<td>0.0154982</td>
</tr>
<tr>
<td>but</td>
<td>21.83044</td>
<td>0.0138213</td>
</tr>
<tr>
<td>moderately</td>
<td>21.7083</td>
<td>0.013429</td>
</tr>
<tr>
<td>English</td>
<td>20.4911</td>
<td>0.010923</td>
</tr>
<tr>
<td>seriously</td>
<td>20.4479</td>
<td>0.0089119</td>
</tr>
<tr>
<td>Yiddish</td>
<td>20.2321</td>
<td>0.00800886</td>
</tr>
<tr>
<td>Hebrew</td>
<td>19.7871</td>
<td>0.0074269</td>
</tr>
<tr>
<td>Too</td>
<td>19.6313</td>
<td>0.00731532</td>
</tr>
<tr>
<td>Kigezi</td>
<td>18.4164</td>
<td>0.00688791</td>
</tr>
<tr>
<td>Bunyoro</td>
<td>17.8679</td>
<td>0.00640118</td>
</tr>
<tr>
<td>Specifically</td>
<td>17.8268</td>
<td>0.0061907</td>
</tr>
<tr>
<td>Also</td>
<td>17.4519</td>
<td>0.00606039</td>
</tr>
<tr>
<td>Mbaye</td>
<td>17.3605</td>
<td>0.00604854</td>
</tr>
<tr>
<td>Especially</td>
<td>17.2895</td>
<td>0.0060448</td>
</tr>
<tr>
<td>Rich americans</td>
<td>17.1207</td>
<td>0.00603508</td>
</tr>
<tr>
<td>Surely</td>
<td>16.7604</td>
<td>0.00602135</td>
</tr>
<tr>
<td>Sharply</td>
<td>16.5638</td>
<td>0.00601235</td>
</tr>
<tr>
<td>It</td>
<td>15.6475</td>
<td>0.00590148</td>
</tr>
</tbody>
</table>

PB results

DS results
Samples (Query: Apple)

PB results

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20						
	apple	1741.13	microsoft	639.909	ibm	617.503	sony	613.111	dell	601.909	hp	597.473	toshiba	546.464	orange	537.578	samsung	528.885	compaq	490.275	canon	476.098	cherry	472.247	pear	470.911
	panasonic	467.727	peach	460.441	pineapple	444.158	intel	434.583	acer	433.825	lemon	424.788	strawberry	423.942												

DS results

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>apple</td>
<td>0.0808821</td>
<td>microsoft</td>
<td>0.00336825</td>
<td>the government</td>
<td>0.00237455</td>
<td>the company</td>
<td>0.00223547</td>
<td>google</td>
<td>0.00212872</td>
<td>sony</td>
<td>0.00193015</td>
<td>ibm</td>
<td>0.00185744</td>
<td>obama</td>
<td>0.00163117</td>
<td>dell</td>
<td>0.00161188</td>
<td>nintendo</td>
<td>0.00135578</td>
</tr>
</tbody>
</table>
Explain by Frequency

- Normalized frequency (F_{norm}) of term t
 - Frequency in the RASCs
 - Frequency in the sentences of the original documents
- Mean normalized frequency (MNF) of a query set S

$$MNF(S) = \frac{\sum_{t \in S} F_{norm}(t)}{|S|}$$

<table>
<thead>
<tr>
<th>Seed Categories</th>
<th>Terms</th>
<th>MNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proper nouns</td>
<td>40</td>
<td>0.2333</td>
</tr>
<tr>
<td>Common nouns</td>
<td>40</td>
<td>0.0716</td>
</tr>
<tr>
<td>Verbs</td>
<td>40</td>
<td>0.0099</td>
</tr>
<tr>
<td>Adjectives</td>
<td>40</td>
<td>0.0126</td>
</tr>
<tr>
<td>Adverbs</td>
<td>40</td>
<td>0.0053</td>
</tr>
</tbody>
</table>
Related Papers

- Harris, 1985 (in The Philosophy of Linguistics)
 Distributional Structure
- Pantel & Lin, SIGKDD’2002
 Discovering Word Senses from Text
- Etzioni et al., WWW’2004
 Web-Scale Information Extraction in KnowItAll
- Wang & Cohen, ICDM’2008
 Iterative Set Expansion of Named Entities Using the Web
- Pantel, EMNLP’2009
 Web-Scale Distributional Similarity and Entity Set Expansion
- Agirre et al., NAACL’2009
 A Study on Similarity and Relatedness Using Distributional and WordNet-based Approaches
- Shi et al., COLING’2010
 Corpus-based Semantic Class Mining: Distributional vs. Pattern-Based Approaches
Outline

- Overview
- Semantic class mining
 - Semantic hierarchy construction
 - Mining attribute names and values
 - General relation extraction
- Demo
- Summary
Semantic Hierarchy Construction
Semantic hierarchy construction

• Major subtasks
 - Assign category labels (hyponyms) to terms
 • Beijing → city, capital…
 • Apple → company, fruit…
 • Red → color, symptom, hue…
 • Canon EOS 400D → digital camera, product…
 - Assign category labels to semantic classes
 • {Beijing, Shanghai, Dalian…} → cities, Chinese cities…
 • {Microsoft, IBM, Apple…} → companies, manufacturers…
 - Build the hierarchy
Subtask: Term → Label

- Approach: Pattern matching + counting

Tuple: `<term, label, pattern, source, weight>`

- `<pear, fruit, P1, S1, 1.0>`
- `<pear, shape, P2, S2, 1.0>`
- `<pear, fruit, P3, S3, 1.0>`
- `<New York, city, P1, S4, 1.0>`
- `<New York, office, P2, S6, 1.0>`
- `<New York, state, P4, S7, 1.0>`
 ...
 ...

Corpus → Pattern matching → Merge tuples → Term-Label graph
Subtask: Term → Label (cont.)

- Pattern matching
 - Manually designed or automatically generated patterns
 - Text patterns or HTML tables

<table>
<thead>
<tr>
<th>Label</th>
<th>Label</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>Term</td>
<td>Term</td>
</tr>
<tr>
<td>Term</td>
<td>Term</td>
<td>Term</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

- Output: <term, label, pattern, source, weight> tuples
- Challenges
 - Boundary detection: term boundary, label boundary
 - Label selection

<table>
<thead>
<tr>
<th>Type</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearst-I</td>
<td>NP_{L} { np } (such as) { np }^* { and</td>
</tr>
<tr>
<td>Hearst-II</td>
<td>NP_{L} { np } (include(s)</td>
</tr>
<tr>
<td>Hearst-III</td>
<td>NP_{L} { np } (e.g.</td>
</tr>
<tr>
<td>IsA-I</td>
<td>NP (is</td>
</tr>
<tr>
<td>IsA-II</td>
<td>NP (is</td>
</tr>
<tr>
<td>IsA-III</td>
<td>NP (is</td>
</tr>
</tbody>
</table>
Subtask: Term \rightarrow Label (cont.)

- **Merge tuples**
 - For each term T and label L, compute $w(T, L)$

- **Methods**
 - **Simple counting**
 - Count the number of $<T, L, P, S, W>$ tuples for each (T, L) pair
 - Or TF-IDF
 - **Nonlinear evidence fusion** (Zhang et al., ACL’2011)

 $\text{Score}(T, L) = \left(\sum_{i=1}^{K} \sqrt[p]{m_i} \right) \cdot \text{IDF}(L)$

m_i: #tuples for pattern i
$x_{i,j}$: Gain value given the j’th tuple for pattern i
Subtask: Class \rightarrow Label

- **Input**
 - Class C: \{orange, apple, pear, banana…\}
- **Output**
 - Label list for C: fruit, tree, flavor…
- **Method: Voting**
 - orange: color, flavor, client, network, fruit, county, tree…
 - apple: company, brand, fruit, manufacturer, client, tree…
 - pear: fruit, tree, shape, flavor, juice, cut, wood…
 - banana: fruit, crop, flavor, tree, food, plant, vegetable…
Related Papers

• Hearst, COLING’1992
 Automatic Acquisition of Hyponyms from Large Text Corpora

• Pantel & Ravichandran, HLT-NAACL’2004
 Automatically Labeling Semantic Classes

• Snow et al., COLING-ACL’2006
 Semantic Taxonomy Induction from Heterogenous Evidence

• Banko et al., IJCAI’2007
 Open Information Extraction from the Web

• Cafarella et al., VLDB’2008
 WebTables: Exploring the Power of Tables on the Web

• Durme & Pasca, AAAI’2008
 Finding cars, Goddesses and Enzymes: Parametrizable Acquisition of Labeled Instances for Open-Domain Information Extraction

• Zhang et al., ACL’2011
 Nonlinear Evidence Fusion and Propagation for Hyponymy Relation Mining
Outline

• Overview
• Semantic class mining
• Semantic hierarchy construction
 ➢ Mining attribute names and values
• General relation extraction
• Demo
• Summary
Semantic Attributes

(city, population)
(country, flag)
(country, capital)
(company, CEO)
(China, capital, Beijing)
(Microsoft, CEO, Steve Ballmer)
(Barack Obama, Birth year, 1961)
Attribute Name Extraction from Unstructured Text

- **Corpus (sentences, query logs...)**
- **Semantic class**
- **(term, attr) seeds**
- **Patterns**
- **Pattern generation**
- **Pattern matching**
- **Tuples**
- **Class-Attr graph**
- **Merge tuples**

Sample patterns:
- A of I
- I’s A
- I A

Tuple: `<term, attr, pattern, source, weight>`
- `<China, capital, P1, S1, 1.0>`
- `<China, republic, P2, S2, 1.0>`
- `<United States, land area, P3, S3, 1.0>`
Attribute Name Extraction from Unstructured Text

• Major papers:
 - Pasca, WWW’2007
 Organizing and Searching the World Wide Web of Facts Step Two: Harnessing the Wisdom of the Crowds
 - Durme et al., COLING’2008
 Class-Driven Attribute Extraction
 - Pasca et al., CIKM’2007
 The Role of Documents vs. Queries in Extracting Class Attributes from Text
 - Bellare et al., NIPS’2007
 Lightly-Supervised Attribute Extraction
 - Reisinger & Pasca, 2009
 Low-Cost Supervision for Multiple-Source Attribute Extraction
 - Tokunaga et al., IJCNLP’2005 (Japanese data)
 Automatic Discovery of Attribute Words from Web Documents
 - …
Attribute Name & Value Extraction

- From Unstructured Text
 - Similar with extracting attribute names from unstructured text.
 - Changed patterns: A of I → A of I is V; V is A of I
 - Changed seeds: (China, capital) → (China, capital, Beijing)

- From HTML tables

<table>
<thead>
<tr>
<th>Mountain Peak</th>
<th>Continent</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount Everest</td>
<td>Asia</td>
<td>8,850 m</td>
</tr>
<tr>
<td>Aconcagua</td>
<td>South America</td>
<td>6,959 m</td>
</tr>
<tr>
<td>Mount McKinley (Denali)</td>
<td>North America</td>
<td>6,194 m</td>
</tr>
<tr>
<td>Kilimanjaro</td>
<td>Africa</td>
<td>5,895 m</td>
</tr>
<tr>
<td>Mount Elbrus</td>
<td>Europe</td>
<td>5,642 m</td>
</tr>
<tr>
<td>Vinson Massif</td>
<td>Antarctica</td>
<td>4,897 m</td>
</tr>
<tr>
<td>Carstensz Pyramid</td>
<td>Australia - Oceania</td>
<td>4,884 m</td>
</tr>
<tr>
<td>Mount Kosciuszko (The highest point on the Australian landmass)</td>
<td></td>
<td>2,228 m</td>
</tr>
</tbody>
</table>

- From Wikipedia Infobox

http://woodlands-junior.kent.sch.uk/Homework/mountains/tallest.htm
Table Mining References

- G. Limaye, S. Sarawagi, and S. Chakrabarti. PVLDB'2010
 Annotating and searching web tables using entities, types and relationships

 WebTables: Exploring the power of tables on the web

 WWW'2007
 Towards domain-independent information extraction from web tables

- Y. Wang and J. Hu. WWW'2002
 A machine learning based approach for table detection on the web

 Mining tables from large scale HTML texts

- …
Outline

• Overview
• Semantic class mining
• Semantic hierarchy construction
• Mining attribute names and values
 ➢ **General relation extraction**
• Demo
• Summary
General Relations

• Relations: Facts involving entities
 • [PER Susan Dumais] works for [ORG Microsoft Research], which is headquartered in [LOC Redmond, WA]
 • DefeatedIn(Dallas Mavericks, Miami Heat, 2011 NBA Finals)

• Relations vs. Events
 - Vague boundary

• History
 - Introduced in MUC-7 (1997), extended by ACE, continued by KBP
 - Gain popularity in molecular biology, recent works including extracting protein-protein interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART (artifact)</td>
<td>User-Owner-Inventor-Manufacturer</td>
</tr>
<tr>
<td>GEN-AFF (Gen-affiliation)</td>
<td>Citizen-Resident-Religion-Ethnicity, Org-Location</td>
</tr>
<tr>
<td>METONYMY*</td>
<td>none</td>
</tr>
<tr>
<td>ORG-AFF (Org-affiliation)</td>
<td>Employment, Founder, Ownership, Student-Alum, Sports-Affiliation, Investor-Shareholder, Membership</td>
</tr>
<tr>
<td>PART-WHOLE (part-whole)</td>
<td>Artifact, Geographical, Subsidiary</td>
</tr>
<tr>
<td>PER-SOC* (person-social)</td>
<td>Business, Family, Lasting-Personal</td>
</tr>
<tr>
<td>PHYS* (physical)</td>
<td>Located, Near</td>
</tr>
</tbody>
</table>

ACE’05 relation types
General Relations (cont.)

- **Relation triples**
 - <Euro, be the currency of, Germany>
 - <authorship, be the currency of, science>
 - <Euro, be the currency used in, Germany>
 - <Dinar, be legal tender in, Iraq>

- **Concept-level relations**

\[
< \{ \text{marijuana}, \text{caffeine}, \text{nicotine}, \ldots \} >, \quad \{ \text{result in}, \text{be risk factor for}, \text{be major cause of}, \ldots \} >, \quad \{ \text{insomnia}, \text{emphysema}, \text{breast cancer}, \ldots \} >
\]
Supervised Learning

• Treat relation mining as a classification problem
 - Use relational and non-relational mentions as positive and negative data, respectively

• Solve it with supervised Machine learning algorithms
 - Popular choices include SVM, MaxEnt, KNN

• Key: data representation
 - Feature based methods
 - Kernel based methods

• Evaluate metrics: Precision, Recall, F1 on relation mention level
Features

• List of common features (Kambhatla 2004)
 • **Words**: Words of both the entity mentions and all the words in between.
 • **Entity Type**: Entity type of both the mentions.
 • **Mention Level**: Mention level of both the mentions.
 • **Overlap**: Number of words separating the two mentions, number of other mentions in between, flags indicating whether the two mentions are in the same noun phrase, verb phrase or prepositional phrase.
 • **Dependency**: Words and PoS and chunk labels of the words on which the mentions are dependent in the dependency tree
 • **Parse Tree**: Path of non-terminals (removing duplicates) connecting the two mentions in the parse tree, and the path annotated with head words.

• Other features (Zhou et al. 2005)
 • **Based phrase chunking** chunk labels and chunk heads in between
 • **Semantic resources** (country list, etc)
Kernel based Methods

• Kernel \((X, Y)\) defines similarity between \(X\) and \(Y\)
• \(X\) and \(Y\) can be
 - Vectors of features (as in previous slides)
 - Objects (string sequence, Parse trees)

• Kernel-based methods
 - Don’t require extensive feature engineering
 - Maybe computational expensive

• Multiple Kernels can also be used in combination with a composite kernel (Zhao and Grishman, 2005)
Subsequence Kernel (Bunescu and Mooney, 2005)

- Implicit features are sequences of words anchored at the two entity names
 - \(s \) = a word sequence

\[
\begin{align*}
<e_1> & \quad \ldots \quad \text{bought} \quad \ldots \quad <e_2> \quad \ldots \quad \text{billion} \quad \ldots \quad \text{deal}.
\end{align*}
\]

- \(x \) = an example sentence, containing \(s \) as a subsequence

Google has bought video-sharing website YouTube in a controversial $1.6 billion deal.

\[g_1 = 1 \quad g_2 = 3 \quad g_3 = 4 \quad g_4 = 0 \]

- \(\varphi_s(x) \) = the value of feature \(s \) in example \(x \)

\[
\varphi_s(x) = \lambda \sum g_i = \lambda^{\text{gap}(s,x)} = \lambda^{1+3+4+0}
\]

- \(K(x_1, x_2) = \varphi(x_1) \varphi(x_2) \) = the number of common “anchored” subsequences between \(x_1 \) and \(x_2 \), weighted by their total gap
Tree Kernel for RDC

- Convolution kernels for NLP (Collins and Duffy. 2001)
 - $K(T_1, T_2)$ defined over trees T_1 and T_2
 - Measured as number of overlapping fragments.

An example parse tree(a) and its sub-trees(b)

- Parse tree needs to be augmented before used for RDC
- Tree kernel for RDC differs in ways to augment/prune trees
Tree kernels for RDC

- An example of pruned parse tree augmented with entity types (Zhang et al. 2006)
Semi-Supervised Learning

- Supervised learning requires sufficient amount of annotated data
 - Expensive to obtain
 - Annotation error still occurs even dual annotated and adjudicated (ACE 2005)
- Semi-supervised learning (SSL) use a handful of seed tuples or patterns
- Bootstrapping alternates between finding pairs of arguments and contexts(pattern) of them
Initial Seed Tuples:

<table>
<thead>
<tr>
<th>ORGANIZATION</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICROSOFT</td>
<td>REDMOND</td>
</tr>
<tr>
<td>IBM</td>
<td>ARMONK</td>
</tr>
<tr>
<td>BOEING</td>
<td>SEATTLE</td>
</tr>
<tr>
<td>INTEL</td>
<td>SANTA CLARA</td>
</tr>
</tbody>
</table>

DIRPRE (Brin 1998) patterns:

<STRING1>‘s headquarters in <STRING2>

Snowball patterns:

<left, NE tag1, middle, NE tag2, right>, left, middle, right are weighted terms

Evaluating Patterns and tuples (Snowball)

\[
Conf(Pat) = \frac{Positive}{Positive + Negative}
\]

\[
Conf(Tuple) = 1 - \prod(1 - Conf(P_i))
\]
Weakly Supervision

- Handful of seeds for supervision

Table 1: Corporate Acquisition Pairs.

<table>
<thead>
<tr>
<th>+/-</th>
<th>Arg a₁</th>
<th>Arg a₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Google</td>
<td>YouTube</td>
</tr>
<tr>
<td>+</td>
<td>Adobe Systems</td>
<td>Macromedia</td>
</tr>
<tr>
<td>+</td>
<td>Viacom</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>Novartis</td>
<td>Eon Labs</td>
</tr>
<tr>
<td>-</td>
<td>Yahoo</td>
<td>Microsoft</td>
</tr>
<tr>
<td>-</td>
<td>Pfizer</td>
<td>Teva</td>
</tr>
</tbody>
</table>

Bunescu and Mooney, 2007

Figure 1: Sentence examples.

+/S₁: Search engine giant Google has bought video-sharing website YouTube in a controversial $1.6 billion deal.

−/S₂: The companies will merge Google’s search expertise with YouTube’s video expertise, pushing what executives believe is a hot emerging market of video offered over the Internet.

+/S₃: Google has acquired social media company, YouTube for $1.65 billion in a stock-for-stock transaction as announced by Google Inc. on October 9, 2006.

+/S₄: Drug giant Pfizer Inc. has reached an agreement to buy the private biotechnology firm Rinat Neuroscience Corp., the companies announced Thursday.

−/S₅: He has also received consulting fees from Alpharma, Eli Lilly and Company, Pfizer, Wyeth Pharmaceuticals, Rinat Neuroscience, Elan Pharmaceuticals, and Forest Laboratories.
Weakly Supervision (cont.)

- A SVM solution to tolerate noisy positive instances

\[
J(w, b, \xi) = \frac{1}{2} \|w\|^2 + \frac{C}{L} \left(c_p \frac{L_p}{L} \Xi_p + c_n \frac{L_p}{L} \Xi_n \right)
\]

\[
\Xi_p = \sum_{X \in X_p} \sum_{x \in X} \xi_x
\]

\[
\Xi_n = \sum_{X \in X_n} \sum_{x \in X} \xi_x
\]

subject to:

\[
w \phi(x) + b \geq 1 - \xi_x, \quad \forall x \in X \in X_p
\]

\[
w \phi(x) + b \leq -1 + \xi_x, \quad \forall x \in X \in X_n
\]

\[
\xi_x \geq 0
\]

Use a lower penalize factor for positive errors to tolerate noises from positive instances.
Unsupervised Learning

- Automatically find major relations and respective arguments
- builds on the same duality of name pairs and contexts as relation bootstrapping methods

Hasegawa et al. 2004
- Uses Sekine’s Extended NE tagger
- A domain is defined as a pair of name classes
- Bag-of-words features to model relational context
- hierarchical clustering
References for General Relation Mining

• ACE, http://www.itl.nist.gov/iad/mig/tests/ace/
• Nanda Kambhatla. Combining Lexical, Syntactic, and Semantic Features with Maximum Entropy Models for Information Extraction. ACL 2004
• GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang. Exploring Various Knowledge in Relation Extraction. ACL 2005
• Shubin Zhao and Ralph Grishman. Extracting Relations withh Integrated Information Using Kernel Methods. ACL 2005
References for General Relation Mining (cont.)

- Min ZHANG, Jie ZHANG, Jian SU, Exploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel, In ACL 2006.
- Razvan Bunescu and Raymond J. Mooney. Learning to Extract Relations from the Web using Minimal Supervision. ACL 2007
- Takaaki Hasegawa, Satoshi Sekine, Ralph Grishman Discovering Relations among Named Entities from Large Corpora. ACL 2004.
Outline

• Overview
• Semantic class mining
• Semantic hierarchy construction
• Mining attribute names and values
• General relation extraction
 ➢ Demo
 ➢ Summary
“Find needles in a haystack”

- Mine open-domain semantic knowledge from web-scale data
- Empower upper-layer applications with semantic knowledge

URL: http://needleseek.msra.cn
Semantic IE: **Summary**

- **Semantic class mining**
 - Sample: \{C++, C#, Java, PHP, Perl, ...\}
 - Methods: Pattern matching (1st-order co-occurrences); distributional similarity (2nd-order co-occurrences)

- **Semantic hierarchy construction**
 - Key task: Hypernymy extraction (Beijing \(\rightarrow\) city; pear \(\rightarrow\) fruit; pear \(\rightarrow\) shape)
 - Pattern matching; tuple aggregation; Label voting

- **Mining attribute names and values**
 - Samples: (company, CEO); (China, capital, Beijing)
 - Pattern learning; pattern matching; Table extraction; Wikipedia Infobox

- **General relation & event extraction**
 - Sample: WorkFor(Susan Dumais, Microsoft Research)
 - Supervised, semi-supervised, & unsupervised learning
 - Process contexts (especially middle contexts)