
MetKB: Enriching RDF Knowledge Bases with Web
Entity-Attribute Tables

Haoqiong Bian, Yueguo Chen
∗
, Xiaoyong Du, Xiaolu Zhang

Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), MOE, China
School of Information, Renmin University of China, Beijing, China
{bianhq,chenyueguo,duyong,zxlruc2010}@ruc.edu.cn

ABSTRACT
There are many entity-attribute tables on the Web that can
be utilized for enriching the entities of an RDF knowledge
base. This requires the schema mapping (matching) between
the Web tables and the RDF knowledge base. In this paper,
we propose a feasible solution that is able to automatically
search and rank entity-attribute tables from the Web, and
effectively map the extracted tables with the RDF knowl-
edge base with very few manual efforts.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Web table, RDF knowledge base, schema mapping

1. INTRODUCTION
There are many Web-scale knowledge bases (KBs) such

as FreeBase, YAGO, Linked Data, which utilize RDF triples
to represent their basic information units. They have been
widely used in applications such as semantic search, text un-
derstanding and question answering [2]. To effectively sup-
port these applications, an RDF KB needs have information
of a huge number of open domain entities. Although the size
of Web-scale KBs keeps growing very fast, the coverage of
a single KB is still very limited, compared to the numerous
entities in the real world.
The current Web contains billions of tables, among which

a huge number of tables (154M found in the Webtables
project [1]) contain high-quality relational data. Of these
high qualified tables, there are many entity-attribute tables
that contain information of some entities of the same type
[1, 3]. In such tables, information of an entity appears in

∗Contact author, and the authors are supported by Na-
tional Basic Research Program of China (973 Program)
No. 2012CB316205, and the National Science Foundation
of China under grant No. 61170010 and 61003085.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage, and that copies bear this notice and the full ci-
tation on the f rst page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
ACM 978-1-4503-2263-8/13/10.
http://dx.doi.org/10.1145/2505515.2508209.

one row with each column representing an attribute of the
entity. It is possible that some entities in a Web table may
have corresponding entries in the KBs, from which we may
learn the mapping between the Web table and the KBs.
With the mapping, we are able to automatically inject en-
tities of the Web table into the KBs. The key problem is
therefore a schema mapping problem in which we want to
find the mapping between a Web table and a KB.

We have proposed techniques for efficiently and effectively
conduct schema mapping between a Web table and an RDF
KB [4]. However, finding proper entity-attribute tables from
the Web for enriching RDF KBs remains a challenge. The
reasons are at least in three folds: 1) although there are
many tables on the Web, many of them may not be entity-
attribute tables; 2) even for an entity-attribute table, it may
not be beneficial for the entity enriching task if there are
few novel entities or the table cannot be integrated with the
RDF KB; 3) the schema mapping automatically detected
between a Web table and the RDF KB is often error-prone,
some manual efforts to validate the schema mapping are
necessary to guarantee the quality of KB enlargement.

In this paper, we introduce a system, called MetKB, which
is able to automatically search and rank entity-attribute ta-
bles from the Web, and effectively map the extracted tables
with the RDF KB with very few manual efforts. It always
suggests best schema mappings detected so far for users’ val-
idation, so that we can populate and enrich the entities of a
KB with high quality guaranteed.

2. OVERVIEW
The MetKB system is designed to address the following

challenges:

• How to efficiently and effectively find relevant entity-
attribute tables from the Web?

• How to evaluate the feasibility and the value of inte-
grating an entity-attribute table to an RDF KB?

• How to guarantee the quality of entities extracted from
the entity-attribute table and injected to the KB?

Figure 1 illustrates the solution of the MetKB system, which
consists of several main steps (in the clockwise order). Among
them, there are two main steps that involve human inter-
vention. One is the initial step in which users pick an entity
type that requires to populate entities. The other one is
the validating step that continuously feeds the best schema
mapping detected so far for users’ feedbacks and validation.

2461



!"#$%&'(&)
*+,&

-"./0)
1+2&,

345,

-"./06+789:;/&)
<+:%&,

=>?&2+)
@+AA9"(,

B#8C9"()
@+AA9"(

D+%9'+/&')
@+AA9"(

E"+%0,9,

=&+8>?)B&:

-F/8+>/)+"')

)G9%/&8)<+:%&,

=>?&2+)@+AA9"(

=&%&>/)<?&)*&,/)

=>?&2+)@+AA9"(

-"./0)H"I&>.#"

J9>C)E)

-"./0)<0A&

3,&8)G&&':+>C

HK)D&89L&'

E'29"9,/8+/#8

Figure 1: The information flow of MetKB

2.1 Picking an Entity Type
The system provides a list of entity types for enlarging

entity population. Once the user selects an entity type, a
whole process of populating entities will be triggered. The
system will load information of entities of the picked type
into memory. The entities will be ranked based on their
novelty (timestamps when the entities are injected into the
KB) and their seeding ability (evaluated in Sec. 2.2). En-
tities of higher novelties and higher seeding abilities will be
ranked higher, and therefore be processed earlier. When the
type is picked in the first time, entities of the picked type
will be ranked only based on their seeding ability (computed
offline). However, with more and more novel entities are in-
serted into the KB, the novelty will be weighted more when
ranking entities for searching Web tables.

2.2 Searching Web Tables
This step continuously consumes the top entity of the en-

tity list generated from the previous step. For each entity,
it generates a Web table search query using the entity name
(quoted) and the picked entity type as query keywords. The
query is submitted to the Google Web Table search engine1

from which we are usually able to retrieve Web tables con-
taining the given entity name. From the snippets of the
search results, we can directly know the size of the retrieved
table. We then roughly ignore search results whose table
size is not large enough. For a query, the utility of a search

result T is evaluated as u(T ) =

√
size(T )

rank(T )
, where size(T ) is

the number of cells of T , and rank(T ) is the rank of T in
the search results of the corresponding query. The seeding
ability of an entity is then evaluated as the sum of utilities
of top-k search results whose size is large enough. In our
study, we straightforwardly set k = 20.
Note that, the same table can be retrieved by different

queries. The overall utility of the table will be the sum of
its utilities over all the search results. As entities are con-
tinuously consumed and fed to the search engine, a large
number of Web tables will be retrieved. They are dynami-
cally ranked based on their overall utilities generated from
a series of queries.

1http://research.google.com/tables

2.3 Extracting and Filtering Web Tables
This step is the consumer of the ranking list of Web tables

generated from the previous step. As long as the Web table
list is long enough, it continuously consumes the top Web
table from the list. For each Web table (which is actually a
URL so far), a table extraction and filtering process will be
conducted. The applied table extractor is quite simple. It
extracts tables only from shallow Web pages, in which tables
are discovered by HTML table tags. The table headers are
ignored in our study (note that some tables do not contain
headers). Nested tables (e.g., a cell contain multiple sub-
cells, or multiple cells are merged together) are also ignored
in our study for guaranteeing the quality of the extracted
information. Finally, Web tables are transferred into plain
tables where the information in each cell is extracted (unless
it is a vacant cell).

An entity-attribute table contains information of entities.
We define the column containing entity names as the key
column of a table. It satisfies some constraints: 1) no du-
plicated names in the column; 2) its values are not numer-
ical or IDs. This is reasonable because one of our assump-
tions is that the applied entity-attribute Web table should
contain information of entities distinguished by their names
within a column. If a table has more than one candidate
key columns, only the first one will be picked as the key
column. Note that we ignore tables whose entity names are
distributed over multiple columns. Fig.2 shows an example
of an entity-attribute table and its key column. A table will
be filtered if it does not contain a key column. If a page con-
tains multiple tables with key columns, only the one with the
largest number of rows will be picked for further processing.
In order to find good schema mappings, we filter columns
containing numerical IDs or too many vacant values.

Figure 2: A key column of a Web table

Note that most non entity-attribute tables will be fil-
tered in this step. Even for an entity-attribute table, some
columns can also be filtered from the original tables. Finally,
the output of the table extraction and filtering is a list of
prepared tables that are ready for schema mapping. In this
step, we will match the discovered entity names to those ex-
isting entity names of a given entity type in KB. The utility
of a prepared table T is evaluated as u(T ) = m(T )n(T )c(T ),
where m(T ) is the number of entity names in T that exists
in the KB, n(T ) is the number of novel entity names in T

that does not exist in the KB, and c(T ) is the number of
columns of T . With this, we rank all the prepared tables for
further processing.

2.4 Schema Mapping
This step is the consumer of the ranking list of prepared

tables generated from the previous step. Each time, it pro-
cesses a prepared table of the largest utility, based on the

2462



schema mapping techniques proposed in [4]. As the target of
the schema mapping has been fixed as the mapping between
a prepared table and a selected entity type, we only gener-
ate the best schema mapping for each schema mapping task.
Considering that the information of entities of the selected
type has been loaded into memory in the first step, the map-
ping task can therefore be conducted very efficiently. The
utility of a mapping has been defined in [4], from which we
are able to rank all the schema mappings detected between
prepared tables and the given entity type. Details of how
schema mapping is efficiently and effectively conducted are
given in the reference [4].

2.5 Verifying The Mapping
To guarantee the quality of KB enlargement, the detected

schema mappings need to be manually verified before they
can be used for injecting novel entities from tables to the KB.
A user can check whether a column of the table is correctly
matched to a predicate of the KBs. The user can modify the
mapping by removing/modifying those incorrect mappings
between columns and predicates. For those columns that
cannot be automatically matched to any predicate, the user
may help to pick a predicate from the predicate list of the
given entity type, if he is sure that there is a correct mapping
between the picked predicate and the corresponding column.
To effectively illustrate a schema mapping, examples of

mapped tuples will be highlighted. A user can choose to
reject a schema mapping of a table if he is not satisfied with
the detected results. Otherwise, information of the table
will be utilized for entity enlargement.

2.6 Entity Injection
Once a mapping is verified, the system will inject infor-

mation of entities in the table into the KB. The values in
the key column will be transformed into the subjects of en-
tities. Those in the other mapping columns are treated as
objects. The predicates are directly derived from the map-
ping. Note that information in entity-attribute tables does
not contain prefixes that are widely used in RDF KBs. How-
ever, the prefixes of mapping predicates are given in the KB.
We only need to assign prefixes to subjects and objects. The
prefixes can be learned by majority voting through those
detected matched entities in the KB. For objects, we will
not assign prefixes if the learned prefixes are not confident
enough. Along with the injection of entities, the indexes
of entities will be updated accordingly for further schema
mapping of the selected entity type. The insertions will be
logged to support the rollback of entity injection, in case
that some verified schema mappings or information of the
source tables are not correct.

3. DEMONSTRATION
We use the DBPedia 3.7 dataset as the underlying RDF

KB in the current MetKB system 2. The DBPedia RDF KB
contains 3.64 millions of entities. The most popular types
of entities in the KB include persons, places, music albums,
films, etc. The system is implemented as a working proto-
type written in Java, offering a Web-based interface to allow
users to select entity types for population enlargement and
verifying the discovered schema mappings. In the mean-

2http://202.112.114.27:8080/MetKB

while, the interface provides information for monitoring the
status of intermediate processes of the system.

For the demonstration, we will allow a user to pick an
entity type from a list of common entity types existing in the
KB. After that, the user need to wait for dozens of seconds,
during which the MetKB system sends queries to the Google
Web Table search engine for retrieving URLs containing the
relevant Web tables, extracts and filters Web tables, and
integrates the prepared tables with entities of the picked
type. After finding a certain number of schema mappings,
the system will automatically push the best schema mapping
to the user for his feedbacks and verification.

For a schema mapping shown out for user’s feedbacks, we
will explain why the table (a link to the original Web page
containing the table will be given) is mapped to the existing
entities of the given type, based on some highlighted infor-
mation (cells that have mapping entries to a mapping entity
in the KB) in the Web portal. We will allow the user to
modify the schema mapping, e.g., by replacing the mapping
predicate of a column with some others, by removing the
mapping of a column, or by providing a mapping predicate
suggested by the system to an unmatched column. Based
on the mapping results, the users can also either approve a
schema mapping or reject it directly. Once a schema map-
ping is approved (verified), novel information of the table
will be automatically injected into the KB. After a schema
mapping has been processed by the user (either approved
or rejected), the system will automatically suggest the next
best schema mapping to the user for further feedbacks.

The system provides many statistics to allow users to mon-
itor the status of the whole loop of KB enlargement. For
example, it shows the total number of entities of the picked
entity type existing in the KB, the number of novel entities
discovered so far from the Web tables, the ratio of discov-
ered schema mappings that are verified by the user (it often
helps the user to judge whether to terminate the KB en-
largement process or not), the number of Web pages that
have been crawled, the number of entities that have been
used for search Web tables, the number of entries in each
ranking list, etc.

The system allow administrators for adjusting parameters
(using a configure file) used for schema mapping, through
which the users are able to experience the impacts of these
parameters on the Web tables that can be discovered by
the system. We have tested the system using some common
types of entities in the applied RDF KB. The results show
that for most of these types, our system can effectively dis-
cover a large number of high-qualify Web tables for enriching
entities of the KB.

4. REFERENCES
[1] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and

Y. Zhang. Webtables: exploring the power of tables on the
web. PVLDB, 1(1):538–549, 2008.

[2] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: a
probabilistic taxonomy for text understanding. In SIGMOD
Conference, pages 481–492, 2012.

[3] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri.
Infogather: entity augmentation and attribute discovery by
holistic matching with web tables. In SIGMOD Conference,
pages 97–108, 2012.

[4] X. Zhang, Y. Chen, J. Chen, X. Du, and L. Zou. Mapping
entity-attribute web tables to web-scale knowledge bases. In
DASFAA(2), pages 108–122, 2013.

2463




