
Cost-Effective Data Annotation using
Game-Based Crowdsourcing

Jingru Yang†, Ju Fan†∗, Zhewei Wei‡†, Guoliang Li§, Tongyu Liu†, Xiaoyong Du†
†DEKE Lab & School of Information, Renmin University of China, China

§ Department of Computer Science, Tsinghua University, China
‡ SKLSDE Lab, Beihang University, China

{hinsonver, fanj, zhewei, liuty, duyong}@ruc.edu.cn; liguoliang@tsinghua.edu.cn

ABSTRACT
Large-scale data annotation is indispensable for many ap-
plications, such as machine learning and data integration.
However, existing annotation solutions either incur expen-
sive cost for large datasets or produce noisy results. This
paper introduces a cost-effective annotation approach, and
focuses on the labeling rule generation problem that aims
to generate high-quality rules to largely reduce the labeling
cost while preserving quality. To address the problem, we
first generate candidate rules, and then devise a game-based
crowdsourcing approach CrowdGame to select high-quality
rules by considering coverage and precision. CrowdGame
employs two groups of crowd workers: one group answers
rule validation tasks (whether a rule is valid) to play a role of
rule generator, while the other group answers tuple checking
tasks (whether the annotated label of a data tuple is correct)
to play a role of rule refuter. We let the two groups play a
two-player game: rule generator identifies high-quality rules
with large coverage and precision, while rule refuter tries to
refute its opponent rule generator by checking some tuples
that provide enough evidence to reject rules covering the
tuples. This paper studies the challenges in CrowdGame.
The first is to balance the trade-off between coverage and
precision. We define the loss of a rule by considering the two
factors. The second is rule precision estimation. We utilize
Bayesian estimation to combine both rule validation and
tuple checking tasks. The third is to select crowdsourcing
tasks to fulfill the game-based framework for minimizing the
loss.We introduce a minimax strategy and develop efficient
task selection algorithms. We conduct experiments on en-
tity matching and relation extraction, and the results show
that our method outperforms state-of-the-art solutions.

PVLDB Reference Format:
Jingru Yang, Ju Fan, Zhewei Wei, Guoliang Li, Tongyu Liu, Xi-
aoyong Du. Cost-Effective Data Annotation using Game-Based
Crowdsourcing. PVLDB, 12 (1): xxxx-yyyy, 2018.
DOI: https://doi.org/10.14778/3275536.3275541

∗Ju Fan is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 45th International Conference on Very Large Data Bases,
August 2019, Los Angeles, California.
Proceedings of the VLDB Endowment, Vol. 12, No. 1
Copyright 2018 VLDB Endowment 2150-8097/18/09... $ 10.00.
DOI: https://doi.org/10.14778/3275536.3275541

1. INTRODUCTION
In many applications, such as data integration and ma-

chine learning (ML), it is indispensable to obtain large-scale
annotated datasets with high quality. For example, deep
learning (DL) has become a major advancement in machine
learning, and achieves state-of-the-art performance in many
tasks, such as image recognition and natural language pro-
cessing [20]. However, most of the DL methods require mas-
sive training sets to achieve superior performance [37], which
usually causes significant annotation costs or efforts.

To address the problem, crowdsourcing can be utilized to
harness the crowd to directly annotate tuples in a dataset
at relatively low cost (see a survey [23]). However, as many
datasets contain tens of thousands to millions of tuples, such
tuple-level annotation still inevitably incurs large annotation
cost. Another approach is to leverage labeling rules (or rules
for simplicity) that annotate multiple tuples. For example,
in relation extraction that identifies structural relations, say
spouse relation, from unstructured data, labeling rules like
“A is married to B” can be used to annotate tuples like
Michelle Obama and Barack Obama. In entity matching, the
blocking rules can quickly eliminate many record pairs which
are obviously non-matched. Unfortunately, it is challenging
to construct labeling rules. Hand-crafted rules from domain
experts are not scalable, as it is time and effort consuming to
handcraft many rules with large coverage. Weak-supervision
rules automatically generated [33, 32], e.g., distant supervi-
sion rules, can largely cover the tuples; however, they may
be very noisy and provide wrong labels.

In this paper we introduce a rule-based cost-effective data
annotation approach. In particular, this paper focuses on
studying labeling rule generation using crowdsourcing to sig-
nificantly reduce annotation cost while still preserving high
quality. To this end, we aim at generating “high-quality” la-
beling rules using two objectives. 1) high coverage: selecting
the rules that cover as many tuples as possible to annotate
the data. Intuitively, the larger the coverage is, the higher
the cost on tuple-level annotation could be reduced. 2) high
precision: preferring the rules that induce few wrong labels
on their covered tuples.

Labeling rule generation is very challenging as there may
be many rules with diverse quality. Even worse, although
easy to know coverage of rules, it is hard to obtain rule pre-
cision. To address this problem, we propose to utilize crowd-
sourcing for rule selection. A straightforward approach em-
ploys the crowd to answer a rule validation task to check
whether a rule is valid or invalid. Unfortunately, the crowd
may give low-quality answers for a rule validation task, as a

rule may cover many tuples and the workers cannot examine
all the tuples covered by the rule. To alleviate this, we can
ask the crowd to answer a tuple checking task, which asks
the crowd to give the label of a tuple and utilizes the result
to validate/invalidate rules that cover the tuple. However it
is expensive to ask many tuple checking tasks.

We devise a two-pronged crowdsourcing scheme that first
uses rule validation tasks as a coarse pre-evaluation step and
then applies tuple checking tasks as a fine post-evaluation
step. To effectively utilize the two types of tasks, we intro-
duce a game-based crowdsourcing approach CrowdGame.
It employs two groups of crowd workers: one group answers
rule validation tasks to play a role of rule generator, while
the other group answers tuple checking tasks to play a role
of rule refuter. We let the two groups play a two-player
game: rule generator identifies high-quality rules with large
coverage and precisions, while rule refuter tries to refute
rule generator by checking some tuples that provide enough
evidence to “reject” more rules.

We study the research challenges in our game-based crowd-
sourcing. First, it is challenging to formalize the quality of a
rule by trading-off its precision and coverage. We introduce
the loss of a rule set that combines the uncovered tuples and
the incorrectly covered tuples. We aim to select a rule set
to minimize the loss. Second, it is hard to obtain the real
precision of a rule. To address the challenge, we utilize the
Bayesian estimation technique. We regard crowd rule val-
idation results as a prior, which captures crowd judgment
without inspecting any specific tuples. As the prior may not
be precise, we then use the crowd results on tuple checking
as “data observation” to adjust the prior, so as to obtain a
posterior of rule precision. Third, it is hard to obtain high-
quality rules to minimize the loss under our framework. We
develop a minimax strategy : rule generator plays as a min-
imizer to identify rules to minimize the loss; rule refuter
plays as a maximizer to check tuples for maximizing the
loss. We iteratively call rule generator and rule refuter to
select rules until the crowdsourcing budget is used up.

To summarize, we make the following contributions.

(1) We propose a data annotation approach using game-
based crowdsourcing for labeling rule generation. We em-
ploy two groups of crowd workers and let the workers play
a two-player game to select high-quality rules.
(2) We introduce the loss of a rule set that combines uncov-
ered and incorrectly covered tuples to balance coverage and
precision. We estimate precision of a rule by combining rule
validation and tuple checking through Bayesian estimation.
(3) We conducted experiments on real entity matching and
relation extraction datasets. The results show that our ap-
proach outperforms state-of-the-art solutions on tuple-level
crowdsourcing and ML-based consolidation of labeling rules.

2. PROBLEM FORMULATION
This paper studies the data annotation problem. Given a

set E = {e1, e2, . . . , em} of data tuples, the problem aims to
annotate each tuple ei ∈ E with one of the l possible labels,
denoted by L = {L1, L2, . . . , Ll}. Without loss of gener-
ality, this paper focuses on the binary annotation problem
that considers two possible labels, denoted as L = {L1 =
−1, L2 = 1}. To illustrate the problem, let us consider
an application of entity matching (EM) [7], i.e., identify-
ing whether any pair of product records is the same entity,

!"#$% !&"% '()%$

!" ! "#$%&#'()$

!# ! "#$%&#*()$

!$! "#$%&#+()$

!% ! "#$%&#,()$

!& ! "#'%&#*($

!' ! "#'%&#+()$

!(! "#'%&#,($

!) ! "#*%&#+()$

!* ! "#*%&#,($

!"+ ! "#+%&#,()$

*$+,-./0 1"$% 2+3%&(0%

,"- "./01%&23345(!"% !#% !$

,#- "6278%&9:;<//=(!#% !%

,$- "<4:;=%&.>4?5@(!"% -.% !'% -/

,%- "A:3B/3%&C/B5D//=(!"% !%%&-.% -0

45 6&+7",89:(;%

#$./01&6278&&.>4?5@&A:3B/3

#' 23345&E@/&<4:;=&C/B5D//=

#* 23345&9:;<//=&&E@/ .>4?5@&A:3B/3

#+ 23345&FG<&.>4?5@&+G >E/H&

#, 9:;<//=&E@/&C/B5D//=& .>4?5@

(a) Product Records

(b) Blocking Rules (c) Tuples (Record Pairs)

Figure 1: Data annotation in entity matching.

as shown in Figure 1. Note that the matching criterion in
the example is the same product model and the same man-
ufacture, without considering specifications like color and
storage. In this application, each tuple is a product record
pair, which is to be annotated with one of the two labels
L1 = −1 (unmatched) and L2 = 1 (matched). Another ap-
plication is relation extraction [29] from the text data (e.g.,
sentences), which identifies whether a tuple consisting of two
entities, say Barack Obama and Michelle Obama, have a tar-
get relation (label L2 = 1), say spouse, or not (L1 = −1).

2.1 Overview of Our Framework
We introduce a cost-effective data annotation framework

as shown in Figure 2. The framework makes use of the
labeling rules (or rules for simplicity), each of which can be
used to annotate multiple tuples in E , to reduce the cost.

Definition 1 (Labeling Rule). A labeling rule is a
function rj : E → {L, nil} that maps tuple ei ∈ E into either
a label L ∈ L or nil (which means rj does not cover ei). In
particular, let C(rj) = {e|rj(e) 6= nil} denote the covered
tuple set of rj, C(R) = {e|∃r ∈ R, r(e) 6= nil} denote the
covered set of a rule set R, and |C(R)| denote the size of
C(R), called the coverage of the rule set R.

Our framework takes a set of unlabeled tuples as input
and annotates them utilizing labeling rules in two phases.

Phase I: Crowdsourced rule generation. This phase
aims at generating “high-quality” rules, where rule qual-
ity is measured by coverage and precision. To this end,
we first construct candidate rules, which may have various
coverage and precision. There are two widely used ways
to construct candidate rules: hand-crafted rules from do-
main experts and weak-supervision rules automatically gen-
erated by algorithms. Hand-crafted rules ask users to write
domain-specific labeling heuristics based on their domain
knowledge. However, hand-crafted rules are not scalable,
especially for large datasets, as it is time and effort con-
suming to handcraft many rules with large coverage. Thus,
weak-supervision rules automatically generated are intro-
duced [33, 32], e.g., distant supervision rules in information
extraction, like utilizing textual patterns, such as “A mar-
ries B”, as rules for labeling spouse relation between enti-
ties A and B. Weak-supervision rules can largely cover the
tuples; however, some of them may be very unreliable that

!"#$ %&#'(&)'*+

,,,

!"#$%&#&' '$($

!"#$ -.$/'0'*+0

)&$* +!,&-./+0" -!#&+

1-0)'+0!-1/"2 ,#$(30-4

1*+0)."/)'+2

/&+('(&)$."#$0

2$4&5%$+&' 1-0)'+0!-1/"2

!"#$!" # $%

!"#$!& # $%

33

'$($ $""0($(/0"

!"#$ %&#'(&)'*+

!"#$ %&''$%()

!"#$ %&#'(&)'*+

,,,

4"5#$ 16$/7'+2

*"+#$ #,-$#)

!"#$

8$+$.&)*.

#$%&#&' '$($

!"#$

!$9")$.

:0'+2

5.$/'0'*+0
:5(&)'+2

5.$/'0'*+0

;$#$/)'+2)&070 ;$#$/)'+2)&070

VS

8$+$.&)$(

!"#$0

,6789:; ,6789:<

!"#$ <&0$(=++*)&)*.

4"5#$ >$?$# =++*)&)*.

>&@$#0

Figure 2: Framework of data annotation with game-based crowdsourcing.

provide wrong labels. Note that candidate rule construction
will be presented in Section 6.

To address this problem, we propose to study a problem of
rule generation using crowdsourcing, to leverage the crowd
on identifying good rules from noisy candidates. We will
formalize this problem in Section 2.2.

Phase II: Data annotation using rules. This phase is
to annotate the tuples using the labeling rules generated in
the previous phase. Note that, for the tuples not covered
by the rules, we devise tuple-level annotation using conven-
tional crowdsourcing approaches [43, 4], where tuple-level
inference, such as transitivity, can also be applied.

For ease of presentation, this paper focuses on the “unary”
case that all rules annotate only one label (|L| = 1), e.g.,
L1 = −1 in the example below. We will discuss a more
general case that some rules label L1 = −1 while others
provide L2 = 1 in our technical report [48].

Example 1. Consider the blocking rules that annotate
−1 for entity matching in Figure 1(b). Each rule, repre-
sented by two keywords, expresses how we discriminate prod-
uct pairs covered by the rule. For example, r1 : (Sony, Apple)
expresses that any tuple, say e1 = {s1, s2}, that satisfies s1
containing Sony and s2 containing Apple (or s1 containing
Apple and s2 containing Sony) cannot be matched. We can
see that r1 covers three tuples, {e1, e2, e3}, and their labels
are L1 = −1 (unmatched). We may also observe that some
rules may not be precise: r4 only correctly labels two out of
four tuples (e1 and e4), because rule (Laptop, Notebook) is
very weak to discriminate the products. Thus, our frame-
work uses crowdsourcing to select the rules with large cover-
age and precision from the candidates. Suppose that {r1, r3}
are selected, and then 6 tuples can be annotated by the rules.
For the other 4 tuples not covered, the framework can anno-
tate them using conventional crowdsourcing.

2.2 Labeling Rule Generation
This paper focuses on the labeling rule generation problem

in the first phase of our framework. Intuitively, the problem
aims to identify “high-quality” rules with the following two
objectives. 1) high coverage: selecting the rules that cover
as many tuples as possible. According to our framework,
the larger the coverage of rules is, the higher the cost on
tuple-level annotation (Phase II) could be reduced. 2) high

precision: preferring the rules that induce few wrong labels
on their covered tuples.

There may be a tradeoff between coverage and precision.
On the one hand, some annotation scenarios prefer precision.
For instance, in most of entity matching tasks, ground-truth
labels are very skew, e.g., 7 tuples with label −1 vs. 3
tuples with 1 as shown in Figure 1(c). Thus, rule generation
prefers not to induce too much errors, which may lead to
low quality (e.g., F-measure) of the overall entity matching
process. On the other hand, some scenarios prefer coverage
for more annotation cost reduction.

To balance the preference among coverage and precision,
we introduce the loss of a rule set R that considers the fol-
lowing two factors. Consider a set R of rules that annotate
label L ∈ L to tuple set E . The first factor is the number
of uncovered tuples |E| − |C(R)| that formalizes the loss in
terms of the coverage, and this factor is easy to compute. In
contrast, the number of errors, i.e., incorrectly labeled tu-
ples, is hard to obtain, as true labels of tuples are unknown.
Thus, we introduce P (yi 6= L) that denotes the probability
that true label yi of tuple ei is not L, and consider the ex-
pected number of errors

∑
ei∈C(R) P (yi 6= L) as the second

factor. We define the loss of a rule set R as follows.

Definition 2 (Loss of Rule Set). The loss Φ(R) of
a rule set R is defined as a combination of the number of
uncovered tuples |E| − |C(R)| and the expected number of
errors

∑
ei∈C(R) P (yi 6= L),

Φ(R) = γ(|E| − |C(R)|) + (1− γ)
∑

ei∈C(R)

P (yi 6= L), (1)

where γ is a parameter between [0, 1] to balance the prefer-
ence among coverage and quality of generated rules.

For example, consider R1 = {r1} covering three tuples
without errors andR2 = {r1, r3} covering more with wrongly
labeled tuples (e5 and e7). As entity matching prefers pre-
cision over coverage on the blocking rules, one needs to set
a small parameter γ, say γ = 0.1. Obviously, under this
setting, we have Φ(R1) < Φ(R2), which shows that a larger
set R2 is worse than a smaller set R1.

Let RC = {r1, r2, . . . , rn} denote a set of candidate rules
generated by the candidate rule producing step. Now, we
define the problem of rule generation as below.

Table 1: Table of Notations.

ei; E a tuple to be annotated; a set of tuples
yi true label of tuple ei

rj ; R a labeling rule; a set of rules
C(r) (C(R)) a set of tuples covered by rule r (rule set R)

L label annotated by R to tuples

λj(λ̂j) precision (precision estimate) of rule rj
Φ(R) loss of a rule set R

(a) Tuple checking task. (b) Rule validation task.

Figure 3: A two-pronged crowdsourcing scheme.

Definition 3 (Rule Generation). Given a set RC of
candidate rules, it selects a subset R∗ that minimizes the
loss, i.e., R∗ = argRminR⊆RC Φ(R).

As the probability P (yi 6= L) is hard to obtain, this pa-
per focuses on using crowdsourcing to achieve the above
loss minimization, which will be presented in Section 3. For
ease of presentation, we summarize frequently used nota-
tions (some only introduced later) in Table 1.

3. CROWDSOURCED RULE GENERATION

3.1 Game-Based Crowdsourcing
Labeling rule generation is very challenging as there may

be many rules with diverse and unknown precision. A näıve
crowdsourcing approach is to first evaluate each rule by
sampling some covered tuples and checking them through
crowdsourcing. For example, Figure 3(a) shows an exam-
ple crowdsourcing task for such tuple checking, i.e., check-
ing whether two product records are matched. However, as
crowdsourcing budget (affordable number of tasks) is usu-
ally much smaller than data size, such “aimless” checking
without focusing on specific rules may result in inaccurate
rule evaluation, thus misleading rule selection.

Two-pronged task scheme. We devise a two-pronged
crowdsourcing task scheme that first leverages the crowd to
directly validate a rule as a coarse pre-evaluation step and
then applies tuple checking tasks on validated rules as a fine
post-evaluation step. To this end, we introduce another type
of task, rule validation. For example, Figure 3(b) shows such
a task to validate rule r1 (sony, apple). Intuitively, human
is good at understanding rules and roughly judges the valid-
ity of rules, e.g., r1 is valid as the brand information (sony
and apple) is useful to discriminate products. This intuition
is supported by our empirical observations in our technical
report [48]. However, it turns out that rule validation tasks
may produce false positives because the crowd may not be
comprehensive enough as they usually neglect some nega-
tive cases where a rule fails. Thus, the fine-grained tuple
checking tasks are also indispensable.

A game-based crowdsourcing approach. Due to the
fixed amount of crowdsourcing budget, there is usually a

tradeoff between these two types of tasks. On the one hand,
assigning more budget on rule validation will lead to fewer
tuple checking tasks, resulting in less accurate evaluation on
rules. On the other hand, assigning more budget on tuple
checking, although being more confident on the validated
rules, may miss the chance for validating more good rules.

To effectively utilize these two types of tasks and balance
their tradeoff, we introduce a game-based crowdsourcing ap-
proach CrowdGame, as illustrated in the central part of
Figure 2. It employs two groups of crowd workers from a
crowdsourcing platform (e.g., amazon mechanical turk): one
group answers rule validation tasks to play a role of rule gen-
erator (RuleGen), while the other answers tuple checking
tasks to play a role of rule refuter (RuleRef). To unify
these two groups, we consider that RuleGen and RuleRef
play a two-player game with our rule set loss Φ(R) in Equa-
tion (1) as the game value function.

• RuleGen plays as a minimizer : it identifies some rules
R from the candidates RC for crowdsourcing via rule
validation tasks, and tries to minimize the loss.

• RuleRef plays as a maximizer : it tries to refute its
opponent RuleGen by checking some tuples that pro-
vide enough evidence to “reject” more rules in R, i.e.,
maximizing the rule set loss Φ(R).

A well-known mechanism to solve such games is the minimax
strategy in game theory: the minimizer aims to minimize the
maximum possible loss made by the maximizer.

Example 2. Consider our example under a budget with
4 tasks to ask workers and γ = 0.1. We first consider a
baseline rule-validation-only strategy that crowdsources rules
r1 to r4. Suppose that all rules are validated except r4 (as
laptop and notebook are synonym), and we generate rule
set R1 = {r1, r2, r3} with loss Φ(R1) = 3∗0.1+2∗0.9 = 2.1
(3 uncovered tuples and 2 error labels). Figure 4 shows how
CrowdGame works, which is like a round-based board game
between two players. In the first round, RuleGen selects
r3 for rule validation, as it covers 4 tuples and can largely
reduce the first term of the loss in Equation (1). However,
its opponent RuleRef finds a “counter-example” e5 using a
tuple checking task. Based on this, RuleRef refutes both r3
and r4 and rejects their covered tuples to maximize the loss.
Next in the second round, RuleGen selects another crowd-
validated rule r1, while RuleRef crowdsources e1, finds e1
is correctly labeled, and finds no “evidence” to refute r1. As
the budget is used up, we find a better rule set R2 = {r1}
than R1 with a smaller loss Φ(R2) = 0.7.

3.2 Formalization of Minimax Objective
Note that, for illustration purpose, Example 2 shows an

extreme case that one counter-example is enough to refute
all rules covering the tuple. However, in many applications,
rules that are 100% correct may only cover a very small
proportion of data. Thus, we need to tolerate some rules
which are not perfect but with high “precision”.

We first introduce the precision, denoted by λj , of rule rj
as the ratio of the tuples in C(rj) correctly annotated with

label L of rj , i.e., λj =

∑
ei∈C(rj)

1{yi=L}

|C(rj)|
, where 1{yi=L} is

an indicator function that returns 1 if yi = L or 0 otherwise.
In particular, let ΛR denote the precisions of all rules in
R. Rule precision λj is actually unknown to us, and thus

!"

!#

!$

!%

&"

&#

&$

&%

&'

&(

&)

&*

(a) RuleGen (1st round).

!"

!#

!$

!%

&"

&#

&$

&%

&'

&(

&)

&*

(b) RuleRef (1st round).

!"

!#

!$

!%

&"

&#

&$

&%

&'

&(

&)

&*

(c) RuleGen (2nd round).

!"

!#

!$

!%

&"

&#

&$

&%

&'

&(

&)

&*

(d) RuleRef (2nd round).

Figure 4: Example of game-based crowdsourcing.

we need to estimate it using tuple checking crowdsourcing
tasks. Formally, let λ̂j(Eq) be an estimator of λj for rule
rj based on a set Eq of tuples checked by the crowd, and

Λ̂R(Eq) = {λ̂j(Eq)} is the set of estimators, each of which
is used for evaluating an individual rule rj ∈ R. We use

Λ̂R(Eq) to compute our overall loss defined in Equation (1).
Formally, let Ri ⊆ R denote the set of rules in R covering
tuple ei, i.e., Ri = {rj ∈ R|rj(ei) 6= nil}. For ease of
presentation, we denote P (yi = L) as P (ai) if the context is
clear. Then, we introduce Φ(R|Eq) to denote the estimated
loss based on a set Eq of tuples checked by the crowd, i.e.,

Φ(R|Eq) = γ(|E| − |C(R)|) + (1− γ)
∑

ei∈C(R)

1− P (ai|Λ̂R
i

(Eq))

= γ|E| − (1− γ)
∑

ei∈C(R)

{
P (ai|Λ̂R

i

(Eq))−
1− 2γ

1− γ
}

(2)

The key in Equation (2) is P (ai|Λ̂R
i

(Eq)), which captures
our confidence about whether yi = L (ei is correctly la-
beled) given the observations that ei is covered by rule Ri
with precisions ΛR

i

(Eq). Next, we discuss how to compute

P (ai|Λ̂R
i

(Eq)). First, if ei is only covered by a single rule
rj ∈ Ri, we can consider ei is sampled from Bernoulli dis-

tribution with parameter λ̂j(Eq) and thus the probability

that ei is correctly labeled is λ̂j(Eq). Second, if ei is cov-

ered by multiple rules, the P (ai|Λ̂R
i

(Eq)) is not easy to es-
timate, because rules may have various kinds of correlation.
In this paper, we use a “conservative” strategy that com-

putes P (ai|Λ̂R
i

(Eq)) as the maximum rule precision among

ΛR
i

, i.e., P (ai|Λ̂R
i

(Eq)) = maxrj∈Ri λ̂j(Eq). The rational is

that, ei is covered by rule r∗j with the largest precision, and

its P (ai|Λ̂R
i

(Eq)) is at least λ̂∗j . Consider our example in

Figure 4. Suppose that we have already estimated λ̂3 = 0.5

and λ̂1 = 1 using Eq. Then, we compute P (a7|Λ̂R
7

(Eq))
for e7 as 0.5, since e7 is only covered by λ3. We compute

P (a1|Λ̂R
7

(Eq)) for e1 as 1.0, as we know that e1 is covered by
a perfect rule r1. We will study more complicated methods

for computing P (ai|Λ̂R
i

(Eq)) in the future work.
Now, we are ready to formalize the minimax objective

based on rule precision estimation. Let Rq and Eq respec-
tively denote the sets of rules and tuples, which are selected
by RuleGen and RuleRef, for crowdsourcing. Given a
crowdsourcing budget constraint k on number of crowd-
sourcing tasks, the minimax objective is defined as

OR
∗
q ,E
∗
q = min

Rq

max
Eq

Φ(Rq|Eq)

⇐⇒ max
Rq

min
Eq

∑
ei∈C(Rq)

{
P (ai|Λ̂Ri(Eq))−

1− 2γ

1− γ
}

⇐⇒ max
Rq

min
Eq

∑
ei∈C(Rq)

{
max
rj∈Ri

λ̂j(Eq)−
1− 2γ

1− γ
}

(3)

such that task numbers |Rq|+ |Eq| ≤ k. In addition, for ease
of presentation, we introduce the notation JRq,Eq where

JRq,Eq =
∑

ei∈C(Rq)

{
max
rj∈Ri

λ̂j(Eq)−
1− 2γ

1− γ
}

(4)

Based on Equation (3), we can better illustrate the in-
tuition of CrowdGame. Overall, CrowdGame aims to
find the optimal task sets R∗q and E∗q with constraint |Rq|+
|Eq| ≤ k. Specifically, RuleGen would prune rules with

λ̂j <
1−2γ
1−γ as they are useless for the maximization. More-

over, RuleGen prefers to validate rules with large coverage
and high precision to minimize the loss. On the contrary,
RuleRef aims to check tuples which are helpful to identify
low-precision rules that cover many tuples, so as to effec-
tively maximize the loss. These two players iteratively select
tasks until crowdsourcing budget is used up.

We highlight the challenges in the above process. The first
challenge is how to select rule validation and tuple checking
tasks for crowdsourcing to achieve the minimax objective.
To address this challenge, we propose task selection algo-
rithms in Section 4. Second, as shown in Equation (3), the

objective is based on rule precision estimators, e.g., λ̂j(Eq).
We introduce effective estimation techniques in Section 5.

4. TASK SELECTION ALGORITHMS
To achieve the minimax objective, we develop an iterative

crowdsourcing algorithm, the pseudo-code of which is illus-
trated in Algorithm 1. Overall, it runs in iterations until k
(crowdsourcing budget) tasks are crowdsourced, where each
iteration consists of a RuleGen step and a RuleRef step.

Rule generator step. In this step, RuleGen selects rule-
validation tasks. Due to the latency issue of crowdsourc-
ing [15], it is very time-consuming to crowdsource tasks one
by one. Thus, we apply a commonly-used batch mode which
selects b tasks and crowdsources them together, where b is a
parameter. Specifically, RuleGen selects a b-sized rule set

R(t)
q that maximizes the rule selection criterion denoted by

∆g(R|JRq,Eq) in the t-th iteration (line 1). We will intro-
duce the criterion ∆g(R|JRq,Eq) and present an algorithm

Algorithm 1: MinimaxSelect (RC, E , k, b)

Input: RC: candidate rules; E: tuples to be labeled;
k: a budget; b: a crowdsourcing batch

Output: Rq: a set of generated rules
Initialize Rq ← ∅, Eq ← ∅ ;1

for each iteration t do2

/* Rule Generator Step */

Select R(t)
q ← argRmaxR⊆RC−Rq,|R|=b ∆g(R|JRq,Eq) ;3

Crowdsource R(t)
q as rule validation tasks ;4

Add the crowd validated rules in R(t)
q into Rq ;5

Update objective JRq,Eq ;6

RC ←RC −R(t)
q ;7

/* Rule Refuter Step */

Select E(t)q ← argE minE∈E−Eq,|E|=b ∆f(Eq|JRq,Eq) ;8

Crowdsource E(t)q as tuple checking tasks ;9

Add the crowd-checked E(t)q into Eq ;10

Update precision Λ̂Rq (Eq);11

Update budget k ← k − 2b ;12

if k = 0 then break ;13

Remove rules from Rq with λ̂j ≤ 1−2γ
1−γ ;14

Return Rq ;15

for selecting rules based on the criterion in Section 4.1. After

selectingR(t)
q , RuleGen crowdsourcesR(t)

q , adds the crowd-
validated rules intoRq, and updates objective JRq,Eq . Note
that we do not consider the rules failed crowd validation, be-
cause they have much lower quality than the validated ones,
and incorporating them will largely increase the loss.

Rule refuter step. In this step, RuleRef selects a batch

of b tuple checking tasks E(t)q , so as to minimize the tuple
selection criterion denoted by ∆f(E|JRq,Eq). We will dis-
cuss the criterion and a selection algorithm in Section 4.2.

After obtaining the crowd answers for E(t)q , RuleRef adds

E(t)q into Eq and updates the precision estimates Λ̂Rq(Eq).
For simplicity, we slightly abuse the notations to also use
R (E) to represent a rule set (tuple set) selected by Rule-
Gen (RuleRef) in each iteration.

The last step of the iteration is to update budget k and
check if the algorithm terminates (i.e., the budget is used
up). The algorithm continues to iteration t + 1 if k > 0.
Otherwise, it “cleans up” the generated rule set Rq by re-

moving bad rules with λ̂j ≤ 1−2γ
1−γ as they are useless based

on our objective (see Section 3.2), and returns Rq as result.
Consider the example in Figure 4 with k = 4 and b = 1.

In the first iteration, RuleGen and RuleRef respectively
select r3 and e5 for crowdsourcing. Based on the crowdsourc-
ing answers, the algorithm updates precision estimates and
continues to the second iteration as shown in Figures 4(c)
and 4(d). After these two iterations, the budget is used up,
and the algorithm returns Rq = {r1} as the result.

Next, we explain the task selection algorithms of Rule-
Gen and RuleRef in the following two subsections.

4.1 Task Selection for Rule Generator
The basic idea of task selection for RuleGen, as observed

from Equation (3), is to maximize the objective JRq,Eq =∑
ei∈C(Rq)

{
maxrj∈Ri λ̂j(Eq)− 1−2γ

1−γ

}
, given current preci-

sion estimation Λ̂(Eq). However, as task selection is before
crowdsourcing the tasks, the essential challenge for Rule-

Gen is that it does not know which rules will pass the crowd
validation. To address this problem, we follow the existing
crowdsourcing works [10, 43] to consider each possible case

of the validated rules, denoted by R
√
⊆ R, and measure

the the expected improvement on JRq,Eq that R
√

achieves.
Formally, let P (R

√
) denote the probability that the crowd

returns R
√
⊆ R as the validated rules, and rules in R−R

√

fail the validation. And P (r) is the probability that an in-
dividual rule r passes the validation. As the rules in R
are independently crowdsourced to the workers, we have
P (R

√
) =

∏
r∈R

√ P (r) ·
∏
r′∈R−R

√
(
1− P (r′)

)
. For exam-

ple, consider rule set R1 = {r1, r3} shown in Figure 4: there

are four possible values for R
√

1 , i.e., ∅, i.e., {r1}, {r3}, and
{r1, r3}. Let us also consider a simple case that the proba-
bility P (r) for each rule r is 1/2. Then, all the probabilities
of the above four values are 1/4. We will study how to adopt
more effective P (r) in future work.

Now, we are ready to define the rule selection criterion,
denoted as ∆g(R|JRq,Eq), as the expected improvement on
our objective JRq,Eq achieved by rule set R. For ease of
presentation, we omit the superscript of JRq,Eq and simply
use J if the context is clear. Formally, the rule selection
criterion ∆g(R|J) can be computed as,

∆g(R|J) =
∑
R
√
P (R

√
) ·
(
JR

√
∪Rq,Eq − JRq,Eq). (5)

For instance, consider a rule set R = {r1} in our previous
example and Rq = ∅. Suppose that we have estimated pre-

cision λ̂1 = 1.0 and let P (r1) = 0.5 and γ = 0.1. Then, we

have ∆g(R|J) = P (r1) ·
∑
ei∈C(r1)

{
λ̂1 − 1−2γ

1−γ

}
= 0.33.

Based on the criterion, we formalize the problem of task
selection for RuleGen as follows.

Definition 4 (Task Selection for RuleGen). Given a
batch size b and current value of objective JRq,Eq , it finds b
rules from remaining candidates that maximize rule selection
criterion, i.e., R∗ = argRmaxR⊆RC−Rq,|R|=b ∆g(R|J).

Theorem 1. The problem of Task Selection for Rule-
Gen is NP-hard.

Note that all the proofs in the paper can be found in our
technical report [48].

Nevertheless, although the theorem shows that obtain-
ing the best rule set is intractable in general, we can show
that the criterion ∆g(R|J) possesses two good properties,
namely monotonicity and submodularity, which enables us
to develop a greedy selection strategy with theoretical guar-
antee. Recall that ∆g(R|J) is monotone iff ∆g(R1|J) ≤
∆g(R2|J) for any sets R1 ⊆ R2. And ∆g(R|J) is submod-
ular iff ∆g(R1 ∪ {r}|J) −∆g(R1|J) ≥ ∆g(R2 ∪ {r}|J) −
∆g(R2|J) for any sets R1 ⊆ R2, which intuitively indicates
a “diminishing returns” effect.

Lemma 1. The rule selection criterion ∆g(R|J) is mono-
tone and submodular with respect to R.

Based on Lemma 1, we develop a greedy-based approx-
imation algorithm. The algorithm first initializes R = ∅.
Then, it inserts rules intoR based on our criterion ∆g(R|J)
in b iterations where b is the batch size of crowdsourcing. In
each iteration, it finds the best rule r∗ such that the margin
is maximized, i.e., r∗ = argλ max ∆g(R∪{r}|J)−∆g(R|J).

Then, it inserts the selected r∗ into R and continues to the
next iteration. Finally, the algorithm returns the b-sized R.
Due to the monotonicity and submodularity of our selection
criterion, the greedy algorithm has an approximation ratio
of 1− 1/e where e is the base of the natural logarithm.

Note that the computation of ∆g(R|J) does not have to

actually enumerate the exponential cases of R
√

. In fact,
given a new rule r, ∆g(R ∪ {r}|J) can be incrementally
computed based on ∆g(R|J).

4.2 Task Selection for Rule Refuter
As the opponent of RuleGen, RuleRef aims to min-

imize JRq,Eq by checking tuples to re-estimate rule preci-
sions. Given tuple ei, it considers the following two factors.

1) The first one is the refute probability, denoted by P (e×i)
that the crowd identifies that true label yi of ei is not label L
provided by rules. Intuitively, the higher the refute probabil-
ity is, the more preferable the tuple is. We will discuss how
to estimate such probability later. Given a set of tuples E ,
we denote the subset of refuted ones as E×. We assume the
refute probabilities of the tuples in E are independent to each
other, i.e., P (E×) =

∏
ei∈E× P (e×i)

∏
ei∈E−E× 1− P (e×i).

2) The second factor is the impact of refuted tuple e×i , de-
noted by I(e×i). Suppose that refuting e5 would lower preci-
sion estimates of r3 and r4, and thus have chance to reduce
the term maxrj∈Ri λ̂j(Eq)− 1−2γ

1−γ for 6 tuples in the objec-

tive JRq,Eq . For example, consider an extreme case that λ̂3

and λ̂4 re-estimated to 0 after checking e5. Then, tuples e5,
e6, e7, and e9 would be “eliminated” from JRq,Eq , as the
maximum precision associated to them changes to 0. Thus,
RuleRef successfully reduces the objective. Formally, we
denote the amount of such “reduction” as impact I(e×i), i.e.,

I(e×i) = JRq,Eq − JRq,Eq∪{e×i }

=
∑

el∈C(Rq)

max
rj∈Rl

{
λ̂j(Eq)− λ̂j(Eq ∪ {e×i })

}
. (6)

In particular, given a set E× of refuted tuples, we have
I(E×) =

∑
el∈C(Rq)

maxrj∈Rl

{
λ̂j(Eq)− λ̂j(Eq ∪ E×)

}
.

Now, we are ready to define the tuple selection criterion
∆f(E|J) using the above two factors,

∆f(E|J) = −
∑
E×

P (E×) · I(E×). (7)

Definition 5 (Task Selection for RuleRef). Given a
batch size b and current value of objective JRq,Eq , it finds b
tuples from unchecked tuples that minimize the tuple selec-
tion criterion, i.e., E∗ = argE minE⊆E−Eq,|E|=b ∆f(E|J).

Theorem 2. The problem of Task Selection for RuleRef
is NP-hard.

Unfortunately, RuleRef selection criterion does not have
the submodularity property, which makes optimization very
complex. In this paper, we utilize a greedy-based approxi-
mation algorithm that iteratively inserts e∗ with the maxi-
mum margin

∑
E× P (E×) · I(E×) into E in b iterations. We

omit the pseudo-code due to the space limit. Moreover, sim-
ilar to RuleGen, ∆f(E|J) can be incrementally computed
without the exponential enumeration on P (E×).

We discuss how to obtain refute probability P (e×i) for
entity matching and relation extraction in Section 6.

5. RULE PRECISION ESTIMATION
The challenge in estimating rule precision λ̂j(Eq) is how

to effectively utilize both rule validation and tuple checking
tasks. Intuitively, we utilize rule validation tasks as “coarse
pre-evaluation”, and use tuple checking tasks as “fine post-
evaluation”. For example, consider rule r3 : (Black, Silver)
shown in Figure 1. Suppose that r3 successfully passed rule
validation, which makes us to roughly evaluate r3 as a good
rule. However, after checking tuples covered by r3, we find
errors and thus refine the precision evaluation.

To formalize the above intuition, we utilize the Bayesian
estimation technique [2]. We regard crowd rule validation
results as a prior, which captures crowd judgment on rj
without inspecting any specific tuples. As the prior may not
be precise, we then use the crowd results on tuple checking
as “data observation” to adjust the prior, so as to obtain a
posterior of rule precision. Formally, let p(λ|r

√
, Eq) denote

the probability distribution of precision λ of rule r given the
fact that r is validated by the crowd (denoted by r

√
) and

checked by a set Eq of tuples. Then, following the Bayesian
rule and assuming that rule validation and tuple checking
results are conditionally independent given λ, we have

p(λ|r
√
, Eq) =

p(Eq|λ) · p(λ|r
√

)

p(Eq|r
√

)
, (8)

where p(λ|r
√

) is the prior distribution of λ given that rule
r has passed rule validation, p(Eq|λ) is the likelihood of
observing tuple checking result Eq given precision λ, and

p(λ|r
√
, Eq) is the posterior distribution to be estimated. Be-

sides, p(Eq|r
√

) can be regarded as a normalization factor.

Likelihood of tuple observations. Recall that, given a

set Eq of checked tuples, we use E×q and E
√
q to respectively

denote the subsets of Eq refuted and passed by the crowd (see
Section 4.2 for more details on tuple refuting). Clearly, we

have E×q ∪ E
√
q = Eq and E×q ∩ E

√
q = ∅. Then, given precision

λ, we consider that Eq follows a binomial distribution with
λ as its parameter, i.e.,

p(Eq|λ) =

(
|Eq|
|E×|

)
· λ|E

√
q |(1− λ)|E

×
q |, (9)

which considers all the
(|Eq|
|E×|

)
cases of sampling |E

√
q | passed

and |E×q | refuted tuples from Eq.
Prior of rule validation. To model the prior distribution
of a rule validated by the crowd, we use the beta distribution,
which is commonly used in Bayesian estimation for binomial
distributions, i.e.,

p(λ|r
√

) =
Γ(α+ β)

Γ(α)Γ(β)
λα−1(1− λ)β−1, (10)

where Γ(·) is the gamma function (see [2] for details), and
α, β are parameters of beta distribution.

As beta distribution is conjugate to binomial distribution,
we can easily compute the posterior distribution as

p(λ|r
√
, Eq) =

Γ(α+ β + |Eq|)
Γ(α+ |E

√
q |)Γ(β + |E×|)

λα+|E
√
q |−1(1−λ)β+|E

×|−1

which is also a beta distribution with the two parameters

α+ |E
√
q | and β+ |E×|. Then, we compute the estimate λ̂ as

!"#$#%%&'(%)*+%%+,-,."/%%(01%%!"234"%%5#% 6/"78%%9%%:;,.3

<"#"=$#,7%%(,/>34%%+37.%?@*%%!$4A/3==%%B3/3C;$#3

=D%

=E%

(a) Constructing blocking rules for entity matching.

!"##$%%&'()"*%%!"# $%&%'())%' *+,%-.))/%01))!%02))2+3)

24#5"'6))+,-."/

#7

(b) Constructing extraction rules for relation extraction.

Figure 5: Candidate rules construction.

the expectation of λ to minimize the squared error.

λ̂(Eq) = E[λ|r
√
, Eq] =

α+ |E
√
q |

α+ β + |Eq|
. (11)

Lemma 2. Expectation of squared error, E[(λ − λ̂)2] is

minimized at the estimate λ̂ computed by Equation (11) [2].

Example 3. Consider prior beta(4, 1) with α = 4 and
β = 1. we examine how “data observation” is used to ad-
just the prior. When crowdsourcing 3 tuples and receiving 2
passed and 1 refuted. Applying Equation (11), we estimate

λ̂ = 0.75. Similarly, after crowdsourcing 7 tuples with 4
passed and 3 refuted answers, we estimate λ̂ as 0.67. We can
see that, although both of the cases have one more passed tu-
ples than the refuted ones, we have a lower estimate, because
more refuted tuples are observed. For better illustration, we
plot a detailed figure in our technical report [48].

Remarks. First, we want to emphasize that the set Eq of
checked tuples will be incrementally updated as RuleRef
selects more tuple checking tasks, as illustrated in Section 4.2.
From Equation (11), we can clearly see how a refuted tuple
e×i can decrease precision estimation: with numerator fixed

and denominator added by 1, estimate λ̂ becomes smaller.
Second, we explain how to choose α and β. The basic idea
is to sample some rules passed crowd validation, and use
them to estimate α and β. One simple method is to use
the mean µ̂ and variance σ̂2 of precision λ calculated from
the sample. Beta distribution has the following properties
on statistics µ = α

α+β
and σ2 = αβ

(α+β)2(α+β+1)
. Based on

the statistics, we solve the parameters as α = (1−µ̂
σ̂2 − 1

µ̂
)µ̂2

and β = α(1
µ̂
− 1). We can also apply more sophisticated

techniques in [3] for parameter estimation.

6. CANDIDATE RULES CONSTRUCTION
This section presents our methods to create candidate

rules from the raw text data for entity matching (EM) (Sec-
tion 6.1) and relation extraction (RE) (Section 6.2).

6.1 Candidate Rules for Entity Matching
The first application is entity matching for records with

textual description, as shown in our running example. We
want to construct candidate blocking rules annotating label
L1 = −1 to record pairs. Note that, although blocking rules
are extensively studied (see a survey [7]), most of the ap-
proaches are based on structured data, and there is limited
work on generating blocking rules from unstructured text.

The idea of our approach is to automatically identify key-
word pairs, which are effective to discriminate record pairs,
from raw text. For example, in Figure 5(a), keyword pairs,
such as (Canon, Panasonic) and (Camera, Telephone), tend
to be capable of discriminating products, because it is rare
that records corresponding to the same electronic product
mention more than one manufacture name or product type.
More precisely, we want to discover the word pair (wa, wb)
such that any record sa containing wa and another record
sb containing wb cannot be matched.

The challenge is how to automatically discover these “dis-
criminating” keyword pairs. We observe that such keyword
pairs usually have similar semantics, e.g., manufacture and
product type. Based on this, we utilize word embedding
techniques [27, 28], which are good at capturing semantic
similarity. We leverage the word2vec toolkit1 to generate an
embedding (i.e., a numerical vector) for each word, where
words with similar semantics are also close to each other in
the embedding space. Then, we identify keyword pairs from
each record pair (sa, sb) using the Word Mover’s Distance
(WMD) [19]. The idea of WMD is to optimally align words
from sa to sb, such that the distance that the embedded
words of sa “travel” to the embedded words of sb is min-
imized (see [35] for more details). Figure 5(a) illustrates
an example of using WMD to align keywords between two
records, where the alignment is shown as red arrows. Using
the WMD method, we identify keyword pairs from multi-
ple record pairs and remove the ones with frequency smaller
than a threshold (e.g., 10 in our experiments).

The WMD technique is also used to compute the refute
probability P (e×i) described in Section 4.2. The intuition
is that refute probability captures how likely the crowd will
annotate a tuple as matched (label +1), and thus refute a
blocking rule. As ground-truth of labels is unknown, we use
the similarity between the two records in a tuple, which is
measured by WMD, to estimate the probability: the more
similar the records are, the more likely the crowd will anno-
tate the tuple as matched. The similarity-based idea is also
used in other crowdsourced entity matching works [44, 4].

6.2 Candidate Rules for Relation Extraction
Relation extraction aims to discover a target relation of

two entities in a sentence or a paragraph, e.g., spouse rela-
tion between Kerry Robles and Damien in Figure 5(b). This
paper utilizes keywords around the entities as rules for la-
beling +1 (entities have the relation) or −1 (entities do not
have the relation). For example, keyword husband can be
good at identifying the spouse relation (i.e, labeling +1),
while brother can be regarded as a rule to label −1.

We apply distant supervision [29], which is commonly used
in relation extraction, to identify such rules, based on a small
amount of known positive entity pairs and negative ones.
For example, given a positive pair (Kerry Robles, Damien),
we can identify the words around these entities, e.g., living,
Mexico City and husband (stop-words like was and with are
removed), as the rules labeling +1. Similarly, we can iden-
tify rules that label −1 from negative entity pairs. We re-
move the keywords with frequency smaller than a threshold
(5 in our experiments), and take the remaining ones as can-
didate rules. One issue is how to identify some phrases, e.g.,
Mexico City. We use point-wise mutual information (PMI)
discussed in [5] to decide whether two successive words, say

1https://code.google.com/p/word2vec/

Table 2: Statistics of Datasets and Crowd Answers

Abt-Buy Ama-Goo Ebay Spouse

+1 tuples 1,090 1,273 2,057 424
−1 tuples 227,715 179,525 107,847 5,493
cand-rules 16,344 15,157 13,903 360
rule labels −1 −1 −1 −1, 1
crowd accuracy
on tuple checking

95.61% 93.53% 99.87% 99.05%

wi and wj , can form a phrase. Specifically, we consider the
joint probability P (wi, wj) and marginal probabilities P (wi)
and P (wj), where the probability can be computed by the
relative frequency in a dataset. Then, PMI is calculated by

log2
P (wi,wj)

P (wi)P (wj)
. Intuitively, the larger the PMI is, the more

likely that wi and wj are frequently used as a phrase. We
select the phrases whose PMI scores are above a threshold
(e.g., log2 100 in our experiments).

To compute refute probability P (e×i), we devise the fol-
lowing method. Based on the small amount of positive and
negative tuples mentioned above, we train a logistic regres-
sion classifier using the bag-of-words features. Given any
unlabeled tuple, we extract the bag-of-words feature from it
and take the output of the classifier as refute probability of
the tuple. Note that we investigate the effect of such P (e×i)
estimation in our technical report [48].

7. EXPERIMENTS
This section evaluates the performance of our approach.

We evaluate different task selection strategies for rule gen-
eration, and compare our approach with the state-of-the-art
methods. Note that, due to the space limit, we report addi-
tional experiments in our technical report [48].

7.1 Experiment Setup
Datasets. We consider two real-world applications, namely
entity matching and relation extraction. For entity match-
ing, we evaluate the approaches on three real datasets. Ta-
ble 2 shows the statistics of the datasets. 1) Abt-Buy contains
electronics product records from two websites, Abt and Best-
Buy. We regard each tuple ei as a pair of records with one
from Abt and the other from BestBuy, where each record
has a text description as illustrated in Figure 1. Following
the existing works in entity matching [43, 4], we prune the
pairs with similarity smaller than a threshold 0.3 (we use
WMD [19] to measure similarity), and obtain 1, 090 tuples
with label 1 (matched) and 227, 715 tuples with label −1
(unmatched). 2) Ama-Goo contains software products from
two websites, Amazon and Google. Similar to Abt-Buy, we
obtain 1, 273 tuples with label 1 and 179, 525 tuples with
label −1. 3) Ebay contains beauty products collected from
website Ebay. Using the above method, we respectively ob-
tain 2, 057 and 107, 847 tuples with labels 1 and −1. For
these three datasets, we use the method in Section 6.1 to
construct candidate rules, which only annotate the −1 label
for discriminating records. Statistics of candidate rules are
also found in Table 2.

For relation extraction, we use a Spouse dataset to iden-
tify if two person in a sentence have spouse relation. The
Spouse dataset contains 2591 news articles2. We segment

2http://research.signalmedia.co/newsir16/signal-
dataset.html

each article into sentences and identify entities mentioned
in the sentences. We consider each tuple as a pair of entities
occurring in the same sentence, and obtain 424 tuples with
label 1 (entities have spouse relation) and 5, 493 tuples with
label−1 (entities do not have spouse relation). We construct
candidate rules using the method in Section 6.2 and obtain
360 rules. Note the rules on this dataset can annotate both
1 (e.g., husband) and −1 (e.g., brother) labels.

Note that ground-truth of each of the above datasets is
already included in the original dataset.

Crowdsourcing on AMT. We use Amazon Mechanical
Turk (AMT, https://www.mturk.com/) as the platform for
publishing crowdsourcing tasks. Examples of the two task
types are referred to Figure 3. For fair comparison, we
crowdsource all candidate rules for crowd validation to col-
lect worker answers, so as to run different strategies on the
same crowd answers. Similarly, for tuple checking on the
Spouse dataset, we also ask the crowd to check all the tuples.
For the EM datasets, we crowdsource all the +1 tuples for
collecting crowd answers. Nevertheless, as there are a huge
number of −1 tuples, we use a sampling-based method. We
sample 5% of the −1 tuples for each dataset to estimate the
crowd accuracy on tuple checking (as shown in Table 2).
Then, for the rest of the −1 tuples, we use the estimated
accuracy to simulate the crowd answers: given a tuple, we
simulate its crowd answer as its ground-truth with the prob-
ability equals to the accuracy, and the opposite otherwise.
We use a batch mode to put 10 tasks in an HIT, and spend 1
US cent for each HIT. We assign each HIT to 3 workers and
combine their answers via majority voting. We use qualifi-
cation test to only allow workers with at least 150 approved
HITs and 95% approval rate.

Parameter settings. First, γ is the weight balancing qual-
ity and coverage in our loss function in Equation (1). Due
to the label skewness in entity matching as observed in Ta-
ble 2, we set γ = 0.001 to prefer quality over coverage. In a
similar way, we set γ = 0.1 for relation extraction. Second,
parameters α and β of beta distribution can be set based
on our discussion in Section 5. We use (350, 1) for entity
matching and (4, 1) for relation extraction. Third, batch
size b of RuleGen/RuleRef (Algorithm 1) is set to 20.

7.2 Evaluation on Minimax Crowdsourcing
This section evaluates the minimax crowdsourcing ob-

jective and task selection algorithms. We compare differ-
ent alternative task selection strategies in the framework of
Algorithm 1. Gen-Only only utilizes rule validation tasks,
and uses the prior as precision estimates (no tuple checking
tasks). Then, it utilizes the criterion of RuleGen for task
selection. Ref-Only only utilizes tuple checking tasks. As
there is no rule validation tasks, in each iteration, it selects a
batch of rules that maximize the coverage, and assumes that
they have passed the validation. Then, it utilizes the crite-
rion of RuleRef for task selection. Gen-RandRef consid-
ers both RuleGen and RuleRef. However, the RuleRef
in this method uses a random strategy to select tuples for
checking. CrowdGame is our game-based approach.

We also compare with simpler conflict-based heuristics. R-
TConf selects the rules covering the largest number of “con-
flicting” tuples. As tuples labels are unknown, we consider
a tuple is conflicting with a rule if its refute probability
is larger than threshold 0.5. For relation extraction where
conflicting rules exist, we also use another two baselines. R-

 0

 100

 200

 300

 400

 500

 600

 700

3 5 7 9

L
o
s
s

rule generaton budget *1K

R-TConf
Gen-Only
Ref-Only

Gen-RandRef
CrowdGame

(a) Abt-Buy dataset.

 0

 100

 200

 300

 400

 500

 600

3 6 9 12

L
o
s
s

rule generaton budget *1K

R-TConf
Gen-Only
Ref-Only

Gen-RandRef
CrowdGame

(b) Ama-Goo dataset.

 0

 200

 400

 600

 800

 1000

1 2 4 6

L
o
s
s

rule generaton budget *1K

R-TConf
Gen-Only
Ref-Only

Gen-RandRef
CrowdGame

(c) Ebay dataset.

 0

 200

 400

 600

 800

 1000

 1200

 1400

50 100 150 200

L
o
s
s

rule generaton budget

R-TConf
R-RConf
T-RConf

Gen-Only
Ref-Only

Gen-RandRef
CrowdGame

(d) Spouse dataset.

Figure 6: Evaluating game-based crowdsourcing with different strategies.

RConf selects the rules that have the largest conflicts with
other rules. Given a rule, it counts the number of tuples cov-
ered by the rule which are also annotated by other rule(s)
with a conflicting label. We select the rules with the largest
such numbers. T-RConf selects tuples that have the largest
conflicting annotations from the rules covering the tuples.

Figure 6 shows the experimental results. Conflict-based
heuristics R-TConf and R-RConf perform the worst, because
the selected rules are with more conflicts and tend to cover
tuples with opposite true labels. These rules may be either
invalidated by the crowd, or be selected to incur more errors
and larger overall loss. T-RConf performs better than R-
TConf and R-RConf, because tuples covered by conflicting
rules can be used to refute some “bad” rules. However, it
cannot beat our methods in the framework of Algorithm 1,
as it may not find tuples with the largest refuting impact.
Gen-Only achieves inferior performance, because, without

tuple checking, the selection criterion used in RuleGen is
to essentially identify rule with large coverage. However,
without refuting false positive ones, rules with large cover-
age are more harmful as they tend to induce more errors.
Ref-Only performs better with the increase of budget k. For
example, the loss decreases from 509 to 242 as the budget
increases from 3000 to 9000 on the Abt-Buy dataset. This
is because more checked tuples lead to better precision es-
timation, and thus facilitate to refute bad rules. Moreover,
Ref-Only is in general better than Gen-Only. Gen-RandRef
is a straightforward approach that combines RuleGen and
RuleRef. It can reduce loss in some cases, which shows the
superiority of combining rule validation and tuple checking.
However, it only achieves limited loss reduction, and it is
sometimes even worse than Ref-Only (Figure 6(a)). This is
because a random refuter strategy may not be able to find
the rules with the largest impact (Section 4.2), and thus
performs weak to refute bad rules.
CrowdGame with our proposed task selection strate-

gies achieves the best performance. For example, the loss
achieved by CrowdGame is an order of magnitude smaller
than that of the alternatives on the Ebay dataset. This sig-
nificant improvement is achieved by the minimax objective
formalized in the game-based crowdsourcing, where Rule-
Gen can find good rules while RuleRef refutes bad rules in
a two-player game. Moreover, our task selection algorithm
can effectively select tasks to fulfill the minimax objective.
We may observe that, on the Spouse dataset, CrowdGame
has little improvement compared to Gen-RandRef when the
budget is large. This is because the number of candidate
rules is small on this dataset (i.e., 360 as shown in Table 2).
Under such circumstance, checking a large number of tuples
may also be enough to identify good rules.

7.3 Comparisons for Entity Matching (EM)
This section evaluates how CrowdGame boosts entity

matching, and compares with state-of-the-art approaches.

Evaluation of CrowdGame on EM. We apply our two-
phase framework to find record matches. Recall that Phase
I uses crowd budget k for generating blocking rules, and
Phase II applies the rules and crowdsources the record pairs
not covered by the rules using tuple checking tasks (where
transitive-based optimization technique [44] is applied).

For evaluation, In Phase I, we measure rule coverage as
the ratio of tuples covered by the rules. We also examine the
extent of “errors” incurred by the rules using false negative
(FN) rate, which is the ratio of true matches “killed-off” by
the generated rules. Intuitively, rule generation in Phase I
performs well if it has large coverage and low FN rate. In
Phase II, we measure the performance using precision (the
number of correct matches divided the number of returned
ones), recall (the number of correct matches divided the
number of all true matches), and F1 score (2·precision·recall

precision+recall
).

On the other hand, we measure the total crowdsourcing
cost in EM, including the rule generation crowd budget k
in Phase I and the number of pair-based tasks in Phase II.

As shown in Table 3, increasing rule generation budget
can improve both quality and cost. For instance, on the
Abt-Buy dataset, with the increase of rule generation bud-
get from 3000 to 9000, the coverage of the generated rules
improves from 0.764 to 0.924, while the FN rate remains at
a very low level. This validates that CrowdGame can se-
lect high coverage rules while incurring insignificant errors.
Moreover, this can also effectively boost the overall EM pro-
cess. The total cost is reduced from 61, 739 to 26, 381 due to
larger rule coverage. The precision improves from 0.927 to
0.969. This is because more high-quality rules are selected to
correct the crowd errors in tuple checking (e.g., some work-
ers misjudge unmatched pairs with matched ones). On the
other hand, more budget for RuleRef can identity more
bad rules (especially those with large coverage), and thus
reduces false positive rules to improve recall.

Approach Comparison. We compare CrowdGame with
state-of-the-art approaches, where we set rule generation
budget to 9, 000, 12, 000 and 6, 000 on the three datasets re-
spectively. We compare CrowdGame with the state-of-the-
art crowdsourced EM approaches, Trans [44], PartOrder [4]
and ACD [46]. We get source codes of these approaches from
the authors. Note that these baselines do not consider label-
ing rules. Instead, they select some “representative” tuples
(record pairs) for crowdsourcing, and use tuple-level infer-
ence, such as transitivity [44, 46] and partial-order [4].

As shown in Table 4, CrowdGame significantly reduces
the total crowdsourcing cost over Trans and ACD, nearly by

Table 3: Using CrowdGame for Entity Matching (EM).

Dataset
Rule Gen Phase I Phase II Total Crowd Cost

Crowd Budget Rule Coverage FN Rate Precision Recall F1 Crowd Cost (Phases I & II)

Abt-Buy

3, 000 0.764 0.083 0.927 0.916 0.921 58, 739 61, 739
5, 000 0.867 0.037 0.942 0.928 0.935 34, 189 39, 189
7, 000 0.898 0.033 0.960 0.955 0.957 24, 269 31, 269
9, 000 0.924 0.028 0.969 0.957 0.963 17, 381 26, 381

Ama-Goo

3, 000 0.528 0.003 0.925 0.996 0.959 89, 671 92, 671
6, 000 0.697 0.002 0.947 0.998 0.972 57, 685 63, 685
9, 000 0.767 0.002 0.959 0.998 0.978 43, 864 52, 864
12, 000 0.799 0.002 0.966 0.997 0.981 36, 115 48, 115

Ebay

1, 000 0.504 0.005 0.995 0.969 0.982 33, 321 34, 321
2, 000 0.785 0.004 0.995 0.985 0.990 18, 761 20, 761
4, 000 0.902 0.004 0.999 0.988 0.993 5, 292 9, 292
6, 000 0.966 0.003 1.000 0.996 0.998 1, 410 7, 410

Table 5: Using CrowdGame for Relation Extraction on the Spouse dataset.

Rule Gen Phase I Phase II Total Crowd Cost
Crowd Budget Rule Coverage FN Rate FP Rate Precision Recall F1 Crowd Cost (Phases I & II)

50 0.587 0.019 0.734 0.504 0.747 0.602 2, 227 2, 277
100 0.687 0.027 0.537 0.545 0.645 0.591 1, 686 1, 786
150 0.719 0.026 0.453 0.585 0.640 0.611 1, 511 1, 661
200 0.695 0.027 0.149 0.810 0.635 0.712 1, 643 1, 843

Table 4: Comparison with EM Methods.

Dataset Method F1 of EM Total Crowd
Cost

Abt-Buy

Trans 0.864 203,715
PartOrder 0 1,063

ACD 0.887 216,025
Snorkel 0.909 26,381

CrowdGame 0.963 26,381

Ama-Goo

Trans 0.896 158,525
PartOrder 0.486 763

ACD 0.919 167,958
Snorkel 0.923 48,115

CrowdGame 0.982 48,115

Ebay

Trans 0.971 50,163
PartOrder 0.553 170

ACD 0.998 57,637
Snorkel 0.857 7,410

CrowdGame 0.998 7,410

an order of magnitude. This shows that rules generated by
CrowdGame are much more powerful than the transitivity
to prune unmatched pairs. For quality, Trans may “am-
plify” crowd errors through transitivity. ACD addresses this
issue by using adaptive task selection. CrowdGame also
outperforms Trans and ACD on F1 score, since it utilizes the
game-based framework with minimax objective to optimize
the quality. Second, although PartOrder achieves much less
total cost, its F1 is very low, e.g., 0.486 on the Ama-Goo
dataset. This is because PartOrder utilizes the partial or-
der among tuples determined by similarity between records.
Although performing well on structured data, PartOrder

has inferior performance on our datasets, because textual
similarity is very unreliable for such inference.

We also compare CrowdGame with Snorkel (with the
crowdsourcing setting described in [32]). This setting asks
the crowd to annotate tuples (e.g., record pairs in entity

matching), and represents each crowd worker as well as her
answers as a labeling function. Fed with the labeling func-
tions, Snorkel outputs final annotation results. For fair
comparison, we use exactly the same total crowdsourcing
cost (Phases I and II) of CrowdGame as the crowdsourc-
ing budget for Snorkel, e.g., 26, 381 on the Abt-Buy dataset,
which makes sure that the two approaches rely the same
crowd efforts. Another issue is which tuples should be se-
lected for crowdsourcing in Snorkel. We select the tuples
with higher pairwise similarity measured by WMD, in order
to obtain a tuple set with more balanced labels. Specifically,
due to label skewness of EM datasets, random tuple selec-
tion may end up with very rare +1 tuples selected, which
is not good for model training in Snorkel. In contrast, se-
lection by similarity will increase the chance of finding +1
tuples in the crowdsourcing set. As shown in Table 4, the
experimental results show that, under the same crowdsourc-
ing cost, CrowdGame outperforms Snorkel on quality, e.g.,
achieving 6−15% improvements on F1. This quality boost is
because of the high-quality rules identified by CrowdGame,
which annotate a large amount of tuples with high precision.

7.4 Comparison for Relation Extraction
This section evaluates the performance of CrowdGame

for relation extraction on the Spouse dataset. We construct
candidate rules using the method in Section 6. Different
from CrowdGame for EM that only considers L1 = −1
rules, CrowdGame for relation extraction generates both
L1 = −1 and L2 = 1 rules in Phase I. Thus, besides FN rate,
we introduce false positive (FP) rate (the ratio of FP over all
negatives) to measure the “errors” incurred by L2 = 1 rules
in Phase I. Table 5 shows the performance of CrowdGame.
With the increase of the rule generation budget, the total
crowd cost is largely reduced because rule coverage is im-
proved from 0.587 to 0.695. One interesting observation is
that, when increasing the budget from 150 to 200, the preci-
sion is improved from 0.585 to 0.810 while rule coverage and
recall slightly decrease. This is because RuleRef is able to

Table 6: Comparison with Snorkel in RE

Method Precision Recall F1

Snorkel (ManRule) 0.389 0.608 0.474
Snorkel (ManRule+Crowd) 0.519 0.696 0.595

CrowdGame 0.81 0.635 0.712

identify and refute more low-precision rules and thus signif-
icantly reduces false positives for relation extraction.

We compare CrowdGame with two settings of Snorkel.
First, we feed a set of manual rules provided by the orig-
inal paper [32] to Snorkel, which consist of the following
two kinds: 1) some keywords summarized by domain ex-
perts, such as “wife” (annotating +1), “ex-husband” (an-
notating +1), and “father” (annotating −1), and 2) a set
of 6126 entity pairs with spouse relation extracted from
an external knowledge base, DBPedia3. Second, we take
both these manual rules and crowd annotations as labeling
functions. Note that we use the similarity-based method
(same to the EM scenario) to select tuples for crowdsourc-
ing for obtain tuples with more balanced classes, and the
number of selected tuples is the same to the total crowd
cost of CrowdGame, e.g., the same crowd cost 1, 843 for
both Snorkel and CrowdGame. As observed from Table 6,
Snorkel with only manual rules achieves inferior quality.
The reason is that the manual rules are based some generally
summarized keywords and external knowledge, which are
not specifically designed for the Spouse dataset. Moreover,
further considering crowd annotations, Snorkel achieves bet-
ter precision and recall, as it can learn better ML models
due to the additional crowd efforts. However, CrowdGame
still achieves the best performance by a margin of 0.11 on
F1, at the same crowd cost. This is because our approach
can identify high-quality rules from the candidates, espe-
cially the refuter can effectively eliminate error-prone rules,
thus resulting in superior precision.

8. RELATED WORK
Crowdsourced data annotation. Recently, crowdsourc-
ing has been extensively studied for harnessing the crowd
intelligence. There is a large body of works on crowdsourc-
ing (see a recent survey [23]), such as quality control [25, 9,
51, 40, 51, 50], crowd DB systems [12, 26, 31, 11, 22, 39],
etc. This paper pays special attention on crowdsourced data
annotation, which acquires relatively low cost labeled data
in a short time using crowdsourcing, with focus on review-
ing such works in entity matching and relation extraction.
Crowdsourced entity matching (aka. crowdsourced entity
resolution) [21, 4, 18, 41, 13, 6, 47, 43, 46, 42, 8] has been ex-
tensively studied recently. These existing works have stud-
ied many aspects in the field, including task generation [43],
transitivity-based inference [44, 4, 42], partial-order infer-
ence [4], and task selection [41]. However, most of them
only annotate tuples (i.e., record pairs) and do not consider
generating labeling rules for reducing total crowd cost. One
exception is the hands-off crowdsourcing approach [13, 6].
However, the approach generates blocking rules on struc-
tured data using random forest, and the method cannot be
applied to text data studied in our approach. Crowdsourc-
ing is also applied in relation extraction [24, 1]. However,

3http://wiki.dbpedia.org/

similar to entity matching, most of the works focus on tuple-
level annotation.

Weak-supervision labeling rules. There are many works
in the machine learning community to annotate large train-
ing sets using weak-supervision labeling rules. A well-known
example is distant supervision [16, 34, 29, 38], where the
training sets are created with the aid of external resource
such as knowledge bases. The distant supervision sources
are usually noisy. To alleviate this problem, [34, 38] anno-
tate data with hand-specified dependency generative mod-
els. [16] uses multi-instance learning models to denoise dif-
ferent sources. When gold labels are not available, some
methods estimate potential class labels based on noisy ob-
servations, e.g., spectral methods [30] and generative proba-
bilistic models [17, 49]. Some approaches are recently pro-
posed to consolidate noisy or even contradictory rules [36,
32]. Some works demonstrate that the proper use of weak-
supervision rules can also boost the performance of deep
learning methods [33]. Our approach and these works fo-
cus on different aspects of data annotation: they focus on
“consolidating” given labeling rules (functions), while we
pay more attention to generating high-quality rules. To this
end, we leverage game-based crowdsourcing to select high-
quality rules with large coverage and precision, which results
in performance superiority shown in our experiments.

Generative Adversarial Networks. The recent Gener-
ative Adversarial Networks (GAN) also applies a minimax
framework for training neural networks, and has been widely
applied in image and text processing [14, 45]. Our approach
is different from GAN in the following aspects. First of all,
CrowdGame uses the minimax framework to combine two
types of tasks for data annotation, while GAN focuses on
parameter learnings. Second, GAN uses algorithms such as
stochastic gradient descent to optimize the parameters. In
contrast, optimization of CrowdGame is rule/tuple task
selection. Third, CrowdGame needs to consider cost of
crowdsourcing, which is not a concern of GAN.

9. CONCLUSION
We have studied the data annotation problem. Differ-

ent from previous tuple-level annotation methods, we intro-
duced labeling rules to reduce annotation cost while pre-
serving high quality. We devised a crowdsourcing approach
to generate high-quality rules with high coverage and preci-
sion. We first constructed a set of candidate rules and then
solicited crowdsourcing to select high-quality rules. We uti-
lized crowdsourcing to estimate quality of a rule by com-
bining rule validation and tuple checking. We de-
veloped a game-based framework that employs a group of
workers that answers rule validation tasks to play a role of
rule generator, and another group that answers tuple check-
ing tasks to play a role of rule refuter. We proposed a min-
imax optimization method to unify rule generator and rule
refuter in a two-player game. We conducted experiments on
entity matching and relation extraction to show performance
superiority of our approach.

Acknowledgment. This work was supported by the 973
Program of China (2015CB358700, 2014CB340403), NSF of
China (61632016, 61602488, U1711261, 61472198, 61521002,
61661166012, 61502503), and the Research Funds of Renmin
University of China (18XNLG18, 18XNLG21).

10. REFERENCES
[1] A. Abad, M. Nabi, and A. Moschitti.

Self-crowdsourcing training for relation extraction. In
ACL, pages 518–523, 2017.

[2] C. M. Bishop. Pattern recognition and machine
learning, 5th Edition. Information science and
statistics. Springer, 2007.

[3] K. Bowman and L. Shenton. Parameter estimation for
the beta distribution. Journal of Statistical
Computation and Simulation, 43(3-4):217–228, 1992.

[4] C. Chai, G. Li, J. Li, D. Deng, and J. Feng.
Cost-effective crowdsourced entity resolution: A
partial-order approach. In SIGMOD, pages 969–984,
2016.

[5] K. W. Church and P. Hanks. Word association norms,
mutual information, and lexicography. Computational
linguistics, 16(1):22–29, 1990.

[6] S. Das, P. S. G. C., A. Doan, J. F. Naughton,
G. Krishnan, R. Deep, E. Arcaute, V. Raghavendra,
and Y. Park. Falcon: Scaling up hands-off
crowdsourced entity matching to build cloud services.
In SIGMOD, pages 1431–1446, 2017.

[7] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans.
Knowl. Data Eng., 19(1):1–16, 2007.

[8] J. Fan and G. Li. Human-in-the-loop rule learning for
data integration. IEEE Data Eng. Bull.,
41(2):104–115, 2018.

[9] J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng. icrowd:
An adaptive crowdsourcing framework. In SIGMOD,
pages 1015–1030, 2015.

[10] J. Fan, M. Lu, B. C. Ooi, W. Tan, and M. Zhang. A
hybrid machine-crowdsourcing system for matching
web tables. In ICDE 2014, pages 976–987, 2014.

[11] J. Fan, M. Zhang, S. Kok, M. Lu, and B. C. Ooi.
Crowdop: Query optimization for declarative
crowdsourcing systems. IEEE Trans. Knowl. Data
Eng., 27(8):2078–2092, 2015.

[12] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh,
and R. Xin. Crowddb: answering queries with
crowdsourcing. In SIGMOD, pages 61–72, 2011.

[13] C. Gokhale, S. Das, A. Doan, J. F. Naughton,
N. Rampalli, J. W. Shavlik, and X. Zhu. Corleone:
Hands-off crowdsourcing for entity matching. In
SIGMOD, pages 601–612, 2014.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In NIPS,
pages 2672–2680, 2014.

[15] D. Haas, J. Wang, E. Wu, and M. J. Franklin.
Clamshell: Speeding up crowds for low-latency data
labeling. PVLDB, 9(4):372–383, 2015.

[16] R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, and
D. S. Weld. Knowledge-based weak supervision for
information extraction of overlapping relations. In
ACL, pages 541–550. Association for Computational
Linguistics, 2011.

[17] M. Joglekar, H. Garcia-Molina, and A. Parameswaran.
Comprehensive and reliable crowd assessment
algorithms. pages 195–206, 2014.

[18] A. R. Khan and H. Garcia-Molina. Attribute-based
crowd entity resolution. In CIKM, pages 549–558,
2016.

[19] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q.
Weinberger. From word embeddings to document
distances. In ICML 2015, pages 957–966, 2015.

[20] Y. LeCun, Y. Bengio, and G. E. Hinton. Deep
learning. Nature, 521(7553):436–444, 2015.

[21] G. Li. Human-in-the-loop data integration. PVLDB,
10(12):2006–2017, 2017.

[22] G. Li, C. Chai, J. Fan, X. Weng, J. Li, Y. Zheng,
Y. Li, X. Yu, X. Zhang, and H. Yuan. CDB:
optimizing queries with crowd-based selections and
joins. In SIGMOD, pages 1463–1478, 2017.

[23] G. Li, J. Wang, Y. Zheng, and M. J. Franklin.
Crowdsourced data management: A survey. IEEE
Trans. Knowl. Data Eng., 28(9):2296–2319, 2016.

[24] A. Liu, S. Soderland, J. Bragg, C. H. Lin, X. Ling, and
D. S. Weld. Effective crowd annotation for relation
extraction. In NAACL HLT, pages 897–906, 2016.

[25] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and
M. Zhang. CDAS: A crowdsourcing data analytics
system. PVLDB, 5(10):1040–1051, 2012.

[26] A. Marcus, E. Wu, D. R. Karger, S. Madden, and
R. C. Miller. Demonstration of qurk: a query
processor for humanoperators. In SIGMOD 2011,
pages 1315–1318, 2011.

[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[28] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In NIPS, pages
3111–3119, 2013.

[29] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant
supervision for relation extraction without labeled
data. In ACL 2009, pages 1003–1011, 2009.

[30] F. Parisi, F. Strino, B. Nadler, and Y. Kluger.
Ranking and combining multiple predictors without
labeled data. Proceedings of the National Academy of
Sciences of the United States of America,
111(4):1253–8, 2014.

[31] H. Park, R. Pang, A. G. Parameswaran,
H. Garcia-Molina, N. Polyzotis, and J. Widom. Deco:
A system for declarative crowdsourcing. PVLDB,
5(12):1990–1993, 2012.

[32] A. Ratner, S. H. Bach, H. R. Ehrenberg, J. A. Fries,
S. Wu, and C. Ré. Snorkel: Rapid training data
creation with weak supervision. PVLDB,
11(3):269–282, 2017.

[33] A. J. Ratner, C. D. Sa, S. Wu, D. Selsam, and C. Ré.
Data programming: Creating large training sets,
quickly. In NIPS 2016, pages 3567–3575, 2016.

[34] B. Roth and D. Klakow. Combining generative and
discriminative model scores for distant supervision. In
EMNLP, pages 24–29, 2013.

[35] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for
distributions with applications to image databases. In
International Conference on Computer Vision,
page 59, 1998.

[36] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get
another label? improving data quality and data

mining using multiple, noisy labelers. In SIGKDD,
pages 614–622. ACM, 2008.

[37] C. Sun, A. Shrivastava, S. Singh, and A. Gupta.
Revisiting unreasonable effectiveness of data in deep
learning era. CoRR, abs/1707.02968, 2017.

[38] S. Takamatsu, I. Sato, and H. Nakagawa. Reducing
wrong labels in distant supervision for relation
extraction. In Meeting of the Association for
Computational Linguistics: Long Papers, pages
721–729, 2012.

[39] Y. Tong, L. Chen, Z. Zhou, H. V. Jagadish, L. Shou,
and W. Lv. Slade: A smart large-scale task
decomposer in crowdsourcing. IEEE Transactions on
Knowledge and Data Engineering, 30(8):1588–1601,
2018.

[40] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen.
Online mobile micro-task allocation in spatial
crowdsourcing. In ICDE, pages 49–60, 2016.

[41] V. Verroios, H. Garcia-Molina, and
Y. Papakonstantinou. Waldo: An adaptive human
interface for crowd entity resolution. In SIGMOD,
pages 1133–1148, 2017.

[42] N. Vesdapunt, K. Bellare, and N. N. Dalvi.
Crowdsourcing algorithms for entity resolution.
PVLDB, 2014.

[43] J. Wang, T. Kraska, M. J. Franklin, and J. Feng.
Crowder: Crowdsourcing entity resolution. PVLDB,
2012.

[44] J. Wang, G. Li, T. Kraska, M. J. Franklin, and
J. Feng. Leveraging transitive relations for
crowdsourced joins. In SIGMOD, pages 229–240, 2013.

[45] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang,
P. Zhang, and D. Zhang. Irgan: A minimax game for
unifying generative and discriminative information
retrieval models. In SIGIR, pages 515–524. ACM,
2017.

[46] S. Wang, X. Xiao, and C. Lee. Crowd-based
deduplication: An adaptive approach. In SIGMOD,
pages 1263–1277, 2015.

[47] S. E. Whang, P. Lofgren, and H. Garcia-Molina.
Question selection for crowd entity resolution.
PVLDB, 6(6):349–360, 2013.

[48] J. Yang, J. Fan, Z. Wei, G. Li, T. Liu, and X. Du.
Cost-effective data annotation using game-based
crowdsourcing. In Technical Report, 2018.
http://iir.ruc.edu.cn/˜fanj/papers/
crowdgame-tr.pdf.

[49] Y. Zhang, X. Chen, D. Zhou, and M. I. Jordan.
Spectral methods meet em: a provably optimal
algorithm for crowdsourcing. In International
Conference on Neural Information Processing
Systems, pages 1260–1268, 2014.

[50] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth
inference in crowdsourcing: Is the problem solved?
PVLDB, 10(5):541–552, 2017.

[51] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng.
QASCA: A quality-aware task assignment system for
crowdsourcing applications. In SIGMOD, pages
1031–1046, 2015.

http://iir.ruc.edu.cn/~fanj/papers/crowdgame-tr.pdf
http://iir.ruc.edu.cn/~fanj/papers/crowdgame-tr.pdf

!"

!#

$"

!%

!&

!'

!(

$#

$&

$%

$'

$(
)

)

)

)

)

)

* $
"

+
, -

* $
#

+
, -

* $
&

+
, -

* $
%

+
, -

* $
'

+
, -

* $
(

+
, -

Figure 7: Illustration of Theorem 2 proof.

APPENDIX
A. PROOFS

A.1 Proof of Theorem 1
We can prove NP-hardness of the problem by a reduction

from the k Maximum Coverage (KMC) problem, which is
known to be NP-hard.

Recall that an instance of the KMC problem (E,S,k) con-
sists of a universe of elements E = {s1, s2, · · · , sn}, a collec-
tion of subsets of the universe E, i.e., S = {S1, S2, · · · , Sm}
where any Si ∈ S satisfies Si ⊆ E, and a number k. The
objective is to select k subsets from S, denoted by S ′, so
that the number of covered tuples

∣∣⋃
S∈S′ S

∣∣ is maximized.
An instance of our problem consists of a set of tuples E , a

set of rules R, and a number b. The optimization objective
is to select b rules from R so that the expected rule selection
criterion, according to Equation 5 is maximized.
The reduction from KMC to our problem. We show

next that for any instance (E,S,k) of KMC, we can create a
corresponding instance of our problem based on (E,S,k) in
polynomial time.

• We translate the set E of elements into the set E =
{e1, e2, · · · , en} of tuples in our problem.

• Given an element sj in E, if sj ∈ Si, we set add a
tuple ej into the rule ri whose precision and validation
probability is 1. We set the parameter γ is 0.5. The
gain of objective J ri calculates to 1 if sj ∈ Si, and
0 otherwise. Thus, each set Si in the KMC problem
corresponds to the rule ri and the elements covered by
Si correspond to the tuples covered by ri.

• We translate number k in KMC into b in our problem.

Equivalence of optimization objectives. We show the
optimization objectives of the two problems are equivalent.

• Since in our instance the probability that an individ-
ual rule r passes the validation is 1, the validated rule

set R
√

is equivalent to the selected rule set R(t)
q , and

P (R
√

) = P (R(t)
q) = 1.

• Since in our instance the rule precision is 1 and the
parameter γ is 0.5, based on Equation 4, we know that

JR
(t)
q =

∣∣∣C(R(t)
q)
∣∣∣.

With R
√

= ∅, the expected rule selection criterion in Equa-

tion 5 therefore becomes
∣∣∣C(R(t)

q)
∣∣∣. Since our problem is

to find the b best rules, R(t)
q , that maximizes the expected

criterion, this is equivalent to finding b best sets that max-
imizes the set of covered elements.

A.2 Proof of Lemma 1
Consider two rule sets R1 ⊆ R2, we first prove the mono-

tonicity as follows. For simplicity, we use Γ to denote 1−2γ
1−γ

in this proof.

∆g(R2|J)−∆g(R1|J) =
∑
R
√

2

P (R
√

2)
∑
ei

max
rj

λ̂j − Γ

−
∑
R
√

1

P (R
√

1)
∑
ei

max
rj

λ̂j − Γ

Since R1 ⊆ R2, for simplicity, we introduce R3 = R2 −R1.

Then, for any R
√

2 , we can find a R
√

1 and R
√

3 such that
R
√

2 = R
√

1 ∪R
√

3 . Based on this, we have

∆g(R2|J)−∆g(R1|J) =
∑
R
√

1

P (R
√

1)
[∑
R
√

3

P (R
√

3)

(∑
ei∈C(R

√

1 ∪R
√

3)

{max
rj

λ̂j − Γ} −
∑

ei∈C(R
√

1)

{max
rj

λ̂j − Γ}
)]
.

It is not difficult to know
∑
ei∈C(R

√

1 ∪R
√

3)
{maxrj λ̂j − Γ} −∑

ei∈C(R
√

1)
{maxrj λ̂j − Γ} ≥ 0, and we prove monotonicity.

We next prove that ∆g(R|J) is submodular. Given any
rule r, using the previous equation, we have

∆g(R∪ {r}|J)−∆g(R|J) =
∑
R
√
P (R

√
)P (r

√
)

(∑
ei∈C(R

√
∪{r
√
})

{max
rj

λ̂j − Γ} −
∑

ei∈C(R
√
)

{max
rj

λ̂j − Γ}
)

= −Γ +
∑
R
√
P (R

√
)P (r

√
)
(∑
ei∈C(r

√
)−C(R

√
)

λ̂

+
∑

ei∈C(r
√
)∩C(R

√
)

max{λ̂−max ΛR
(i)

, 0}
)

(12)

From the equation, we can see that the above margin de-
pends on the following two factors under each cases corre-
sponding to P (R

√
)P (r

√
):

• Improvement on “additional” tuples covered by r
√

, i.e.,∑
ei∈C(r

√
)−C(R

√
) λ̂.

• Improvement on the tuples already covered by R
√

.

Now, let us consider a rule set R1 ⊆ R2. It is not difficult
to see that both of the above factors corresponding to R2

will not be greater than that of R1. Thus, we have ∆g(R1∪
{r}|J)−∆g(R1|J) ≥ ∆g(R2 ∪ {r}|J)−∆g(R2|J), which
proves the submodularity.

Hence, we prove the lemma.

A.3 Proof of Theorem 2
To prove Theorem 2, let us consider a special case of

the RuleRef task selection problem, as shown in Figure 7.
Each rule has the same precision λ̂j = λ, and each tuple
has the same refute probability P (e×i) = 1.0. Moreover, we
consider the “strict” refuting strategy used in Example 2:
one counter-example is enough to refute all rules covering
the tuple. And we consider the weight γ = 0.5. In this case,
refuting an tuple, say e1, will remove all the rules covering

 0

 0.2

 0.4

 0.6

 0.8

 1

Abt-BuyAma-Goo Ebay Spouse

P
e
r
c
e
n
t
a
g
e

Datasets

PerfectRules
ImperfectRules

Figure 8: Ratios of perfect rules (precision 1.0) vs.
imperfect rules (precision < 1.0) on the four datasets

the tuple, say {r1, r2, r3}. However, the removed rules can-
not induce any impact defined in Section 4.2, as the tuples
covered by {r1, r2, r3} are still covered by other un-refuted
rules, and thus the maximum precision associated to these
tuples is still λ. Suppose that we refute e5, and then we have
an impact λ as maximum rule precision associated with e6
becomes 0. Based on these examples, it is not difficult to
see this special case of RuleRef task selection problem is
equivalent to the following maximum isolated node problem.

Definition 6 (Maximum Isolated Node Problem).
Given a bipartite graph over a rule-node set R and an tuple-
node set E, consider the following removal-conditions: 1) if
an tuple-node is removed, then all the rule-nodes connected
to the tuple-node as well as the edges associated with the
rule nodes are removed; 2) an tuple-node is called “isolated
node” iff there is no edge associated with the tuple-node.
Under these removal conditions, the problem finds k tuple-
nodes E ′ ⊆ E such that the number of isolated nodes after
the removal is maximized.

For example, in Figure 7, after removing {e2, e3}, there
is no isolated tuple-nodes. On the contrary, after removing
{e1, e2}, e3 and e4 become isolated tuple-nodes.

We can prove the maximum isolated node problem is NP-
hard by a reduction from the minimum vertex cover (MVC)
problem, which is known as NP-hard. Recall that an in-
stance of the MVC problem consists of a graph G′ = (V,E)
of vertex set V and edge set E. The problem aims to find
the minimum vertex subset V ′ ⊆ V such that every edge
e ∈ E has at least one endpoint in V ′.

Next, we show the reduction from the MVC problem to
our maximum isolated node problem. Given any instance
of the MVC problem G′ = (V,E), we create an tuple-node
set E , each of which corresponds to a vertex in V , and a
rule-node set R, each of which corresponds to an edge in E.

Then, suppose that our maximum isolated node problem
is solved, that is, given any number k, we can find a subset
E ′ ⊆ E of tuple-nodes that the number of isolated nodes is
maximized. Hence, we can vary k from 1 to |E| to find the
minimum k that satisfies that all nodes in E−E ′ are isolated.
Given the above reduction, we can see that this actually
solves the MVC problem, because isolating all tuple-nodes
is equivalent to find a vertex subset V ′ that covers all edge
E in the MVC problem.

Thus, we prove that the maximum isolated node prob-
lem can be solved only if the MVC problem is solved. As
the MVC problem is NP-hard, the maximum isolated node
problem is NP-hard. Moreover, since the maximum isolated
node problem is a special case of our RuleRef task selection
problem formalized in Definition 5, we prove Theorem 2.

B. ADDITIONAL EXPERIMENTS

B.1 Quality of Candidate Rules
We provide more details for quality of initial (candidate)

rules in this section. To this end, we report the ratios of
perfect rules (precision 1.0) and imperfect rules (precision
< 1.0) in initial rule sets on our datasets. As observed from
Figure 8, the result shows that there are less perfect rules
than the imperfect rules. This demonstrates that it is not
easy to identify high-quality rules from noisy candidates.

We then investigate the crowd performance on rule val-
idation tasks. We compute the real precision of each rule
based on true labels of tuples covered by the rule. Then, for
the set of rules passed (failed) crowdsourcing validation, we
use a histogram to show the precision distribution, where
the x-axis is values of precision and y-axis is the percent-
age of rules with the corresponding precision values. Note
that this figure shows precision distribution of rules which
pass/fail the workers validation, where the denominator is
not the number of rules in candidate set. Figure 9 shows
the distributions on our four datasets. We have the follow-
ing observations. First, most of the crowd-validated rules
have high precisions. For example, about 90% of crowd-
validated rules have perfect precision 1.0 on datasets Ama-
Goo and Ebay. In contrast, precisions of rules that failed
the validation are diverse, and thus unreliable. Second, al-
though capable of identifying good rules, crowd validation
may introduce false positives. For example, on the Spouse

dataset, there are some less precise rules that also passed
the validation. This is because crowd may not be compre-
hensive enough as they usually neglect some negative cases
where a rule fails. This motivates us to use rule validation
task as a coarse rule evaluation, and tuple checking tasks
as fine rule evaluation, so as to eliminate the false positives.
In addition, we observe that the values of rule precision on
the three entity matching datasets are larger than those on
the relation extraction datasets. This is because labels
on entity matching datasets are very skew, e.g., 1, 273 vs.
227, 715 for labels 1 and −1.

Moreover, we explain that high precision values of most
blocking rules for EM are due to class imbalance. However,
a minor difference on rule precision may have significant
effects on the final F1 score, also because there are few pos-
itives. For example, consider a dataset with 10 matched
and 1990 unmatched pairs. A blocking rule with precision
0.99 and coverage 0.1 annotates 200 pairs where 2 of them
become false negatives, which causes 20% loss in recall.

We also provide some examples to better understand the
intuition behind our method. Table 7 shows some high qual-
ity rules validated by the crowd on four datasets. Take the
rule (sony, toshiba) on the Abt-Buy dataset as an exam-
ple: we can observe that applying a rule is equivalent to
annotating over 2000 samples. Selecting these high quality
rules forms the basis for CrowdGame. For EM tasks, such
good rules usually contain brand names, product names, the
product functions, properties, abbreviations, and so on. For

 0

 0.2

 0.4

 0.6

 0.8

 1

<0.974 0.974 0.98 0.986 0.992 1.0

P
e
r
c
e
n
t
a
g
e

Precision of rules

passed-rule
failed-rule

(a) Abt-Buy dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

<0.959 0.959 0.969 0.979 0.989 1.0

P
e
r
c
e
n
t
a
g
e

Precision of rules

passed-rule
failed-rule

(b) Ama-Goo dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

<0.946 0.946 0.958 0.97 0.982 1.0

P
e
r
c
e
n
t
a
g
e

Precision of rules

passed-rule
failed-rule

(c) Ebay dataset.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

<0.65 0.65 0.75 0.85 0.9 1.0

P
e
r
c
e
n
t
a
g
e

Precision of rules

passed-rule
failed-rule

(d) Spouse dataset.

Figure 9: Precision distributions of crowdsourced rules passed/failed rule validation.

Table 8: Effect of considering refute probability
P (e×i).

Dataset
Rule Gen Loss

Crowd Budget with P (e×i) without P (e×i)

Abt-Buy

3, 000 208.6 452.8
5, 000 113.1 414.4
7, 000 95.2 390.4
9, 000 82.3 389.8

Ama-Goo

3, 000 197.6 393.3
6, 000 129.2 269.0
9, 000 108.8 239.2
12, 000 102.0 232.8

Ebay

1, 000 113.3 170.4
2, 000 63.6 152.9
4, 000 46.5 158.6
6, 000 12.5 160.4

Spouse

50 556.0 567.3
100 470.0 524.5
150 425.0 511.0
200 338.0 491.6

Table 7: Examples of crowd validated rules.

Dataset Example Rule Coverage

Abt-Buy

(Sony, Toshiba) 2,050
(Canon, Samsung) 1,319

(Camera, Vaio) 1,028
(Player, TV) 909

(Camera, Headphone) 770

Ama-Goo

(Macintosh, Windows) 907
(Mac, Vista) 789

(Adobe, Office) 769
(Mac, Sony) 689

(Microsoft,Photoshop) 568

Ebay

(Face, Lip) 1,166
(Dior, NYX) 761

(Blush, Cream) 742
(Cream, Liner) 685

(Lipstick, Powder) 628

Spouse

Mama (−1 rule) 33
Dad (−1 rule) 27

Lover (+1 rule) 26
Rival (−1 rule) 26

Assistant (−1 rule) 17

spouse relation dataset, the good rules usually consist of
words related with kinship.

B.2 Effect of Parameters

This section evaluates the effect of parameters used in
CrowdGame. Specifically, we examine three parameters:
1) the batch size b of crowdsourcing tasks in each iteration
of Algorithm 1, and 2) the weight γ that balance coverage
and quality in our loss function in Equation (1). 3) the effect
of refute probability P (e×i) in RuleRef step.

Batch Size b. We first examine the effect of batch size b in
each iteration. We vary the batch size on each dataset, and
evaluate the loss. Note that we set the budgets as the max-
imum budgets of the datasets shown in Figure 6. Figure 10
shows the experimental results. We can see that, with the
increase of b, the loss also increases. The main reason is the
followings. In CrowdGame, RuleGen and RuleRef iter-
atively crowdsource tasks with the goal of competing with
each other, and “adjust” their decisions based on the oppo-
nents’ decisions. For example, given some rules selected with
RuleGen, RuleRef decides to select tuples to refute the
rules, which will further adjust RuleGen’s later decisions
on selecting more rules. However, given a fixed budget, a
larger batch-size b means less “interactions” between Rule-
Gen and RuleRef. Thus, RuleGen and RuleRef may
not be able to adjust their decisions in time to minimize
the overall loss. On the other hand, a very small batch size
b would lead to high crowdsourcing latency (i.e., waiting
time). Based on the experimental results, we suggest to set
b to a reasonable number (e.g., 20− 200 in the figures) that
balances loss and crowdsourcing latency.

Weight γ in loss. Then, we examine the weight γ in the
loss function. Observed from Equation (4), (1− 2γ)/(1− γ)

plays a threshold role that any rules with λ̂j < (1−2γ)/(1−
γ) will be pruned from RuleGen, as they are useless to
minimize the loss. Thus, for each dataset, we vary (1 −
2γ)/(1− γ) in the values: 0.999, 0.8, 0.6, 0.4 and 0.2, which
result in the following γ values: 0.001, 0.167, 0.286, 0.375,
and 0.444. Then, on each dataset, we plot coverage and
error number under each of the γ values.

Figure 11 illustrates the results. With the increase of
γ, the coverage increases, while the number of errors also
increases. For example, when increasing γ from 0.001 to
0.167 (i.e., changing (1− 2γ)/(1− γ) from 0.999 to 0.8), the
coverage increases from 0.890 to 0.912, while the number of
errors also increases from 60 to 180. This is because the
larger the γ is, the more preferable the coverage is and the
less preferable the quality is. In particular, a larger γ will
lead to a smaller threshold 1−2γ

1−γ on rule precisions. Thus,
the quality will degrade. As mentioned in Section 2, setting
an appropriate γ depends on the targeted applications.

Refute probability P (e×i). We also empirically examine
the effect of considering refute probability P (e×i). We com-

 0

 40

 80

 120

 160

20 100 200 1000 2000

L
o
s
s

Batch-size b

loss

(a) Abt-Buy dataset.

 0

 50

 100

 150

 200

20 100 200 1000 2000

L
o
s
s

Batch-size b

loss

(b) Ama-Goo dataset.

 0

 8

 16

 24

 32

 40

20 100 200 1000 2000

L
o
s
s

Batch-size b

loss

(c) Ebay dataset.

 0

 200

 400

 600

 800

 1000

 1200

20 40 60 80 100

L
o
s
s

Batch-size b

loss

(d) Spouse dataset.

Figure 10: Effect of batch-size b with respect to overall loss.

 0

 60

 120

 180

 240

 300

 0.89 0.9 0.91 0.92

#

o
f

e
r
r
o
r
s

Coverage

(a) Abt-Buy dataset.

 0

 50

 100

 150

 200

 0.7 0.72 0.74 0.76 0.78 0.8

#

o
f

e
r
r
o
r
s

Coverage

(b) Ama-Goo dataset.

 0

 40

 80

 120

 160

 200

 0.87 0.88 0.89 0.9 0.91

#

o
f

e
r
r
o
r
s

Coverage

(c) Ebay dataset.

 0

 400

 800

 1200

 1600

 2000

 2400

 0.5 0.55 0.6 0.65 0.7 0.75 0.8

#

o
f

e
r
r
o
r
s

Coverage

(d) Spouse dataset.

Figure 11: Effect of weight γ on balancing quality and coverage of rule generation.

pare with a baseline without considering P (e×i). As shown
in Table 8, the experimental result validates the importance
of refute probability P (e×i). For example, by considering the
probability on the Abt-Buy dataset, the loss can be reduced
by about 4 times. The reason is that, without consider-
ing the refute probability, the selected tuples, although may
have large impact, are less likely to be voted by the crowd as
conflicting with the rules. Thus, such tuples are less useful
to refute the rules in the RuleRef step.

B.3 Effect of Candidate Rule Filtering
This section examines an alternative that allocates some

crowdsourcing budget to improve candidate rule sets before
feeding the candidates to CrowdGame. The intuition is
that candidate rule sets are usually large and noisy. Thus,
we want to see whether getting more crowd-annotated tuples
for supervision at this stage is helpful. More specifically, we
use part of budget to annotate the tuples with large simi-
larity and impact (introduced in section 4.2). Then, based
on the crowd annotations of the selected tuples, we esti-
mate precision of candidate rules, and discard the rules if
their precisions are under a threshold. Considering the la-
bel skewness, we set the threshold as 0.9999 and 0.8 for
the entity matching and relation extraction datasets respec-
tively. Then, we apply our minimax strategy, represented
by CrowdGame, upon the filtered candidate set.

Figure 12 shows the losses on four datasets at varying ratio
of budget allocated to CrowdGame. We can see that, the
larger the budget proportion allocated to CrowdGame, the
lower the loss achieves. The main reason is that, as the bud-
get is usually much smaller than the number of tuples and
candidate rules, the filtering stage on top of candidate rules
may be limited to identify error-prone rules. In contrast,
CrowdGame firstly crowdsources rule task, so as to prune
the rules that are apparently incorrect. Then the refuter
can further refine the rules by finding evidence to refute the
bad ones.

B.4 Additional Performance Evaluation

Performance evaluation using per class metrics. This
section first investigates the performance of CrowdGame
using additional evaluation metrics. As observed in Tables 9
and 10, the experimental results show the precision and re-
call scores on negatives (label −1) are usually quite high,
e.g., larger than 0.999 on the entity matching datasets. This
is because the ground-truth labels are very skew as shown
in Table 2, e.g., 1, 090 vs. 227, 715 for +1 and −1 tuples
on the Abt-Buy dataset. However, as discussed previously,
this also increases the challenging of correctly annotating
positives (label +1). Equipped with crowdsourced rule gen-
eration (Phase I) and annotation (Phase II), our approach
still performs well for positive annotations.

C. EXTENSION OF LABELING RULE
We discuss a more general case that some rules in the

candidates RC annotate label L1 = −1 (called L1 rules
for simplicity) while others annotate L2 = 1 (called L2

rules). Consider our spouse relation extraction example
that annotates L2 = 1 if entities have spouse relation or
L1 = −1 otherwise. In this case, an tuple, e.g., entity pair
(Michelle Obama, Barack Obama) could be covered by con-
flicting rules (textual patterns), e.g., a L2 rule “married with”
and a L1 rule “meets”.
CrowdGame devises a simple extension from Algorithm 1

by taking L1 and L2 rules independently. More specifically,
let RL1

q (RL2
q) denote the set of L1 (L2) rules selected by

RuleGen for crowdsourcing. Recall that Eq is the set of
tuples selected by RuleRef for crowdsourcing. First, we
extend the overall minimax optimization objective, denoted
by J̃ , as a combination of objectives of L1 and L2 rules,

i.e., J̃ = JR
L1
q ,Eq + JR

L2
q ,Eq , where JR

L1
q ,Eq (JR

L2
q ,Eq) is

defined in Equation (4). Then, we run the iterative crowd-
sourcing framework in Algorithm 1. We present how Rule-
Gen and RuleRef work in each iteration as follows.

• RuleGen only slightly extends the computation of rule
selection criterion ∆g(R|J) as the summation of 1)
the expected improvement of L1 rules RL1 in R over

 0

 200

 400

 600

 800

0 0.2 0.4 0.6 0.8 1

L
o
s
s

Percentage for game

loss

(a) Abt-Buy

 0

 200

 400

 600

 800

0 0.2 0.4 0.6 0.8 1

L
o
s
s

Percentage for game

loss

(b) Ama-Goo

 0

 400

 800

 1200

 1600

0 0.2 0.4 0.6 0.8 1

L
o
s
s

Percentage for game

loss

(c) Ebay

 0

 200

 400

 600

 800

 1000

0 0.2 0.4 0.6 0.8 1

L
o
s
s

Percentage for game

loss

(d) Spouse

Figure 12: Impact of the percentage of budget allocated to CrowdGame phase on loss.

Table 9: Quality per label class of CrowdGame for Entity Matching (EM).

Dataset
Rule Gen Quality per Label Class on Annotation Results Total Crowd Cost

Crowd Budget Precision (+1) Recall (+1) Precision (−1) Recall (−1) (Phases I & II)

Abt-Buy

3, 000 0.927 0.916 0.9996 0.9996 61, 739
5, 000 0.942 0.928 0.9998 0.9998 39, 189
7, 000 0.960 0.955 0.9998 0.9998 31, 269
9, 000 0.969 0.957 0.9998 0.9999 26, 381

Ama-Goo

3, 000 0.925 0.996 0.9997 0.9993 92, 671
6, 000 0.947 0.998 0.9999 0.9995 63, 685
9, 000 0.959 0.998 0.9999 0.9996 52, 864
12, 000 0.966 0.997 0.9999 0.9997 48, 115

Ebay

1, 000 0.995 0.969 0.9999 0.9994 34, 321
2, 000 0.995 0.985 0.9999 0.9996 20, 761
4, 000 0.999 0.988 0.9998 0.9999 9, 292
6, 000 1.000 0.996 0.9999 0.9999 7, 410

Table 10: Quality per label class of CrowdGame for Relation Extraction on the Spouse dataset.

Rule Gen Quality per Label Class on Annotation Results Total Crowd Cost
Crowd Budget Precision (+1) Recall (+1) Precision (−1) Recall (−1) (Phases I & II)

50 0.504 0.747 0.980 0.944 2, 277
100 0.545 0.645 0.972 0.959 1, 786
150 0.585 0.640 0.972 0.965 1, 661
200 0.810 0.635 0.972 0.988 1, 843

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

lik
el
ih
oo

d(
λ)

Likelihood(2√1×)
Likelihood(4√3×)

0

1

2

3

4

5

p(
λ)

Prior
Posterior(2√1×)
Posterior(4√3×)

Figure 13: Illustration of Bayesian estimation.

JR
L1
q ,Eq , and 2) the expected improvement ofRL2 over

JR
L2
q ,Eq , where the expected expectation is computed

using Equation (5). Then, RuleGen uses the greedy
strategy to find an optimal rule set R∗ that maximizes
the criterion ∆g(R|J).

• RuleRef extends the notation of e×i to eL1
i (or eL2

i),
which respectively means tuple ei is checked and anno-
tated with L1 (or L2). Then, given a checked tuple eL1

i

(or eL2
i), RuleRef considers it to refute the L2 part

(or the L1 part) of objective J̃ using Equation (6).
Based on this, given an tuple set E , we consider every

possible case of (EL1 , EL2) where EL1 ∪ EL2 = E and
EL1 ∩ EL2 = ∅, and revise Equation (7) to ∆f(E|J) =
−
∑
EL1 ,EL2 P (EL1)P (EL2) · (I(EL1) + I(EL2)). Then,

RuleRef utilizes this criterion for selecting tuples.

Using the above method, CrowdGame obtains a rule set
Rq returned by Algorithm 1. Then, let us use Riq ⊆ Rq as
the set of rules covering an tuple ei. CrowdGame annotates
ei using label of the rule in Riq with the maximum precision.

D. BAYESIAN ESTIMATION
To illustrate the Bayesian estimation method, let us con-

sider an example shown in Figure 13 with the prior, likeli-
hood, and posterior distributions over λ. In this example,
we use a beta distribution denoted as beta(4, 1) with α = 4
and β = 1. Then, we examine how the “data observation” is
used to adjust the prior. When crowdsourcing 3 tuples and
receiving 2 passed and 1 refuted answers, we can obtain the
likelihood p(Eq|λ) shown as the red-dotted line, and the pos-
terior shown as the red-solid line. Applying Equation (11),

we estimate λ̂ = 0.75. Similarly, after crowdsourcing 7 tu-
ples with 4 passed and 3 refuted answers, we obtain the
curves shown as green lines and estimate λ̂ as 0.67. We can
see that, although both of the cases have one more passed
tuples than the refuted ones, we have a lower estimate, be-
cause more refuted tuples are observed.

	Introduction
	Problem Formulation
	Overview of Our Framework
	Labeling Rule Generation

	Crowdsourced Rule Generation
	Game-Based Crowdsourcing
	Formalization of Minimax Objective

	Task Selection Algorithms
	Task Selection for Rule Generator
	Task Selection for Rule Refuter

	Rule Precision Estimation
	Candidate Rules Construction
	Candidate Rules for Entity Matching
	Candidate Rules for Relation Extraction

	Experiments
	Experiment Setup
	Evaluation on Minimax Crowdsourcing
	Comparisons for Entity Matching (EM)
	Comparison for Relation Extraction

	Related Work
	Conclusion
	References
	Proofs
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Theorem 2

	Additional Experiments
	Quality of Candidate Rules
	Effect of Parameters
	Effect of Candidate Rule Filtering
	Additional Performance Evaluation

	Extension of Labeling Rule
	Bayesian Estimation

