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Abstract—Many data management and analytics tasks, such
as entity resolution, cannot be solely addressed by automated
processes. Crowdsourcing is an effective way to harness the
human cognitive ability to process these computer-hard tasks.
Thanks to public crowdsourcing platforms, e.g., Amazon Me-
chanical Turk and CrowdFlower, we can easily involve hundreds
of thousands of ordinary workers (i.e., the crowd) to address
these computer-hard tasks. However it is rather inconvenient to
interact with the crowdsourcing platforms, because the platforms
require one to set parameters and even write codes. Inspired by
traditional DBMS, crowdsourcing database systems have been
proposed and widely studied to encapsulate the complexities of
interacting with the crowd. In this tutorial, we will survey and
synthesize a wide spectrum of existing studies on crowdsourcing
database systems. We first give an overview of crowdsourcing,
and then summarize the fundamental techniques in designing
crowdsourcing databases, including task design, truth inference,
task assignment, answer reasoning and latency reduction. Next
we review the techniques on designing crowdsourced operators,
including selection, join, sort, top-k, max/min, count, collect, and
fill. Finally, we discuss the emerging challenges.

I. INTRODUCTION

Many data management and analytics tasks cannot be ef-

fectively solved by existing computer-only algorithms, such as

entity resolution [24], [25], [6], [4]. Fortunately, crowdsourc-

ing has been emerged as an effective way to address such tasks

by utilizing hundreds of thousands of ordinary workers (i.e.,

the crowd). Thanks to the public crowdsourcing platforms,

e.g., Amazon Mechanical Turk (AMT) and CrowdFlower, the

access to the crowd becomes easier.

However, it is rather inconvenient to interact with crowd-

sourcing platforms, as the platforms require one to set

various parameters and even write codes. Inspired by tra-

ditional DBMS, crowdsourcing database systems, such as

CrowdDB [10], Qurk [18], Deco [20] CrowdOP [9] and

CDB [13], [14], have been recently developed. On one hand,

these systems provide declarative programming interfaces and

allow requesters to use a SQL-like language for posing queries

that involve crowdsourced operations. On the other hand,

they leverage crowd-powered operations (aka operators) to

encapsulate the complexities of interacting with the crowd.

Under these design principles, given a SQL-like query from

a requester, the systems first parse the query into a query

plan with crowd-powered operations, then generate tasks to

be published in crowdsourcing platforms, and finally collect

the crowd’s inputs for producing the result.

Crowdsourcing databases have two main differences from

traditional databases. Firstly, traditional databases use “close-

world” model, which processes queries based on the data
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inside database only; while crowdsourcing databases use

the “open-world” model, which can utilize the crowd to

crowdsource data, i.e., collecting a tuple/table or filling an

attribute. Secondly, crowdsourcing databases can utilize the

crowd to support operations, e.g., comparing two objects,

ranking multiple objects, and rating an object. These two main

differences are attributed to involving the crowd to process

database operations. In this paper, we review existing works

on crowdsourcing database system from the following aspects.

Crowdsourcing Overview. Suppose a requester (e.g., Ama-

zon) has a set of computer-hard tasks (e.g., entity resolution

tasks that find the objects referring to the same entity). The

requester first designs the tasks. Then the requester publishes

her tasks on a crowdsourcing platform, e.g., AMT. Workers

who are willing to perform such tasks accept the tasks, answer

them and submit the answers back to the platform. The plat-

form collects the answers and reports them to the requester. If

a worker has accomplished a task, the requester who publishes

the task can approve or disapprove the worker’s answers. The

approved workers will get paid from the requester.

Crowdsourcing Database Design Techniques. The crowd has

some different characteristics from machines. (1) Not Free.

Workers need to be paid for answering a task, and it is impor-

tant to control the cost. (2) Error Prone. Workers may return

noisy results, and we need to tolerate the noises and improve

the quality. (3) Diverse. Workers have various background

knowledge, leading to different accuracies to answer different

tasks. We should capture workers’ characteristics to achieve

high quality. (4) Dynamic. Workers are not always online to

answer tasks and we need to control the latency. Many tech-

niques have recently been proposed to handle these features to

redesign database operators and optimization techniques. (i)
Task Design. We can design different task types to support

a crowdsourced operator. For example, in crowdsourced sort,

we can ask the crowd to either compare two objects or rank

multiple objects. We can select different task design techniques

to optimize crowdsourced operators. (ii) Truth Inference. To

tolerate the noisy results, we can assign each task to multiple

workers, model the workers’ quality, and infer the results by

aggregating the answers. (iii) Task Assignment. We assign

appropriate tasks to workers and make full use of workers’

unique talents. (iv) Answer Reasoning. We can model the

tasks and deduce the answers of tasks based on those of

other tasks. For example, in crowdsourced join, if we get

crowd’s answers that “US = United States” and “US =
America”, we can deduce that “United States = America”.
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Fig. 1: Architecture of Crowdsourcing DB Systems.
(v) Latency Reduction. We can model workers’ behavior and

design effective models to reduce the latency.

Crowdsourcing Systems & Operators. Using the afore-

mentioned techniques, recent efforts have been made to de-

velop crowdsourcing database systems, such as CDB [13],

CrowdDB [10], Qurk [18], Deco [20], and CrowdOP [9]. For

achieving high crowdsourcing query processing performance,

the systems focus on optimizing cost (cheap), latency (fast)

and quality (good). Moreover, there are also techniques that

focus on designing individual crowdsourced operators, includ-

ing selection [22], [26], join [24], [25], top-k/sort [7], [17],

aggregation [16], [12], and collect [23], [21], [2].

• Tutorial Structure. We can do both 1.5 and 3 hours tutorial

but prefer the 3 hours’ one. The 3 hours’ tutorial is split into

2 sections. In the first section (1.5 hours), we first give an

overview of crowdsourcing (20 min), including motivation of

crowdsourcing, basic concepts (e.g., workers), crowdsourcing

platforms, crowdsourcing workflow, and crowdsourcing appli-

cations. Then we talk about an overview of crowdsourcing

database systems (20 min, see Section II), and fundamental

techniques in designing crowdsourced operators, including

task design (10 min), truth inference (10 min), task assignment

(10 min), answer reasoning (10 min), and latency reduction

(10 min). In the second section (1.5 hours), we first discuss

different crowdsourced operators (60 min), e.g., selection, join,
topk, sort, max/min, count, collect, fill. Finally we provide

emerging challenges (15 min). We leave 15 min for Q&A to

interact with the tutorial audience. If we have to do the 1.5

hours’ one, we tend to remove the section about operators(60

min), reduce the time of challenges and Q&A to 10 min in

total and remove the latency reduction(10 min).

• Tutorial Audience. The intended audience includes all

ICDE attendees from research and industry communities. We

will not require any prior background knowledge and a basic

understanding of database (e.g., selection, join) will be helpful.

• Differences from Existing Tutorials. There are

existing crowdsourcing tutorials (e.g., in KDD’18 [3],

VLDB’16 [1], VLDB’15 [11], ICDE’15 [5], VLDB’12 [8],

SIGMOD’17 [15]). VLDB’16 [1] investigates human factors

Fig. 2: Comparison of Crowdsourcing DB Systems.
involved in task assignment and completion. VLDB’15 [11]

focuses on truth inference in quality control. ICDE’15 [5] re-

views some crowdsourcing operators, crowdsourced data min-

ing and social applications. VLDB’12 [8] introduces crowd-

sourcing platforms and discusses general design principles for

crowdsourced data management. SIGMOD’17 [15] focuses

on quality, cost, and latency control for crowdsourced data

management. KDD’18 [3] focuses on different applications

and operations in crowd-powered data mining. Compared with

these tutorials, we focus on the fundamental techniques for

building a practical crowdsourced database system. Moreover,

we systemically review crowdsourcing operators and optimiza-

tion techniques that are proposed in recent five years.

II. SYSTEM DESIGN OVERVIEW

Several crowdsourcing database systems [10], [20], [18],

[9], [13] are recently proposed to encapsulate the complexities

of leveraging the crowd for query processing. In this part, we

introduce an overview of the design of these systems.

• Data model. Existing crowdsourcing database systems are

built on top of the traditional relational data model, where data

is specified as a schema that consists of relations and each

relation has a set of attributes. The difference is that crowd-

sourcing database systems employ an open-world assumption

that either some attributes of a tuple or even an entire tuple

can be crowdsourced based on queries from the requester.

• Query language. Most crowdsourcing query languages

follow the standard SQL syntax and semantics, and extend

SQL by adding features that support crowdsourced operations,

e.g., asking the crowd to perform data processing operations.

• Architecture. The architecture of a typical crowdsourcing

database system is illustrated in Figure 1. A SQL-like query

is issued by a crowdsourcing requester and is first processed

by a QUERY OPTIMIZER. Like traditional databases, the

QUERY OPTIMIZER parses the query into a tree-structure

query plan, and then applies optimization strategies to produce

an optimized query plan. However, the key difference is that

the tree nodes in a query plan are crowd-powered operators.

Typically, a crowd-powered operator abstracts a specific type

of operation that can be processed by the crowd. Figure 2

shows how operators are supported by the existing systems.

2053

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:15:00 UTC from IEEE Xplore.  Restrictions apply. 



Crowd-powered operators are then executed by CROWD-

SOURCING EXECUTOR to generate human-intelligent tasks

(HITs) and publish the HITs on crowdsourcing platforms

(e.g., AMT). Next, after collecting answers from the crowd,

the executor evaluates the query plan and returns the final

result to the requester. To this end, the executor employs

several crowdsourcing data processing techniques, e.g., truth

inference, task assignment, answer reasoning, task design,

and latency reduction. Figure 2 illustrates how the systems

implement these techniques, with the details in Section III.
• Optimization. Query optimization is indispensable in

crowdsourcing database systems, as the difference of various

query plans may be several orders of magnitude. It is worth

noting that crowdsourcing optimization is more challenging

than that of traditional databases, because it needs to optimize

multiple objectives, including quality control, cost control,

and latency control. It is desirable for a system to support

“multi-objective” optimization, as any single optimization may

not satisfy requester’s needs. Figure 2 compares the existing

systems regarding their capabilities of supporting optimization.

III. CROWDSOURCING OPERATORS

A. Design Techniques
• Truth Inference. Crowdsourcing may yield relatively low-

quality results or even noise and Truth Inference aims to infer

the correct answer (called truth) of each task given multiple

workers’ answers. Existing studies first build worker model to

estimate workers’ quality, and then infer the truth and workers’

quality based on the following intuitions: (1) a worker is of

high quality if her answer is close to the truth; (2) a task’s

answer is highly probable to be the truth if the answer is given

by a high quality worker [27].
• Task Assignment. Workers have diverse qualities on differ-

ent tasks, and Task Assignment aims to wisely assign tasks to

workers within a given cost budget. When a worker requests

for tasks, existing works will estimate the gain of assigning

each task to the worker (first estimating the worker answer to

this task based on the collected answers and then computing

the quality improvement), and assign the task with the highest

gain of improvement [27].
• Answer Reasoning. In many cases, the tasks generated by

crowdsourced operators have inherent relationships, Answer
Reasoning aims to deduce the answers of some tasks (without

needing to crowdsource these tasks) based on answers of

crowdsourced tasks. For example, suppose a crowdsourced

join operator generates three tasks: (A, B), (B, C), and (A,

C). If we have already known that A is equal to B, and B is

equal to C, then we can deduce that A is equal to C based on

transitivity, thereby avoiding the cost for checking (A, C).
• Task Design. Task Design focuses on designing effective

task types to optimize crowdsourced operators. For exam-

ple, [24] proposes two task types to optimize crowdsourced

join: (1) pair-based task asks workers to identify whether two

given objects refer to the same real-world entity; (2) cluster-

based task asks workers to group entities into different clusters.
• Latency Reduction. In many cases, requesters have latency

requirement and Latency Reduction aims to reduce the latency.

TABLE I: Crowdsourced Operators
Crowdsourced Operators Techniques

CrowdSelect

Filtering [19]
Truth Inference, Task Assignment

Latency Reduction

Find [22]
Truth Inference, Task Assignment

Latency Reduction

Search [26]
Truth Inference, Task Assignment

Latency Reduction

CrowdJoin
CrowdER [24]

Truth Inference, Task Assignment
Answer Reasoning, Task Design

Transitivity [25]
Truth Inference, Task Assignment

Answer Reasoning

CrowdSort/CrowdTopk

Heuristics [12]
Truth Inference, Task Assignment

Answer Reasoning

Heap [7]
Truth Inference, Task Assignment

Answer Reasoning

Hybrid [17]
Truth Inference, Task Assignment

Answer Reasoning

CrowdMax/CrowdMin [12]
Truth Inference, Task Assignment

Answer Reasoning
CrowdCollect [23] Truth Inference

CrowdFill [21]
Truth Inference, Task Assignment
Latency Reduction, Task Design

CrowdCount [16]
Truth Inference, Task Assignment

Task Design

There are several ways in latency reduction: (1) setting each

HIT with a higher price to reduce the latency in collecting

answers; (2) leveraging the round/statistical model to capture

the latency in workers’ answering tasks; and (3) devising

strategies (e.g., dynamically maintaining a pool of fast work-

ers) to improve the latency.
B. Operator Design

Existing works focus on using the above design techniques

to implement crowd-powered operators to optimize cost, qual-

ity, and latency. Table I summarizes how the crowdsourced

operators are implemented based on various techniques.

• CrowdSelect. Given a set of items, crowdsourced selection

identifies items that satisfy a set of constraints, e.g., selecting

images that have both mountains and humans. Existing works

can be classified into three categories: (1) Crowd Filtering [19]

(or All-Selection) returns all items that satisfy the given

constraints; (2) Crowd Find [22] (or k-Selection) returns k
items that satisfy the given constraints; (3) Crowd Search [26]

(or 1-Selection) returns only one item that satisfies the given

constraints. They focus on finding the answers within a cost

or latency constraint.

• CrowdJoin. Existing crowdsourcing works mainly focus

on Equi-Join. Given a table (or two tables), a crowdsourced

Equi-Join is to find all record pairs in the table (or between

two tables) that refer to the same entity. It is rather expen-

sive to enumerate every pair to ask the crowd, and existing

crowdsourcing works focus on designing user-friendly inter-

faces [24] or leveraging transitivity relations [25] to reduce

the cost while keeping high quality.

• CrowdSort/Topk. Given a set of items which are compa-

rable but are hard to be compared by machines, CrowdTopk

(or Sort) aims to find top-k items (or a ranking list) based on

a certain criterion, e.g., understanding difficulty of sentences,

clarity of images. The challenges include tolerating the com-

parison error and reducing the cost.

• CrowdMax (CrowdMin). Crowdsourced Max [12] is a

special case of CrowdTopk where k = 1, which finds the

max item in a dataset, e.g., finding the most beautiful picture

about Great Wall.
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• CrowdCount. Crowdsourced Count [16] is to count the

number of items in a dataset that satisfy a given constraint,

e.g., counting the number of birds in a picture. Existing works

focus on designing effective task types and devising unbiased

sampling estimator.

• CrowdCollect. Different from the above query operators

which perform queries on a given set of known items, Crowd-

Collect [23] tries to collect the unknown items from the crowd,

e.g., enumerating the top-100 universities in US. It focuses on

improving the coverage of the collected items.

• CrowdFill. CrowdFill [21] focuses on asking the crowd to

fill the cells in a table. For example, given a table that shows

the statistics of football players, it asks workers to fill missing

cells (e.g., the position of Messi). It focuses on achieving high

quality, while without taking large cost and latency.

IV. CROWD SYSTEM CHALLENGES

Query Optimization. A SQL query often corresponds to

multiple query plans and it relies on a query optimizer to

select the best plan. Existing optimizer estimates the compu-

tation cost of each query plan and chooses the one with the

minimum estimated cost. However, this process turns to be

quite challenging in a crowdsourcing environment because (1)

there are three optimization objectives (result quality, monetary

cost, and latency) that need to be considered and (2) humans

are much more unpredictable than machines.

Benchmark. A large variety of TPC benchmarks standard-

ize performance comparisons for database systems and pro-

mote the development of database research. Although there

are some open datasets (http://dbgroup.cs.tsinghua.edu.cn/ligl/

crowddata), there is still lack of standardized benchmarks

available. In order to better explore the research topic, it is

important to study how to develop evaluation methodologies

and benchmarks for crowd db systems.

Crowdsourcing Indexing. Crowdsourcing indexing will be

useful for many crowdsourced operators, such as join and sort.

However, it is non-trivial to build such index, because crowd-

powered comparisons are error-prone and building index also

incurs cost. Therefore, it calls for techniques to reduce the

building cost while preserving the index accuracy.
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