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ABSTRACT
To unlock the wealth of the healthcare data, we often need to
link the real-world text snippets to the referred medical con-
cepts described by the canonical descriptions. However, exist-
ing healthcare concept linking methods, such as dictionary-
based and simple machine learning methods, are not effec-
tive due to the word discrepancy between the text snippet
and the canonical concept description, and the overlapping
concept meaning among the fine-grained concepts. To ad-
dress these challenges, we propose a Neural Concept Linking
(NCL) approach for accurate concept linking using system-
atically integrated neural networks. We call the novel neural
network architecture as the COMposite AttentIonal encode-
Decode neural network (COM-AID). COM-AID performs an
encode-decode process that encodes a concept into a vector,
and decodes the vector into a text snippet with the help of
two devised contexts. On the one hand, it injects the textual
context into the neural network through the attention mecha-
nism, so that the word discrepancy can be overcome from the
semantic perspective. On the other hand, it incorporates the
structural context into the neural network through the atten-
tion mechanism, so that minor concept meaning differences
can be enlarged and effectively differentiated. Empirical stud-
ies on two real-world datasets confirm that the NCL produces
accurate concept linking results and significantly outperforms
state-of-the-art techniques.

CCS CONCEPTS
• Information systems → Data cleaning;
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1 INTRODUCTION
Recent years have witnessed the rapid growth in volume
of the loosely-coupled healthcare data, including the elec-
tronic health records (EHR), medical images, lab tests, and
others. Cross-cutting healthecare data analytics such as dis-
ease progress analysis [19] and readmission prediction [18, 23]
call for the data integration in terms of the medical concepts.
Typically, these concepts are referred to by text snippets. As
such, linking the snippets to their concepts becomes a critical
step towards unlocking the wealth of the healthcare data.

Text snippets in a hospital database are typically entered
by different clinicians over many years. Hence, various writ-
ing styles or standards are used; synonyms, acronyms, abbre-
viations, and simplifications are prevalent. As a result, text
snippets may deviate significantly from the canonical descrip-
tions of the concepts that they refer to. Consider some con-
crete real-world examples in Figure 1(a). The text snippet (i.e.,
query) “ckd 5” is used in place of “chronic kidney failure, stage
5”, referring to the ICD-10-CM 1 concept (i.e., code) N18.5. Fur-
thermore, “symptomatic anemia from menorrhagia” represents
the concept D50.0 whose canonical description is “iron defi-
ciency anemia secondary to blood loss”. The severe word discrep-
ancy between a healthcare text snippet and the corresponding
canonical concept description makes it difficult to link the text
snippet to the concept according to the surface strings.

Moreover, the concepts organized by an ontology often
have the semantic meaning overlapping, rendering the link-
ing task even harder. Consider the ICD-10-CM concepts in the

1The International Statistical Classification of Diseases and Related Health
Problems, 10th revision, published by the World Health Organization (WHO).
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ontology fragment shown in Figure 1(b), the concepts D50.0,
D53.0, and D53.2 are all related to the disease “anemia” accord-
ing to their canonical descriptions listed in the table. As a
matter of fact, the semantic meanings of some concepts are
similar, making it difficult to distinguish the concepts from
the semantic perspective.

Given its importance, concept linking in healthcare has at-
tracted a great deal of interest. We broadly classify the existing
healthcare concept linking techniques into three categories.
The first category consists of the dictionary-base approaches,
including MedLEE [16], MetaMap [1], cTAKES [37], and NO-
BLECoder [42]. They rely on the constructed dictionaries to ac-
complish the term-to-concept matching. The second category
is constituted by the machine learning based approaches [41, 43]
that use the expert annotated data to train a classifier/model,
categorizing text snippets into different concepts. The third
category is made up of the combined approaches [24, 27] that
aggregate the linking results from multiple methods and rec-
oncile them to produce the final linkage.

We use the examples shown in Figure 1 to illustrate that the
aforementioned two challenges have not been well-addressed
by the existing proposals in the first and second categories. 2

For the five queries shown in Figure 1(a), as a dictionary-base
approach, NOBLECoder [42] is unable to link q1, because
the core word “ckd” is not included in the word-to-term dic-
tionary; q2 is linked to R52, owing to the word “pain”; q3 is
wrongly linked to N15.0, owing to the word “nephropathy”, q4
is linked to D50.9 because of the term “iron deficiency anemia”;
q5 is linked to N64.9 and N92.0 simultaneously because of the
words “anemia” and “menorrhagia”. Unfortunately, the actual
concepts are not included in the results produced by NOBLE-
Coder [42]. It is difficult for a dictionary to rigidly cover all the
word-term and term-concept correspondences in a large-scale
healtchcare database. As a machine learning based approach,
the logistic regression (LR) [43] uses hand-crafted features
to build a multi-class classifier. When only tens of concepts
are considered, it correctly links q1 and q2 to N18.5 and R10.9
respectively, thanks to its sharing number feature and prefix
feature. However, it wrongly links the other three queries. The
hand-crafted features can be effective for some cases when
the involved concept number is small. However, they cannot
adapt to a large number of concepts (or a large dataset) when
there are many new factors to consider.

To address the limitations, we introduce a novel neural
concept linking approach, called NCL. Instead of depending
on a dictionary or some hand-crafted features, NCL leverages
various concept descriptions extracted from a knowledge base
(e.g., the UMLS 3) and the concept hierarchy offered by an
ontology (e.g., the ICD-10-CM included in the UMLS) to train
the designed composite attentional encode-decode neural net-
work (COM-AID) that synthesizes a numeric vector for each
concept. The synthesized vector captures the semantic trans-
lations from a canonical description of a concept to various

2The third category is not discussed, since the proposed approach can also be
combined with other approaches in the combined approaches.
3https://www.nlm.nih.gov/research/umls/

aliases of the concept, and embodies the hierarchal relation-
ships between the concepts. Based on the synthesized vectors,
COM-AID is capable of translating a concept into an arbitrary
query, and evaluating the translation quality. In particular,
COM-AID calculates the probability p(q|c) of generating a
text snippet q (e.g., a query) from a concept c, utilizing a cus-
tomized encode-decode process (a.k.a. translation process). More-
over, unlike existing embedding techniques [25, 26, 31, 32] and
attention mechanism [2] designed for text translation, COM-
AID is equipped with a new attention mechanism designed
for the concept-text translation.

In NCL, COM-AID is trained offline. In the online query
processing, NCL first selects a few of concepts, leveraging a
lightweight keyword matcher, and then ranks the concepts
based on the translation probabilities computed by COM-AID.
The top-1 concept is returned as the linked concept. Option-
ally, uncertain linked results can be forwarded to the domain
experts for their feedbacks.

We implement NCL as part of Data Integration and Cleaning
Engine (DICE) in GEMINI [28] 4 that provides a software stack
for in-depth healthcare data analytics. Currently, GEMINI
contains six subsystems: DICE ensures the data availability
and quality, CDAS [12, 29, 33] exploits the crowd intelligence,
epic [22] enables big data processing, SINGA [34] offers the
distributed deep learning capability, CohAna [21] facilitates
online data analysis, and iDat visualizes data. GEMINI has
been used by NUHS 5.
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(a) Example queries for concept linking

(b) A disease ontology fragment
Figure 1: Some healthcare concept linking examples

To the best of our knowledge, this is the first neural-network
based approach for concept linking in healthcare. In partic-
ular, we make the following contributions. 1) We vectorize
the concepts organized by an ontology, leveraging its various
descriptions extracted from a knowledge base and the con-
cept hierarchy. 2) We softly match a vectorized concept to a
4http://www.comp.nus.edu.sg/ dbsystem/gemini/index.html
5http://www.nuhs.edu.sg/
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text snippet by an encode-decode process using the designed
neural networks. 3) We design a novel composite attentional
encode-decode neural network architecture (i.e., COM-AID),
which incorporates two kinds of attentions into the decoder.
Based on COM-AID, the probability of generating a text snip-
pet from a concept can be computed. 4) We develop a neu-
ral concept linking framework (i.e., NCL), which leverages
the trained COM-AID to conduct online concept linking. In
addition, NCL is able to selectively collect feedbacks from
domain experts. 5) We conduct empirical studies on two real-
world datasets, which demonstrate that our proposal signifi-
cantly outperforms NOBLECoder [42], the extended LR [43],
pkduck [44], word move distance [25], Doc2Vec [26], sequence-
to-sequence [40] and its variant [2] with attention mechanism.

The remainder of the paper is organized as follows. Sec-
tion 2 covers basic concepts, problem statement, and reviews
related work. Section 3 overviews our approach. Section 4
introduces COM-AID. Section 5 describes the online concept
linking. Section 6 reports the experimental results. Section 7
concludes the paper.

2 PRELIMINARIES
This section presents preliminaries of our work. We formally
define the problem of concept linking in Section 2.1, and re-
view the related works in Section 2.2.

2.1 Problem Formulation
In general, concept linking matches unstructured text to the
concepts in a knowledge base (KB). We formally define it as
follows.
Concept. A concept c = {cid, dc}, where cid is the unique
identifier for c in KB, and dc is a text snippets describing c.
dc = ⟨wc

1, wc
2, · · · , wc

n⟩ is a word sequence, where wc
i ∈ dc is a

word. We also call dc the canonical description of c.
Concept Ontology. Our work considers a set of concepts in a
KB, denoted by C = {c1, c2, · · · , cm}, which are organized in
a tree-structured ontology using the sub-concept relationships.
More formally, an ontology O = ⟨C, E⟩ is a tree structure with
concepts in C as nodes and a set E of sub-concept relationships
among the concepts (e.g., sub-classification of diseases). We
use{ to denote a sub-concept relationship in E . For instance,
c1 { c2 represents that concept c2 is a sub-concept of c1.
Fine-grained concept. Given an ontology O = ⟨C, E⟩, a con-
cept c, when c ∈ C and c { nil, is a fine-grained concept.
That is, a concept without any sub-concepts is defined as a
fine-grained concept.

Figure 1(b) shows an example ontology of disease concepts6.
In this ontology, concepts are labeled with their cids, such
as D50, D50.0, and R10.9, which are also called ICD-10-CM
codes. Moreover, concepts D53.0 and D53.2 are sub-concepts of
concept D53. This figure also provides canonical descriptions
of the concepts in the ontology. For example, “Iron deficiency
anemia” describes concept D50. In this ontology fragment, the

6The ontology is extracted from the well-accepted International Classification
of Diseases, 10th Revision, Clinical Modification (ICD-10-CM).

concepts D50.0, D53.0, D53.2, N18.5, N18.9, R10.0, and R10.9 are
fine-grained concepts.
Query. We focus on linking textual queries to the fine-grained
concepts in the ontology. Formally, a query q is defined as
a sequence of words q = ⟨wq

1, wq
2, · · · , wq

m⟩ that refers to a
concept c⋆ ∈ C in ontology O. For example, Figure 1(a) shows
five example queries, such as “ckd 5” and “abdomen pain”.
Concept Linking. Based on the aforementioned notations, we
define the problem of concept linking as follows.

Definition 2.1 (Concept Linking). Given an ontology O =
⟨C, E⟩ and a query q, it aims to identify a fine-grained concept
c⋆ ∈ C ′ that most likely generates q. That is, c⋆ = arg maxc∈C ′ p(q|c)
where p(q|c) is the probability of generating q from the con-
cept c, C ′ ⊆ C denotes the set of all fine-grained concepts.

Next, we provide an example of healthcare concept linking.

Example 2.2 (Disease Concept Linking). Figure 1 gives an ex-
ample of disease concept linking, where Figures 1(b) and 1(a)
respectively shows an ontology of disease concepts and five
example queries. Concept linking aims to identify the con-
cept referred to by a query. For instance, q1 refers to N18.5.
However, from these examples, we can observe that the word
discrepancy between a query and the canonical description of
the referred concept can be severe (e.g., “ckd 5” vs. “chronic
kidney disease, stage 5”; “symptomatic anemia from menorrhagia”
vs. “iron deficiency anemia secondary to blood loss”). Further, the
semantic meaning difference between the fine-grained con-
cepts can be minor. For example, R10.0 is similar to R10.9; both
D53.2 and D50.0 have the meaning of anemia.

2.2 Related Work
Concept Linking in Healthcare. In healthcare domain, vari-
ous annotation approaches [1, 16, 24, 27, 37, 41–43] have been
proposed. We categorize existing approaches into dictionary-
based annotators [1, 16, 37, 42], simple machine learning based
annotators [41, 43], and combined annotators [24, 27].

Dictionary-based annotators such as NOBLECoder [42],
MetaMap [1], MedLEE [16], and cTAKES [37], leverage the
dictionary extracted from a healthcare knowledge base (e.g.,
UMLS) or the dictionary manually created to recognize the
concepts in the text. As the domain-specific knowledge base
is used, these methods exhibit good performance in some
bio-medical text genres. However, since the bio-related termi-
nology is constantly evolving and the real-world text snippets
are highly noisy, building a comprehensive lexical dictionary
is unfeasible. As such, when the words not included in the
dictionaries appear frequently, dictionary-based annotators
tend to produce unreliable concept linking results.

Simple/shallow machine learning based annotators [41, 43]
depend on some hand-crafted features to build models that
are able to classify the text into different medical concepts.
These models act as the soft string matchers that can deal with
some terms not included in the dictionary, and hence achieve
good results for specific bio-medical concept linking tasks.
However, they can hardly adapt to different bio-medical text
genres because of the hand-crafted features. Further, when

3
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the number of involved concepts grows, their classification
capability may drop sharply.

Combined annotators [24, 27] combine multiple annotators
that may complement each other to improve the overall an-
notation quality. As a concept linking method, our proposed
NCL can also be combined with the other annotators.
Domain-independent Concept Linking. Linking a text snip-
pet describing a named concept/entity to an appropriate con-
cept/entity in a general-purpose knowledge base is challeng-
ing due to the name variations [35, 38] (i.e., an entity often
exhibits multiple mention forms, including abbreviations, sim-
plified forms, and alternative spellings) and the entity ambi-
guity [35, 38] (i.e., a text snippet may match multiple enti-
ties/concepts, and tend to be polysemous).

A normal concept linking process is comprised of two chief
steps [9]: preliminary matching, and disagreement resolution.
First, a text snippet is linked to multiple entities/concepts
by the designed similarity measures [30], rules [14], classi-
fiers [36], or distances [11]. Then, the clustering process [3] or
the crowdsourcing techniques [7, 13, 15] are utilized to min-
imize/reconcile the entity linking disagreements. However,
for healthcare text snippets, owing to the existence of severe
word discrepancies, some out-of-the-vocabulary words ap-
pear in the queries. As a result, the correct concept cannot be
effectively retrieved in accordance with the surface strings,
resulting in the failure of preliminary matching. Moreover, in
most cases, the clinicians are capable of correctly linking the
text snippets to the concepts, rather than the crowd.

Recently, with the emergence of new techniques and data
sources, researchers are able to match the text snippets in a
more robust way, and reconcile the disagreement by leverag-
ing some advanced inference techniques. To address the name
variation challenge, the advanced approximate string match-
ing algorithms [44] have been devised, which can also be
applied to the healthcare concept linking. Meanwhile, some
approaches [8, 39, 45] leverage external resources (such as
WordNet, Wikipedia and term taxonomy) to expand the query-
ing text snippets. These general-purpose external data sources
are effective for the domain-independent text (e.g., Twitter
posts). However, in this paper, we focus on linking the medi-
cal text snippets to the fine-grained concepts in the healthcare
domain. To address the entity ambiguity challenge, some re-
cent proposals [17, 35, 38, 46] link text snippets to the entities,
assuming that a given text snippet can be directly found in a
knowledge base, and leverage the surrounding entity contexts
to jointly decide which entity should be linked to. Unfortu-
nately, for the fine-grained healthcare concept linking problem,
a text snippet only corresponds to a fine-grained concept, and
no auxiliary entity context is available.

In fact, owing to the existence of severe word discrepan-
cies and the concept meaning overlapping, the fine-grained
concept linking is very challenging, and approximate string
matching [44] seems a viable solution.
Text Comprehension. We consider healthcare concept link-
ing from the text comprehension perspective, and propose to
comprehend a query and the involved concepts before seman-
tically linking them.

To comprehend a piece of text, each contained word can
be modeled by a numeric vector, using the word embedding
technique [31, 32]. In [25], based on the word embedding tech-
nique, Word Mover’s Distance (WMD) is devised to measure
the dissimilarity between a querying document and another
document. More naturally, a piece of text can be compre-
hended by modeling the whole paragraph/document as a
numeric vector (e.g., Doc2Vec [26]). Recently, due to its end-
to-end framework, the sequence-to-sequence technique [40] is
considered as the state of the art in machine translation. Fur-
ther, its variant [2] improves the translation quality between
two word sequences by introducing an attention mechanism.

Nevertheless, for healthcare concept linking, we need to
link a text snippet to a concept. Due to the name variations [35,
38], a concept tends to be described by different text snippets.
None of the existing machine translation methods consider
how to model a concept with multiple descriptions and lo-
cated in an ontology.

We note that GRAM [6] utilizes the concept co-occurrence
relations to model the concepts, for the sake of addressing the
data insufficiency issue. However, for healthcare concept link-
ing, we aggregate the semantic meanings from the upper-level
concepts into the corresponding most fine-grained concepts
to disambiguate them.

3 NEURAL CONCEPT LINKING
We propose a neural concept linking (NCL) approach to facilitate
concept linking. The basic idea of NCL is to utilize neural net-
works to perform an encode-decode process. The encode-decode
process has achieved superior performance in many applica-
tions, such as machine translation [5] and reading comprehen-
sion [10]. As for concept linking, we observe that a concept
can be described by various text snippets, as long as the core
meaning of the concept is retained to a certain degree such
that the text snippet will not be wrongly attributed to the
other concepts. As such, we employ an encoder to encode each
concept in the ontology into a hidden state, which is essentially
a numerical vector learned for capturing the core meaning
of the concept. We call the numerical vector concept represen-
tation. Then, given a query and a candidate concept, instead
of measuring textual similarity between the query and the
concept, we devise decoders to compute the probability that
decodes the query from the hidden state of the concept. Based
on this customized encode-decode process, for a query, NCL
finds the concept with the maximum decoding probability as
the concept linking result.

Figure 2 provides an overview of our neural concept link-
ing (NCL) approach. At the heart of NCL, the neural net-
work model COM-AID realizes the aforementioned encode-
decode process. NCL consists of three components: 1) the
offline MODEL TRAINING component trains the parameters
of COM-AID using a large scale of training data; 2) the on-
line CONCEPT LINKING component links queries to concepts
in the ontology based on COM-AID; 3) the FEEDBACK CON-
TROLLER component collects feedback from domain experts
(e.g., clinicians in the healthcare domain) for the uncertain

4
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Concepts

Encoder Decoder

Experts

Query Concept

Figure 2: Overview of neural concept linking
linkages derived from the online concept linking. We shall
describe the model and components below.
The COM-AID model. The model takes any concept c ∈ C in
ontology O and a query q as input, and computes the proba-
bility p(q|c) of generating q from the concept c. To this end, it
makes use of an encoder and a decoder, as described below.

1) The encoder is essentially a function hENC : c ∈ C → Rd

that maps a concept c ∈ C to a d-dimension numerical vector,
denoted by hc. We materialize the function hENC in a recurrent
neural network (RNN). The basic idea is to consider dc as a
word sequence ⟨wc

1, wc
2, . . . , wc

n⟩, and feed the word sequence
to an RNN-based network so as to obtain a numerical vector
hc after sequentially encoding the whole word sequence.

2) The decoder takes hidden state hc encoded for concept c
and any query q as input, and measures the probability that
q can be generated from hc. We consider that the larger the
probability is, the more likely c is semantically related to q.
Formally, the decoder is a function fDEC : Q× Rd → [0, 1] that
maps a query q ∈ Q and a concept representation hc into a
probability within [0, 1].

We employ an attention-based mechanism for decoding.
First, given a query q, the decoder “attends” to the more rele-
vant parts (i.e., sub-sequence) of dc of concept c. For example,
when q is “abdomen pain”, decoder attends more on “abdomen”
than “unspecified” for concept R10.9 in Figure 1(b). Second, the
decoder “attends” to the more relevant concepts, exploiting
the ontology structure. Here, the ancestral concepts are consid-
ered. For instance, consider decoding query q2 in Figure 1(a)
from concept R10.9, the decoder also attends to its parent con-
cept R10, which increases the probability for decoding word
“pain” that is not contained in R10.0.

By systematically integrating the encoder and the decoder
with attention mechanism into a neural network, NCL com-
putes p(q|c) of generating q from the concept c as

p(q|c; Θ) = fDEC(q, hENC(c)) (1)

where Θ represents parameters in the encoder and the decoder.
More details of COM-AID model are presented in Section 4.

(a) Labeled text snippets (b) Unlabeled text snippets

Figure 3: Examples of training data for COM-AID

The MODEL TRAINING component. NCL trains the COM-
AID model using the maximum likelihood estimation approach.
More specifically, the training component uses a set of concept-
query pairs {⟨c, q⟩} (i.e., the labeled data) to train the model
so that the learned concept representation corresponding to a
concept can be decoded into various text snippets.

The concept-query pairs with respect to a concept c are in-
stantiated by the canonical description of c and the alterantive
descriptions (i.e., aliases) of c. As such, a training example
regarding c can also be denoted by the pair ⟨dc, dc

j ⟩, where
dc is the canonical description of c, and dc

j is an alias of c. dc
j

comes from two sources: 1) it can be extracted from the knowl-
edge base. For instance, in UMLS (the largest knowledge base
in the healthcare domain), a concept may have different de-
scriptions in different standards; take the concept R10.0 as
an example, it has the descriptions “acute abdomen”, “acute
abdominal syndrome”, and “pain; abdomen”; 2) it can be a col-
lected feedback regarding c, which will be described in the
FEEDBACK CONTROLLER component.

Further, NCL employs a pre-training component that learns
word representations from massive unlabeled text snippets (i.e.,
unlabeled data) and feeds the pre-trained results to COM-AID
model. The unlabeled data come from two sources: 1) the
queries, such as the accumulated notes written by the physi-
cians in a hospital; 2) the labeled data with the incorporated
concept information.

Figure 3 illustrates the two types of training data, and we
shall elaborate how NCL utilizes the data for model training
in Section 4.2.
The CONCEPT LINKING component. Given a query q, NCL
is able to rigorously rank each fine-grained concept c ∈ O in
descending order of probability p(q|c; Θ) and returns the one
c⋆ with the largest probability as result. However, the com-
putation of p(q|c; Θ) for all fine-grained concepts can be very
expensive, especially for large knowledge bases. To address
this issue, we introduce a two-phase online linking method.
This method first retrieves a few top-ranking concepts ac-
cording to a lightweight keyword matcher, and then re-ranks
the retrieved concepts in accordance with their probability
p(q|c; Θ) values computed by the trained COM-AID model.
We present the details in Section 5.

The FEEDBACK CONTROLLER component. Optionally, when
NCL is unsure of the concept linking quality, the re-ranked
concepts C ′k = ⟨c1, c2, · · · , ck⟩ can be pooled for the domain
experts’ feedback. First, the uncertainty degree is evaluated
for the re-ranked concepts. Then, based on the evaluated re-
sult, feedback controller determines if C ′k along with its query

5
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Figure 4: Network architecture of the COM-AID model

q should be pooled and presented to domain experts. Lastly,
when sufficient feedbacks are obtained from the experts, feed-
back controller triggers a re-training process for COM-AID,
and COM-AID will be re-trained by taking into account the
newly collected feedbacks. As such, NCL learns from the do-
main experts and its concept linking ability is incrementally
enhanced. Due to the space constraint, the details of feedback
controller are presented in Appendix A.

4 THE COMPOSITE ATTENTIONAL
ENCODE DECODE MODEL

This section presents our composite attentional encode-decode
(COM-AID) model. We introduce network architecture of
COM-AID in Section 4.1, and discuss how to train COM-AID
in Section 4.2.

4.1 Neural Network Architecture
Figure 4 illustrates the network architecture of the COM-AID
model. Intuitively, COM-AID takes a concept c and a query
q as input, and produces a probability p(q|c) of generating q
from the concept. To this end, it consists of two neural net-
works. On one hand, the concept encoder (the left part of Fig-
ure 4) consumes the text snippet dc of concept c, which is a
sequence of words, denoted by dc = ⟨wc

1, wc
2, · · · , wc

n⟩. The
encoder utilizes an RNN-based network that encodes each
word wc

t ∈ dc into a hidden state hc
t . On the other hand, fed

with the generated {hc
t}, the text-structure duet decoder (the

right part of Figure 4) considers the query as a sequence of
words, denoted by q = ⟨wq

1, wq
2, · · · , wq

m⟩, and measures how
well {hc

t} can be “decoded” into q by using a text-structure at-
tention mechanism (as shown in the top part of Figure 4): 1) The
decoder attends to the more relevant parts of {hc

t} to capture
the “core meaning” of dc; 2) The decoder also attends to the
concepts related to c by exploiting the ontology structure.

4.1.1 Concept Encoder. The concept encoder employs a Re-
current Neural Network (RNN) consisting of Long Short-Term
Memory (LSTM) units to encode the word sequence dc. In par-
ticular, each LSTM unit is used to encode one word wc

t in dc.
The objective of a LSTM unit is to produce a hidden state hc

t
(i.e., a numeric vector) of the word wc

t by considering both wc
t

and hc
t−1 generated from the previous unit, i.e.,

hc
t = hENC(wc

t , hc
t−1) (2)

To be more specific, let wc
t ∈ Rd×1 denote the embedding

of word wc
t . Let W(i) ∈ Rd×d, W( f ) ∈ Rd×d, W(o) ∈ Rd×d,

W(ẽ) ∈ Rd×d, and U(i) ∈ Rd×d, U( f ) ∈ Rd×d, U(o) ∈ Rd×d,
U(ẽ) ∈ Rd×d be the weight matrices. Let b(i) ∈ Rd×1, b( f ) ∈
Rd×1, b(o) ∈ Rd×1, b(ẽ) ∈ Rd×1 be bias vectors of the input
gate it, the forget gate ft, the output gate ot, and the state
c̃t ∈ Rd×1 for updating the memory cell in an LSTM unit,
respectively. Let δ(·) be the sigmoid function, tanh(·) be the
hyperbolic tangent function. Moreover, we use ⊙ to denote the
element-wise multiplication operation. The equations below
computes the hc

t which is the output hidden state of the t-th
LSTM unit. For ease of presentation, we use ht to denote hc

t if
the context is clear.

it =δ(W(i)wc
t + U(i)hc

t−1 + b(i))

ft =δ(W( f )wc
t + U( f )hc

t−1 + b( f ))

ot =δ(W(o)wc
t + U(o)hc

t−1 + b(o))

ẽt =tanh(W(ẽ)wc
t + U(ẽ)hc

t−1 + b(ẽ))

ht =ot ⊙ tanh(et)

Note that wc
t is the word representation (a.k.a. word embed-

ding) of wc
t ∈ dc, which can be initialized randomly or by our

pre-train techniques introduced in Section 4.2.
By utilizing the LSTM unit described above, the text snippet

dc = ⟨wc
1, wc

2, · · · , wc
n⟩ is ultimately encoded into a numeric

vector hc = hc
n after the last word wc

n is processed by the n-th
LSTM unit, as shown in the box containing the symbol hc

n in
Figure 4. This hc

n essentially captures all the information of
text snippet dc, and thus we consider hc

n as the concept repre-
sentation of concept c, which is then decoded in the decoder
introduced below.

4.1.2 Text-structure Duet Decoder. The decoder takes the con-
cept representation hc and query q as input, and computes
the probability p(q|c) of generating q from concept c. Similar
to the encoder, the decoder utilizes LSTM units to decode the
word sequence q = ⟨wq

1, wq
2, · · · , wq

m⟩ of query q. Intuitively, it
decomposes the computation of probability p(q|c) as

p(q|c) = p(⟨wq
1, . . . , wq

m⟩|c) =
m

∏
t=1

p(wq
t |w

q
<t, c), (3)

where wq
<t denotes the sequence of words before word wq

t , i.e.,
wq
<t = ⟨w1, w2, . . . , wt−1⟩.
Intuitively, the interpretation of p(wq

t |w
q
<t, c) is the proba-

bility of generating word wq
t from its textual context wq

<t and
concept c. In order to compute p(wq

t |w
q
<t, c), we introduce a

vanilla LSTM-based method, which is presented as below.

A vanilla LSTM method for computing p(wq
t |w

q
<t, c). Let sq

t
denote the hidden state of the t-th LSTM unit in the decoder,
which is illustrated as the red box in Figure 4. Similar to Equa-
tion 2, we can represent the computation of sq

t as

sq
t = fDEC(w

q
t , sq

t−1), (4)

where fDEC(·) is a standard LSTM unit introduced in Sec-
tion 4.1.1. In particular, the initial state sq

0 is set as hc
n, which is

the output of our encoder, as illustrated in Figure 4.
6
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Based on Equation (4), a straightforward method for com-
puting probability p(wq

t |w
q
<t, c) is to simply apply a softmax

function over hidden state sq
t . However, this method may

have the following limitations. First, it fails to differentiate
the various parts of dc when decoding query word wq

t . For
example, when decoding word “abdomen” query q2 from con-
cept R10.9 (see Figure 1), the two words “acute” and “abdomen”
should have different weights. Second, it does not consider
the “structural context” of concept c. Intuitively, if q can be
linked to concept c, its words should have larger chance to be
decoded from the ancestor concepts of c (e.g., more general
diseases). To address the limitations, we propose to incorpo-
rate the attention mechanism to the LSTM-based method.

LSTM with attention mechanism for computing p(wq
t |w

q
<t, c).

The idea of our attention mechanism is to consider both textual
and structural context of concept c. Following this idea, the
prediction of wq

t leverages a composite decoder state which
contains the information derived from both the encoder states
(i.e., the textual context), and the relevant concept representa-
tions (i.e., the structural context).

1) Text-based Attention. We consider that the decoding pro-
cess of the t-th word wq

t in the query should “attend” to the
most relevant part of the text snippet dc of concept c. To formal-
ize this idea, when decoding query word wq

t , we introduce
αtr as the weight of attending to the r-th hidden state hc

r en-
coded from concept c. Following the attention mechanism
introduced in [2], we compute this weight as

αtr =
exp(etr)

∑n
p=1 exp(etp)

=
exp(hc

r · sq
t )

∑n
p=1 exp(hc

p · sq
t )

, (5)

where etr denotes the relatedness between hc
r of concept c and

sq
t of query q, and it is computed by the inner product of hc

r
and sq

t .
Then, to aggregate the effect of all hidden states ⟨hc

1, hc
2, · · · , hc

n⟩
on decoding word query wq

t , we introduce a textual context
vector tct, and derive tct from hidden states {hc

t} as

tct =
n

∑
r=1

αtrhc
r . (6)

For example, considering the illustrative networks in Fig-
ure 4, when decoding the t-th word wq

t in the query, COM-AID
attends to hidden states {hc

1, hc
2, . . . , hc

n, } in the left part of the
figure. For each hidden state hc

r , the model computes etr as the
inner product of hc

r and sq
t , and average all etrs to compute αtr.

Finally, the states {hc
1, hc

2, . . . , hc
n, } are summed up using αtr

as weights to generate tct for text-based attention.

2) Structure-based Attention. The structure-based attention
considers the structural context of a fine-grained concept c in
the ontology O. The basic idea is to attend to concepts related
to c and examine how well word wq

t can be decoded from
these concepts. In this paper, we consider the ancestors of c in
the ontology.

Definition 4.1 (Structural Context). Given a depth β and a
concept cl , the structural context of cl in the ontology O is

a path P = ⟨cl , cl−1, cl−2, · · · , cl−β⟩ ⊆ O, where the concept
cj { ci if j < i. When l < β, the first level (except the root)
concept is duplicated till the path length of P is equal to β.

Consider our example KB in Figure 1(b). Given a depth
β = 1, the structural context of concept D50.0 is ⟨ D50.0, D50 ⟩.

To formally incorporate the structural context defined above,
we introduce a structural context vector sct, which is com-
puted from the hidden states ⟨hcl−1 , · · · , hcl−β ⟩ corresponding
to concept c’s ancestors. Recall that hidden state hcl−r is en-
coded from concept cl−r by our concept encoder introduced
in Section 4.1.1. The structural context vector sct for the t-th
word wt ∈ q is computed by a weighted sum of these concept
representations.

sct =
β

∑
r=1

α′trhcl−r =
β

∑
r=1

hcl−r
exp(e′tl)

∑
β
p=1 exp(e′tp)

(7)

where e′tr scores how well the input concept representation
hcl−r and state sq

t of query word wq
t matches. Similar to the

previous textual context, e′tr is computed by the inner product
of hcl−r and sq

t .

To combine textual and structural contexts, COM-AID con-
structs a composite vector [sq

t ; tct; sct] by concatenating sq
t ,

tct, and sct. Then, it introduces an additional layer that takes
as input the composite vector, and computes a vector s̃t as
follows.

s̃t = tanh(Wd[s
q
t ; tct; sct] + bd). (8)

where [sq
t ; tct; sct] ∈ R3d×1, W ∈ Rd×3d is the weight matrix,

and bd ∈ Rd×1 is the bias vector for this layer.
Finally, leveraging the softmax function, the conditional

probability p(wq
t |w

q
<t, c) is computed as follows.

p(wq
t |w

q
<t, c) = softmax(Ws s̃t + bs) (9)

where Ws ∈ R|V|×d is the weight matrix, and bs ∈ R|V|×1 is
the bias vector. |V| denotes the vocabulary size.

4.2 Model Training
NCL adopts a pretrain-and-refine framework to train the COM-
AID model, which consists of the following two phases.

Pre-training Phase: Word representation learning. As shown
in Figure 4, the embedding/representation wi of any word
w is taken as input by both our encoder and decoder. There
exist many ways to initialize the embedding vectors, such as
giving random values, or training them using the existing
word embedding learning methods [4, 31]. However, the exist-
ing methods follow the distributional hypothesis that words
surrounding by the similar words share the similar mean-
ings. However, this hypothesis is not exactly right for concept
linking. This is because the concept mentions are normally
very short, and the word co-occurrence may be misleading
for differentiating concepts. For example, “protein deficiency
anemia”, and “dietary folate deficiency anemia”, “iron deficiency
anemia unspecified” refer to the concepts D53.0, D52.0, and D50.0,
respectively. Applying the continuous bag-of-words model
(CBOW) [31], the words “protein”, “folate”, and “iron” tend to

7
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have similar word embeddings if these words seldom appear
in other text snippets. However, these three words have totally
different semantics.

To avoid the side effect of the distributional hypothesis, we
propose to alter each text snippets by incorporating the avail-
able concept information (e.g., concept identifiers) into it, so
as to differentiate the co-occurrence under different concepts.
Note that the original unlabeled text snippets are unchanged.
Specifically, given a window size α and a word sequence W ,
the sub word sequence W ′ = ⟨wi−α, · · · , wi−1, wi+1, · · · , wi+α⟩
⊆ W is the word context of wi ∈ W . After the incorpora-
tion, the word context of wi ∈ W is W ′ = ⟨wi−α, cid, wi−α+1,
· · · , wi−1, cid, wi+1, · · · , wi+α−1, cid, wi+α⟩. For example, after
the incorporation, “protein deficiency anemia”, “dietary folate defi-
ciency anemia”, and “iron deficiency anemia unspecified” become
“D53.0 protein D53.0 deficiency D53.0 anemia”, “D52.0 dietary D52.0
folate D52.0 deficiency D52.0 anemia”, and “D50.0 iron D50.0 de-
ficiency D50.0 anemia D50.0 unspecified”, respectively. As such,
their word contexts are no longer similar. The incorporated
concept information steers the word embeddings of “protein”,
“folate”, and “iron” away from each other. After that, the word
representations are learned by applying CBOW [31] to the
altered text snippets.

Refinement Phase: COM-AID training using MLE. we con-
struct the training data D consisting of ⟨dc, dc

j ⟩ pairs for all the
concepts, where dc is the canonical text snippet of concept c
and dc

j is one of the labeled text snippet associated with the
concept c (cf. Figure 3(a)). Further, we define the objective
function as the sum of the log-likelihood of generating the
⟨dc, dc

j ⟩ pairs from the COM-AID model. More formally, the
objective function of training is:

J (Θ) =− 1
|D| ∑

⟨dc ,dc
j ⟩∈D

logp(dc
j |d

c; Θ) (10)

We adopt mini-batch Stochastic Gradient Descent (SGD)
for updating the parameter values. For a training example
⟨dc, dc

j ⟩, dc is taken as input by COM-AID and dc
j is taken as

text snippet to be decoded. After computing the loss, text-
structure decoder progressively back-propagates the error to
the concept encoder, and their parameters are updated accord-
ingly. Note that during the error back-propagation, the word
embeddings and the concept representations in the neural
networks are also updated.

By minimizing the objective function, we aim to find the pa-
rameters Θ along with proper word embeddings and concept
representations that make the encode-decode (a.k.a. trans-
lation) between standard text snippet of concept c and its
alternative descriptions most likely, with the help of textual
context and structural context.

5 ONLINE CONCEPT LINKING
This section presents how NCL utilizes the well-trained COM-
AID model to perform online concept linking. The basic idea is
to introduce a conditional probability p(c|q) to measure how
each concept c ∈ C is related to query q, and then take the

concept c⋆ with the maximum probability p(c|q) as the result,
i.e., c⋆ = arg maxc p(c|q). Formally, based on the Bayesian
formula, we have

p(c|q) = p(q|c; Θ)p(c; Θ)

p(q)
∝ p(q|c; Θ)p(c; Θ), (11)

where p(c; Θ) is a prior probability.
For general cases, we consider this prior follows a uniform

distribution (e.g., every concept c has the same p(c; Θ)) and
maximize the likelihood (i.e. MLE). Note that this can be ex-
tended to the cases that p(c; Θ) is not equal among different
concepts. In such cases, the prior could be considered as an
input and the maximum a posteriori probability (MAP) es-
timation could be used in place of MLE. For MLE cases, we
have the following equation.

p(c|q) ∝ p(q|c; Θ). (12)

Therefore, following Equation (12), a straightforward ap-
proach for concept linking first enumerates every concept
in the ontology, computes p(q|c; Θ) based on the COM-AID
model, and then picks the one with the largest p(q|c; Θ). How-
ever, this approach will incur large computation cost, because
the computation of p(q|c; Θ) is a forward propagation process
in COM-AID and many expensive matrix (vector) operations
may get involved.

To improve the efficiency, we propose a two-phase ap-
proach for concept linking that first efficiently generates a
small set of candidate concepts and then computes p(q|c; Θ)
only for the candidates.

Phase I: Generating candidate concepts. We generate candi-
date concepts using keyword search. More specifically, we
compute the cosine similarity between each concept c and
query q with the TF-IDF weighting scheme, and then return
the top-k concepts with the largest similarity as the candidates.

However, the keyword search method may produce many
false negatives due to the use of abbreviations and the existence
of typos. Consider an example query “dm 1 with neuropaty”:
the method cannot generate good candidate concepts, as “dm”
is an abbreviation of “diabetes mellitus” and “neuropaty” is a
typo of “neuropathy”.

We address this issue by replacing each out-of-vocabulary
word with its semantically nearest word in the vocabulary. We
call this step by query rewriting. More specifically, let Ω denote
the word vocabulary of concepts in the ontology. For each
word w ∈ q, if w < Ω, we substitute w with its nearest word
in Ω, denoted by w⋆. Here, we rely on the word embeddings
to measure the semantic closeness. Recall that COM-AID has
a pre-training phase for word embeddings, which leverages
both the labeled text snippets and the unlabeled ones. There-
fore, the vocabulary Ω′ for the word embeddings in COM-AID
contains not only the words in Ω but also the words from the
unlabeled text snippets. Thus, we can compute the nearest
words of w in the embedding space, i.e.,

w⋆ = arg max
w′

cosine(w′, w), (13)

where cosine is the cosine similarity and w′ (w) is the embed-
ding representation of word w′ (w). Note that if w is not in Ω′,

8

Research 1: Data Integration & Cleaning SIGMOD’18, June 10-15, 2018, Houston, TX, USA

58



we will first look for its textually similar word in Ω′ (e.g., us-
ing edit-distance), and then apply Equation (13). For instance,
query “dm 1 with neuropaty” can be rewritten into “diabetes 1
with neuropathy”, where “dm” is replaced by “diabetes”; and
“neuropaty” is corrected.

Phase II: Finding top candidate using COM-AID. Given a
set of candidate concepts generated from the previous phase,
this phase evaluates probability p(q|c; Θ) for each candidate.
In particular, the words appearing in both the canonical de-
scription and the query are temporarily removed, and then the
corresponding p(q|c; Θ) is computed according to Equation 3.
NCL returns the concept with the largest probability.

6 EXPERIMENTS
In this section, we report the concept linking experimental
results over two real-world datasets based on two ontologies.

6.1 Experimental Setup
Ontologies: Two ontologies ICD-9-CM and ICD-10-CM are
used, where the ICD-9-CM has 17, 418 concepts (14, 567 are
fine-grained concepts), and the ICD-10-CM has 93, 830 con-
cepts (71, 486 are fine-grained). UMLS knowledge base sup-
ports both ontologies.

Datasets: Two datasets hospital-x and MIMIC-III are used.
hospital-x consists of 860, 080 diagnosis descriptions along
with their disease codes extracted from the database of Na-
tional University Hospital (Singapore). For hospital-x, we use
a diagnosis description as a query, and the corresponding ICD-
10-CM disease code as its referred concept. MIMIC-III consists
of 58, 976 diagnosis descriptions extracted from MIMIC-III 7

which is a public database containing records of more than
40, 000 ICU patients. For MIMIC-III, a diagnosis description is
also treated as a query, and its ICD-9-CM code is treated as a
concept.

Methods for comparison: Seven methods are considered: NO-
BLECoder (NC) [42] that is a recently proposed dictionary-
based method in healthcare domain, the recently proposed
approximate string join method pkduck [44], the Word Mover
Distance (WMD) [25] established over the word embedding
technique [31, 32], the paragraph vector distributed repre-
sentation technique (a.k.a. Doc2Vec) [26], and the extended
logistic regression (LR) [43] for healthcare text.

For the logistic regression method [43], we extend it to
consider not only the textual features (i.e., character bigrams,
prefix/suffix, sharing numbers, acronym) described in the
original paper, but also the structural features devised by us.
For a concept c, its structural features are obtained by applying
the textual feature functions in [43] to the aggregated text
snippet of its ancestors’ canonical descriptions. We use LR+

to denote the extended method.
Additionally, the sequence-to-sequence technique [40], and

the machine translation method [2] that conducts the align-
ment and translation simultaneously, are also considered.
Since these two methods [2, 40] can be viewed as the special

7https://mimic.physionet.org/

Parameters Values
k 10, 20, 30, 40, 50
β 1, 2, 3, 4
d 50, 100, 150, 200

Table 1: Parameter settings

cases of COM-AID, we only compare them with COM-AID in
the network architecture study.

Quality metrics: Two metrics are considered. First, the top-
1 accuracy rate measures how much of the referred concepts
appear in the first places of re-ranked concept lists. It is also
called accuracy for short. Second, the mean reciprocal rank (MRR)

MRR = 1
|Q| ∑

|Q|
i=1

1
ranki

considers the specific location of the
referred concept in the re-ranked concept list, where ranki
denotes the rank position of the referred concept for the i-th
query in the whole query set Q.

Training data: The training data contain the labeled text
snippets extracted from UMLS, and the unlabeled text snip-
pets from the knowledge base and the real-world datasets8.
For fairness, the manually annotated text snippets (i.e., feed-
backs) are not used for training COM-AID in the experiments
presented in this section. In total, there are 194, 094 labeled text
snippets (concept aliases except the canonical descriptions for
ICD-10-CM concepts) for hospital-x, and 176, 736 labeled text
snippets (concept aliases except the canonical descriptions
for ICD-9-CM concepts) for MIMIC-III. 9 In total, there are
1, 148, 004 unlabeled text snippets for hospital-x, and 253, 130
unlabeled snippets for MIMIC-III.

Note that the labeled data extracted from knowledge base
is used to train COM-AID, and the performance of NCL is
tested on real-world datasets (i.e., hospital-x and MIMIC-III).

Queries: We extract text snippets from hospital-x and MIMIC-
III and use them as the queries. For each dataset, 484 queries
are packed into a group, and the average accuracy/MRR val-
ues computed from 10 groups are reported. 84 purposely se-
lected queries are contained in every group to cover different
cases (e.g., abbreviation, synonym, acronym, and simplifica-
tion); the rest are randomly chosen. The queries are generated
as described above, unless otherwise stated.

Parameters: We vary the dimensionality d of word/concept
representation 10, the concept path length β, the online re-
trieved candidate concept set cardinality k, as shown in Ta-
ble 1, where the default values are bolded.

Implementation: The neural networks are implemented
in C++, compiled by GCC 5.4.1 under Ubuntu 12.04.4. The
experiments are executed on a server with 503 GB memory
and four E7540 CPUs.

8The labeled text snippets are also turned into the unlabeled data, when their
concept information is incorporated into their content, as discussed in Sec-
tion 4.2.
9Note that we have converted all the words into their lowercases,removed the
special characters (e.g., ‘,’, and ‘;’), and eliminated the duplicate text snippets.
The corresponding canonical descriptions are excluded because one canonical
description and one alias constitute a training example (e.g. ⟨acute abdomen,
abdominal syndrome⟩), and a training example like ⟨acute abdomen, acute
abdomen⟩ does not contribute to the COM-AID model.
10In COM-AID, the dimension of word representation can be different from the
dimension of concept representation. For simplicity but without losing much
generality, we assume that their dimensions are the same.
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Figure 5: Parameter study
6.2 Parameter Tuning
We tune the number of retrieved concepts k and the concept
path length β, to evaluate the performance of NCL.

Varying k. We vary k from 10 to 50. A larger k leads to
more fine-grained concepts retrieved in online concept linking
phase I. We use ‘Cov’ to denote the average coverage value
for hospital-x and MIMIC-III and ‘Acc’ to denote the average
accuracy value. Figure 5(a) shows the computed results when
k changes. Here, we define the queries whose retrieved con-
cept lists in the online concept linking phase I that contain
the referred concepts as Q′. Consequently, the coverage is de-
fined as the ratio between |Q′| and |Q|. As k increases, more
concepts are retrieved. Hence, Cov grows. In the beginning,
Acc grows, nevertheless, Acc slightly drops when k > 20. A
larger k also incurs that more irrelevant concepts are retrieved
in phase I. Thus, the concept linking quality in phase II is
compromised. By default, k = 20 is used.

Varying β. We vary the concept path length β from 1 to 4
to study its effects on the concept linking accuracy. Figure 5(b)
shows the experimental results. As β grows, initially, the com-
puted accuracy over hospital-x and MIMIC-III increases; how-
ever, when β > 2, the accuracy begins to decline. This is
because the ontology depths of ICD-9-CM and ICD-10-CM
are typically less than 3 levels, and the duplication of top-level
concepts does not help to improve the concept linking quality.
We therefore use 2 as the default value of β.

6.3 Network Architecture Study
In this subsection, we evaluate the variants of COM-AID and
discuss the necessity of systematically organizing two kinds of
attentions in the text-structure duet decoder of COM-AID. In
particular, three derived neural network architectures, namely
COM-AID −c, COM-AID −w, and COM-AID −wc, are studied.
COM-AID −c removes the structural context based attention
in COM-AID, and is an instance of the attentional neural net-
work [2]. COM-AID −w discards the textual context based
attention mechanism in COM-AID. COM-AID −wc discards
both the textual context based attention and the structural
based attention, which becomes a sequence-to-sequence net-
work [40]. As a result, two existing methods [2, 40] are in-
cluded in the comparison. The computed accuracy and MRR
values are reported in Figure 6.

Figure 6(a) and Figure 6(c) show the evaluated accuracy
values over hospital-x and MIMIC-III, respectively. We can
see that COM-AID significantly outperforms the COM-AID
−c, COM-AID −w, COM-AID −wc across two datasets with
different hidden dimensions. In particular, COM-AID out-
performs COM-AID −c. After the removal of structural con-
text based attention, the concept linking accuracy averagely

drops 0.08, suggesting that the structural context SC in COM-
AID is important. Taking into consideration the concept path
helps differentiate the fine-grained concepts. To explain why
COM-AID outperforms COM-AID −c, we report a concrete
instance. For the query “chr iron deficiency anemia”, after pro-
cessed by the model learned from COM-AID −c, it is linked to
the concept E61.1 whose description is “iron deficiency”. From
the word perspective, “iron deficiency” fits the query “chr iron
deficiency anemia”. However, when taking into account the
concept path of E61.1 and the concept path of D50.0, it is easy
to infer that D50.0 is more appropriate. This is because the
parent concept of D50.0 (i.e., D50) is described by the text “iron
deficiency anemia”, which is closely related to the query. In con-
trast, the description of E61 (i.e., the parent concept of E61.1) is
referred to as “deficiency of other nutrient elements”, which is not
directly related to the query. Without incorporating SC into
its decoder, COM-AID’s concept linking capability degrades.

COM-AID outperforms COM-AID −w. After the removal of
textual context based attention, the concept linking accuracy
averagely drops 0.1, indicating that incorporating textual con-
text T C into COM-AID is necessary. And word-level attention
helps decode the query from the concept representation. To
appreciate why COM-AID outperforms COM-AID −w, let’s
consider a concrete example. The query “end-stage renal failure”
is linked to the concept N18.9 “chronic kidney disease, unspecified”
according to the model trained from COM-AID −w. In con-
trast, the correct concept N18.6 has the description “end stage
renal disease”. Although N18.9 and N18.6 have the same parent
concept, N18.6 is more appropriate, owing to the detailed in-
formation “end stage”. COM-AID −w wrongly links the query
to N18.9, suggesting that the word-level correlation between
the query and the description of N18.6 has not been fully cap-
tured. Without incorporating T C into its decoder, COM-AID’s
concept linking capability degrades.

The motivation for adding the attention mechanism in
COM-AID is to bring more information to the decoding phase,
leveraging the textual context based attention to handle the
word discrepancies and the structural context based attention
to differentiate fine-grained concepts. According to the experi-
mental results with respect to COM-AID −wc and COM-AID
shown in Figure 6, the removal of both the SC and T C, on
average, leads to more than 0.2 accuracy drop. The signifi-
cant accuracy drop confirms the effectiveness of adding these
attentions into the COM-AID.

The computed MRR values are shown in Figure 6(b) and
Figure 6(d). We can see that COM-AID significantly outper-
forms the variants of COM-AID (i.e., COM-AID −c, COM-AID
−w, and COM-AID −wc) in terms of MRR. A higher MRR value
means that on average the correct concepts are ranked higher
than the wrong ones. COM-AID owns the relatively large
MRR values, suggesting that COM-AID is able to place the
correct concepts ahead of the other retrieved candidate con-
cepts. By contrast, the variants of COM-AID cannot rank the
correct concept properly.
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Figure 6: Network architecture study

6.4 Overall Linking Quality Study
In this subsection, we compare the overall concept linking
qualities between NCL and its competitors: pkduck [44], WMD [25],
Doc2Vec [26], NC [42], the extended LR [43], namely LR+.

Accuracy comparison. We evaluate the methods’ ability to
correctly link the concepts over hospital-x and MIMIC-III, and
report the accuracy values in Figure 7(a). Clearly, NCL pro-
duces the highest accuracy values over hospital-x and MIMIC-
III, outperforming pkduck, NC, LR+, WMD, and Doc2Vec
by large margins. pkduck accounts for the second highest
accuracy values, when its join similarity threshold θ = 0.1.
However, compared with the best accuracy of pkduck, NCL
offers large accuracy enhancement.

The similarity threshold θ in pkduck is varied to gain in-
sights into how the noisy unlabeled text snippets are joined
with the labeled text snippets. From Figure 7(a), we can see
that as θ decreases, the accuracy increases. This is because
a smaller θ leads to more canonical concept descriptions ap-
proximately joined with the queries. However, a smaller θ also
leads to a sharp growth of the joined entries, generating a lot
of inappropriate text snippet pairs. Even when θ = 0.1, the
accuracy is below 0.34 for hospital-x and is less than 0.36 for
MIMIC-III. Two reasons cause the low accuracy of pkduck.
First, apart from the abbreviations, people tend to replace a
word by its synonyms, and discard some inessential words.
For instance, “adenocarcinoma” is employed in the query “ade-
nocarcinoma of colon” instead of “malignant neoplasm”. The
pkduck similarity between the query and the concept descrip-
tion “polyp of colon” of the concept “K63.5” is 0.5; by contrast,
the pkduck similarity between the query and the actually
referred concept description “malignant neoplasm of colon, un-
specified” of “K18.9” is 0.333. Second, the queries may contain
many dangling words, incurring a higher pkduck value be-
tween two strings with many sharing words. For example,
pkduck value between the query “chr iron deficiency anemia”
and “protein deficiency anemia” is 0.4; however, the pkduck
value between “chr iron deficiency anemia” and the actual re-
ferred concept description “iron deficiency anemia secondary
to blood loss (chronic)” is 0.33. Therefore, the concepts whose
canonical descriptions share many words with the query are
considered to be better than the actually referred concept
whose canonical description may only share a couple of essen-
tial words with the query. Typically, a query is short, making
this issue more predominant.

Two methods (i.e., NC and LR+) from the healcare domain
are compared with NCL. Figure 7 clearly show that both NC
and LR+ perform poorly on hospital-x and MIMIC-III. As a
dictionary based method, NC relies on two hash tables (i.e.,

the word-to-term table and the term-to-concept table) to con-
duct concept linking according to the alignment of individ-
ual words. However, due to the severe word discrepancies
between the queries and the canonical concept descriptions,
NC tends to produce unreliable linking results. For example,
the query “exacerbation of eczema” is linked to the concepts
L20.84 and J47.1, where the word “eczema” is contained in the
canonical description of L20.84, and “exacerbation” is recog-
nized by the description of J47.1. Instead, the actual concept
should be L30.9 whose canonical description is “dermatitis, un-
specified”. We count the linking result as correct if the actual
concept appears in the concept list computed by NC. Even
so, the accuracy of NC is very low, because the core words
in a text snippet are often distorted and replaced by some
other words that cannot be recognized by the word-to-term
table. As a “simple” machine learning method, LR+ depends
on the hand-crafted features, including the textual features
described in [43] and the structural features added by us, to
build a multi-class classifier. Because the classifier amounts to
a soft-string matcher, it is able to correctly link a query to its
concept, when the querying text snippet is syntactically simi-
lar to its concept’s description or the corresponding ancestral
concept descriptions. However, as a multi-class classifier, the
performance of LR+ declines significantly as the number of
considered concepts increases, suggesting that LR+ is unable
to scale with the number of concepts. Its accuracy values drop
to nearly zero, when more than 30 fine-grained concepts are
considered. Therefore, for LR+, we limit the involved con-
cepts to the candidate concepts retrieved by NCL. Even so,
LR+ performs poorly, suggesting that the features generated
from the various surface string similarities are not suitable.

We vary the embedding dimension d for WMD to achieve
the better accuracy over the datasets. When d = 50, the
WMD achieves its relatively high accuracy over hospital-x
and MIMIC-III. Nevertheless, the accuracy values are still
small, suggesting that the word discrepancy compromises the
effectiveness of word-level semantic distance. We also vary the
embedding dimension d for Doc2Vec. When d = 90, Doc2Vec
achieves its relatively better performance over hospital-x and
MIMIC-III. Nevertheless, its accuracy values are less than
0.12, suggesting that the semantic overlapping between the
fine-grained concepts makes the document-level semantic
similarity difficult to distinguish them.

As for NCL, it has difficulty in comprehending the words
that seldom appear. For example, it cannot distinguish the
meaning difference between “pancoast” and “testis”, leading
to the wrong linking between the query “left pancoast neoplasm”
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Figure 7: Performance comparison

and the concept D29.22 whose canonical description is “benign
neoplasm of left testis”.

MRR Comparison. We further evaluate the effectiveness
of different methods ranking the actually referred concepts.
The computed MRR values are reported in Figure 7(b). Note
that if the actually referred concept does not appear in the
ranked/returned concept list, we ignore the corresponding

1
ranki

term. The absolute MRR values of NCL are the largest,
indicating that NCL is able to place the correct concepts ahead
of the other candidates.

When θ is large, pkduck is also capable of placing the cor-
rect concepts in the very front of the ranked concepts. We
can see that when θ = 0.5, the MRR values almost equal the
corresponding accuracy values. This is because most of the
top-1 concepts produced by pkduck are indeed the actually
referred concepts. However, when θ is less than 0.5, the MRR
values of pkduck are greater than its corresponding accuracy
values, indicating that the correct concepts are not longer the
top-1 concepts. The computed MRR values of NC, LR+, WMD
and Doc2Vec are all substantially lower than those of NCL
across two datasets under different parameter settings, mean-
ing that they are incapable of placing the correct concepts in
the beginning of the returned concept lists.

6.5 Effect of Pre-training
We compare the concept linking accuracies derived from NCL
and NCL without pre-training to gain insights into the design
property of pre-training. The trained COM-AID model in the
latter approach is denoted as COM-AID−o1 .

Figure 8(a) and Figure 8(b) show the overall accuracy values
derived from NCL using the models learned from COM-AID
−o1 and COM-AID, respectively. We can see that as d grows,
the computed accuracy also increases for both COM-AID and
COM-AID −o1 when d ≤ 150, and COM-AID produces signif-
icantly higher accuracy values than COM-AID −o1 for both
hospital-x and MIMIC-III. The accuracy gap between COM-
AID and COM-AID −o1 is consistently greater than 0.1, indi-
cating that the proposed pre-training method is able to greatly
enhance the concept linking quality under different settings.
In particular, the incorporation of concept information into
the text snippets leads to more accurate word representations
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Figure 8: Effect of pre-training
that helps differentiate the slight semantic meanings of two
similar words, and results in more powerful COM-AID.

It may seem counter-intuitive that the accuracy values
of hospital-x and MIMIC-III are similar, but the very short
queries can weaken the encode-decode (i.e., translation) power
of NCL, and hence reduce the accuracy. For instance, for
MIMIC-III dataset, NCL has to translate the canonical de-
scriptions “hypertensive chronic kidney disease, malignant, with
chronic kidney disease stage v or end stage renal disease” to the
queries “hypertensive crisis” and “hypertensive urgency”, which
is exetremely difficult; by contrast, for hospital-x dataset, NCL
needs to link queries “hypertension ef 75%” and “moderate pul-
monary hypertension” to concept I27.0 whose canonical descrip-
tion is “primary pulmonary hypertension”, which is relatively
easy. To some extent, the more fine-grained concepts in ICD-10-
CM provide richer information, and hence help the translation
between the canonical description of a concept and a query.

7 CONCLUSIONS
In this paper, we present a novel healthcare concept linking ap-
proach NCL that links the short and noisy real-world concept
mentions to the fine-grained KB concepts in an ontology. The
concept linking is accomplished by a translation (i.e., encode-
decode) process supported by the devised COM-AID neural
network. COM-AID leverages the attention mechanism to
consider both the textual and structural contexts in the transla-
tion process. Experimental studies using two hospital datasets
show that NCL produces accurate concept linking results and
significantly outperforms seven state-of-the-art techniques.

We attribute NCL’s good performance to three factors. First,
owing to its powerful end-to-end semantic translation capabil-
ity, the encode-decode process somehow eliminates the word
discrepeancy between the surface strings. Second, a healthcare
knowledge base contains various descriptions of a concept,
offering the opportunity to capture the core meaning of the
concept via self-translation. Third, the composite attention
mechanism puts more information in the decoding phase,
resulting in more accurate linking results.
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(a) Timon: A feedback collecting system
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Figure 9: Feedback controller workflow illustration
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A FEEDBACK CONTROLLER IN NCL
Feedback controller controls the feedback collection, collect
the feedbacks, and then re-train COM-AID model. In this
fashion, NCL is able to incrementally enhance its concept
linking capability.

A.1 Feedback Controller Component
We have developed a system (Timon) to realize the required
functionalities. Figure 9 sketches the main workflow of Timon.
Figure 9(b) shows an input example of Timon. It contains the
query “breast for investigation”, and the retrieved three candi-
date concepts C09.0, N63.0, and P52.6. The loss values in the
third column are produced by COM-AID. We can see that first
two loss values are close and all the losses are large, indicating
that COM-AID is uncertain of the results. Therefore, NCL for-
wards the query along with the concepts and their canonical
descriptions to Timon. When the specified number (e.g., 100)
of the pooled uncertain queries has reached, Timon displays
them in a generated web page, as shown in Figure 9(a). Note
that the domain experts can either select a concept from the
candidates or type a new concept in the blank text field. Af-
ter collecting the feedbacks from the experts, Timon appends
the newly collected feedbacks to the corresponding labeled
training data. For example, Figure 9(c) indicates that the ex-
perts have selected the concept N63.0 for the query “breast
lump for investigation”, because a new entry is appended to the
descriptions of N63.0.

As illustrated, feedback controller examines the uncertainty
of the re-ranked concepts and determines whether to solicit ex-
perts for feedbacks. Two factors are taken into account to eval-
uate the concept linking uncertainty based on the re-ranked

concept list. First, the absolute probability value of the re-
turned concept is considered. To avoid the floating-point un-
derflow, The loss value Loss = − log p(q|c; Θ) is used. When
Loss is high, NCL may produce inaccurate concept linkage.
Second, the standard deviation of the loss value derived from
the re-ranked list Ck is considered. We denote the standard de-
viation value by Std. A low Std suggests that the concepts in
Ck own similar losses. Thereby, NCL is at the risk of producing
inaccurate concept linking. When Loss exceeds a predefined
threshold or Std is lower than a predefined threshold, the
feedback controller forwards q along with Ck to the concept
linking pool, waiting for the domain expert’s manual linking.
Meanwhile, the current computed c⋆ = c1 is returned.

Moreover, the feedback controller is also responsible for ex-
amining the newly collected feedbacks. If the number of newly
appended labeled training data entries exceeds a threshold,
COM-AID will be re-trained by taking into account the newly
collected feedbacks. This way, the concept linking capability
of NCL is incrementally improved, and the domain experts
can easily contribute their domain knowledge to NCL by their
feedbacks.

A.2 Effect of Feedback Controller
As an end-to-end and data-driven model, COM-AID ensures
that the collected feedbacks are effectively utilized. To investi-
gate the effect of feedbacks, we perform incremental training.
That is, after feeding one feedback (i.e., the labeled text snip-
pet) into COM-AID, we train the model, take snapshots of the
learned word representations and the concept representations,
and assess the impact of the fed feedback.

Figure 10(a)-10(d) show how the sampled word represen-
tations shift when incrementally feeding the COM-AID with
expert feedbacks. In this experiment, feedbacks on three con-
cept linking results ( f1, f2, and f3) are incrementally fed into
COM-AID. f1 = ⟨ D50.0, “hemorrhagic anemia” ⟩, f2 = ⟨ D62,
“acute blood loss anemia” ⟩, and f3 = ⟨ D53.2, “vitamin c deficiency
anemia” ⟩. Both green octagon and red triangle represent a
concept representation projected by PCA. We use different
markers for comparing the differences between two adjacent
snapshots, where the red triangles represent the concept rep-
resentations learned in the previous snapshot, and the green
octagons represent the ones learned in current snapshot based
on the current training data. We can see that after feeding f1,
the sampled concepts shown in Figure 10(b) all change their
locations more or less. This is because adding one feedback
into the training data also results in the change of word repre-
sentations. While the concept representation of D50.0 changes
slightly, the ones corresponding to D53.1 and R53.1 signifi-
cantly move away from D50.0, suggesting that adding f1 to
the training data makes the semantic meaning difference be-
tween D50.0 and D53.1 (or R53.1) larger. These semantic mean-
ing differences are implied by the experts, because according
to f1, the word hemorrhagic from D50.0 relates to “blood”, and
is irrelevant to “weakness” in R53.1 and “megaloblastic” in D53.1.
NCL successfully learns the semantic implication offered by
the experts.
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(a) Original concept representa-
tions

(b) After feeding f1 (c) After feeding f2 (d) After feeding f3

(e) Original word representations (f) After feeding f1 (g) After feeding f2 (h) After feeding f3

Figure 10: Impact of Feedbacks
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(a) hospital-x, varying k
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(b) MIMIC-III, varying k
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(c) hospital-x, varying |q|
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(d) MIMIC-III, varying |q|

Figure 11: Online concept linking time analysis

Further, the learned semantic implication can be accumu-
lated through more feedbacks. Comparing Figure 10(b) and
Figure 10(c), we can see that the green octagons in current
snapshot only shift slightly, compared with the locations of
the red triangles. D62 slightly moves away from D50.0, indi-
cating the semantic difference between them becomes larger
after feeding f2. This move is caused by the word “acute” in
f2, which is different from the word “chronic” in the canonical
description of f1. As demonstrated, the learned semantic dif-
ferences accumulate. The minor semantic implication in one
feedback can be uncovered and learned by NCL, resulting in
the slight shifts of the concept representations in the space.
Comparing Figure 10(c) with Figure 10(d), adding f3 into the
training data leads to the shifts of D53.1, D62, R53.1, R53.0, and
R53.1.

Figure 10(e)-10(h) show how the sampled word represen-
tations change when incrementally feeding the COM-AID
with expert feedbacks. Comparing the word representations
shown in Figure 10(e) and the ones in Figure 10(f), we can
see that after feeding f1 the distance between the word rep-
resentation “menorrhagia” and “blood” becomes smaller, in-
dicating that their semantic meanings get more similar. The
word representation of “anemia” moves slightly away from
the words “acute” and “chronic”, because f1 contains no in-
formation about “anemia” or “acute”. Comparing Figure 10(f)
and Figure 10(g), we can see that the word distance between

“anemia” and “acute” gets smaller, because the added training
example contains both “acute” and “anemia”. After feeding
f3, as shown in Figure 10(h), the words “anemia” and “vita-
min” move simultaneously toward the top right, meaning that
the semantic meanings are affected by the added example
“vitamin c deficiency anemia”.

From these snapshots, we can see that the added training
data drive the learned representations towards better seman-
tic locations in the high-dimensional space. As such, the in-
tricate semantic implications underlying the surface strings
are grasped by NCL, from both the word and the concept
perspectives.

B EFFICIENCY STUDY
We study both online and offline efficiency of NCL.

B.1 Online Linking Efficiency
In this subsection, we report experimental online linking run-
time when the candidate size k and the query length |q| are
varied. We vary k from 10 to 50, and vary |q| from 1 to 6.

We divide the two online concept linking phases into four
parts: the out-of-vocabulary word replacement (OR), the can-
didate concept retrieval (CR), the encode-decode process (ED),
and the ranking (RT). For each query, we use one thread to
perform OR, CR, and DT, and use ten threads to perform ED,
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because after the candidates are obtained, their encode-decode
processes can be executed separately.

Figure 11(a) and Figure 11(b) display the online concept
linking times for different k values. As the size of candidate
concept set increases, the running time of the online concept
linking grows as well, which is mainly caused by the ED
part. A larger k normally leads to more candidate concepts,
invoking more encode-decode processes. Therefore, ED time
increases. We also notice the sub-linear online linking time
growth in Figure 11(a) and Figure 11(b), suggesting that the
desired number of candidate concepts may not be met when
k is large. The running time of hospital-x is larger than that of
MIMIC-III, because we find that the canonical descriptions of
the ICD-10-CM concepts are usually longer than those of the
ICD-9-CM concepts. It takes more effort to encode a longer
description and to compute the textual attention weights.

Figure 11(c) and Figure 11(d) show the running times for
different query lengths. As the query length |q| grows, the
running time of the online concept linking grows as well. In
particular, as |q| grows, more postings in the inverted index
are examined, resulting in the growth of CR time. Moreover,
when the query is longer, more effort needs to be spent on the
decoding and the attention computation. Thus, the ED time
grows.

 0

 200

 400

 600

 800

25%|C| 50%|C| 75%|C| 100%|C|

W
o
rd

 E
m

b
e
d
d
in

g
 T

ra
in

in
g
 T

im
e
 (

s
)

hostipal−x MIMIC−III

(a) Word embedding training time
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Figure 12: Offline model training time analysis

B.2 Offline Training Efficiency
The offline training has a pre-training phase (i.e., the word
embedding training) and a refinement phase (i.e., the COM-
AID model training). We report the training time of the two
phases in Figure 12(a) and Figure 12(b) respectively, owing to
their different scales. We use 40 threads in the two phases.

As shown in Figure 12(a), the word embedding training
times are short. It takes less than 800 seconds to train the word
representations for hospital-x, and less than 170 seconds for
MIMIC-III. Training data used here contain text snippets ex-
tracted from the knowledge base and all the text snippets of
the corresponding real-world dataset. If a text snippet comes
from the knowledge base, its concept information is incor-
prated into the text snippet. Otherwise, it remains unchanged.
Clearly, the training time of hospital-x is larger than that of
MIMIC-III. This is because hospital-x contains considerably
more unlabeled training text snippets than MIMIC-III. Here,
the parameter noise-contrastive estimation (NCE) is set to 10,

the window size is 10, the iteration number is 10, and the
learning rate is 0.05.

As shown in Figure 12(b), the COM-AID model training
times occupy several hours. As the number of involved con-
cepts increases, the training time in this phase grows as well.
In this phase, however, the training time difference between
two datasets is not very large. This is because COM-AID learns
from the labeled text snippet pairs corresponding to the same
concept (i.e., canonical description and alias pairs), and the
amount of labeled training data for two datasets is similar. Fur-
ther, in this phase, the training time growth is approximately
linear, suggesting the good scalability of COM-AID training.
The training time in this phase can be further reduced, when
the BlackOut [20] technique is used.

C ROBUSTNESS EVALUATION
Experiments are conducted to study the effects of training
data on the performance of NCL.
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Figure 13: Varying training data
Varying Training Data. We perform two groups of experi-

ments to investigate how the training data affects the perfor-
mance of NCL. In the first group of experiments, for both the
ICD-10-CM and ICD-9-CM, we vary the considered concept
sizes from 25% to 100%. Accordingly, we extract the text snip-
pets from the labeled data. For each concept set, we generate
500 queries whose actual concepts are covered to evaluate the
performance. Figure 13(a) shows that the linking accuracy in-
creases as the number of concepts drops. This occurs because
a smaller concept size means less interfacing concepts, result-
ing in a higher accuracy value. Overall, the accuracy values
change slightly over different concept sizes, suggesting that
NCL is robust with respect to the labeled data.

In the second group of experiments, for both hospital-x and
MIMIC-III datasets, we keep the labeled training data and the
concepts unchanged, and vary the size of unlabeled data D
from 25% to 100%. For each unlabeled data set, 500 queries
are randomly generated from hospital-x and MIMIM-III, re-
spectively. From Figure 13(b), we can see that the accuracy
decreases as the unlabeled training data size drops. Never-
theless, when 25% unlabeled data are used, the computed
accuracy values are still higher than 0.6, suggesting that NCL
is able to maintain a high accuracy via the encode-decode pro-
cess. Overall, the accuracy values change only slightly over
different amounts of the unlabeled data, suggesting that NCL
is robust with respect to the unlabeled data.
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