
84

Unicorn: A Unified Multi-tasking Model for Supporting
Matching Tasks in Data Integration

JIANHONG TU, Renmin University of China, China
JU FAN∗, Renmin University of China, China
NAN TANG, QCRI / HKUST (GZ), Qatar / China
PENG WANG, Renmin University of China, China
GUOLIANG LI, Tsinghua University, China
XIAOYONG DU, Renmin University of China, China
XIAOFENG JIA, Beijing Big Data Centre, China
SONG GAO, Beijing Big Data Centre, China

Data matching – which decides whether two data elements (e.g., string, tuple, column, or knowledge graph
entity) are the “same” (a.k.a. a match) – is a key concept in data integration, such as entity matching and schema
matching. The widely used practice is to build task-specific or even dataset-specific solutions, which are hard
to generalize and disable the opportunities of knowledge sharing that can be learned from different datasets
and multiple tasks. In this paper, we propose Unicorn, a unified model for generally supporting common
data matching tasks. Unicorn can enable knowledge sharing by learning from multiple tasks and multiple
datasets, and can also support zero-shot prediction for new tasks with zero labeled matching/non-matching
pairs. However, building such a unified model is challenging due to heterogeneous formats of input data
elements and various matching semantics of multiple tasks. To address the challenges, Unicorn employs
one generic Encoder that converts any pair of data elements (𝑎, 𝑏) into a learned representation, and uses a
Matcher, which is a binary classifier, to decide whether 𝑎 matches 𝑏. To align matching semantics of multiple
tasks, Unicorn adopts a mixture-of-experts model that enhances the learned representation into a better
representation. We conduct extensive experiments using 20 datasets on seven well-studied data matching
tasks, and find that our unified model can achieve better performance on most tasks and on average, compared
with the state-of-the-art specific models trained for ad-hoc tasks and datasets separately. Moreover, Unicorn
can also well serve new matching tasks with zero-shot learning.

CCS Concepts: • Information systems→ Mediators and data integration.

Additional Key Words and Phrases: data matching, data integration, multi-task learning

ACM Reference Format:
Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Guoliang Li, Xiaoyong Du, Xiaofeng Jia, and Song Gao. 2023.
Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration. Proc. ACM Manag.
Data 1, 1, Article 84 (May 2023), 26 pages. https://doi.org/10.1145/3588938
∗Ju Fan is the corresponding author.

Authors’ addresses: Jianhong Tu, Renmin University of China, Beijing, China, tujh@ruc.edu.cn; Ju Fan, Renmin University
of China, Beijing, China, fanj@ruc.edu.cn; Nan Tang, QCRI / HKUST (GZ), Doha / Guangzhou, Qatar / China, ntang@hbku.
edu.qa; Peng Wang, Renmin University of China, Beijing, China, lisa_wang@ruc.edu.cn; Guoliang Li, Tsinghua University,
Beijing, China, liguoliang@tsinghua.edu.cn; Xiaoyong Du, Renmin University of China, Beijing, China, duyong@ruc.edu.cn;
Xiaofeng Jia, Beijing Big Data Centre, Beijing, China, jiaxf@jxj.beijing.gov.cn; Song Gao, Beijing Big Data Centre, Beijing,
China, gaos@jxj.beijing.gov.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/5-ART84 $15.00
https://doi.org/10.1145/3588938

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

HTTPS://ORCID.ORG/0009-0001-1554-1614
HTTPS://ORCID.ORG/0000-0003-4729-9903
HTTPS://ORCID.ORG/0000-0003-2832-0295
HTTPS://ORCID.ORG/0009-0009-7699-5490
HTTPS://ORCID.ORG/0000-0002-1398-0621
HTTPS://ORCID.ORG/0000-0002-5757-9135
HTTPS://ORCID.ORG/0000-0003-3159-2785
HTTPS://ORCID.ORG/0000-0003-3572-0326
https://doi.org/10.1145/3588938
https://orcid.org/0009-0001-1554-1614
https://orcid.org/0000-0003-4729-9903
https://orcid.org/0000-0003-2832-0295
https://orcid.org/0009-0009-7699-5490
https://orcid.org/0000-0002-1398-0621
https://orcid.org/0000-0002-5757-9135
https://orcid.org/0000-0003-3159-2785
https://orcid.org/0000-0003-3572-0326
https://doi.org/10.1145/3588938

84:2 Jianhong Tu et al.

1 INTRODUCTION
Data matching generally refers to the process of deciding whether two data elements are the “same”
(a.k.a. a match) or not, where each data element could be of different classes such as string, tuple,
column, and so on. Data matching is a key concept in data integration [13] and data preparation [9]
that includes a wide spectrum of tasks. In this paper, we consider seven common data matching
tasks, namely entity matching, entity linking, entity alignment, string matching, column type
annotation, schema matching, and ontology matching, as shown in Figure 1.
Due to their importance, almost all the aforementioned matching tasks have been studied for

decades, and still remain to be important research topics. With the tremendous successes of deep
learning, deep neural networks have been widely used for tackling various matching tasks, such as
DeepMatcher [34] and Ditto [30] for entity matching (see a recent tutorial [4]), and TURL [10] and
HNN [5] for column type annotation. However, these current deep learning based solutions are
task-specific or even dataset-specific, which are referred to as specific models in this paper.

There are two main limitations of specific models. First, they can only learn knowledge from
specific tasks or datasets. That is, the learned knowledge cannot be shared across different models.
For example, the knowledge learned by a column type annotation model (e.g., TURL [10]) cannot
be shared with an entity matching model (e.g., Ditto [30]) due to different neural network designs,
although very likely the two models can help each other. Second, one model has to be trained (or
fine-tuned) only on the labeled examples of each task or dataset, which is inefficient and has a
high monetary cost. For example, DeepMatcher [34] and Ditto [30] have to be fine-tuned on a new
entity matching dataset with at least hundreds of labeled matching/non-matching pairs.

In this paper, we propose Unicorn, a unified model to support multiple data matching tasks, as
shown in Figure 1. Compared with aforementioned specific models, Unicorn has the following
notable advantages.
(1) Task unification that generalizes task-specific solutions into one unified model, thus achiev-

ing lower maintenance complexity and smaller model sizes, compared with specific models.
(2) Multi-task learning that enables the unified model to learn frommultiple tasks and multiple

datasets tomake full use of knowledge sharing, which even outperforms specificmodels trained
only on their own datasets separately.

(3) Zero-shot prediction that allows the model to make predictions for a new task or a new
dataset with zero labeled matching/non-matching pairs.

Although several unified models have been recently studied in the NLP and CV communities [3,
41, 42], building such a unified model for supporting multiple data matching tasks is challenging.

(1) Data elements in the matching tasks can take heterogeneous formats, such as tuples and
columns in tabular data, entities in knowledge graphs, and plain text, which will increase the
difficulty of task unification.

(2) Each data matching task may have its unique matching semantics. For example, entity
matching that matches two tuples is different from schema matching that matches two
columns. Thus, it is non-trivial to enable knowledge sharing among multiple tasks.

To address the challenges, we develop a general framework Unicorn, which consists of three key
modules: an Encoder, a Mixture-of-Experts layer, and a Matcher (see Figure 1). First, the Encoder
converts any pair of elements (𝑎, 𝑏) with heterogeneous formats into a learned representation. To
this end, we propose to serialize any pair of elements into text while still preserving their inherent
structure, and employ a unified pre-trained language model for effective encoding. Second, to
align matching semantics of various tasks or datasets, the Mixture-of-Experts layer enhances the
learned representation into a better representation by combining the knowledge from multiple
“experts” controlled by a learned gating network. Third, the Matcher is a typical binary classifier,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:3

Ontology Matching

(,)

Encoder

Mixture-of-Experts

Matcher

1: match or 0: non-match

Tuple Column Ontology
(tree)

Knowledge
Graph EntityString

Entity Matching
a b(,)

(a,b)
Entity Linking

a b (,)
Entity Alignment

a b

(,)
String Matching

a b

(,)a b

(,)
Column Type Annotation

a b

(,)Schema Matching
a b

U
ni

co
rn

M
ul

tip
le

M

at
ch

in
g

Ta
sk

s
M

ul
tip

le

D
at

a
El

em
en

ts

Fig. 1. Unicorn is a unified model for “data matching” task in data integration. So far, it supports seven
matching tasks in data integration for a pair (𝑎, 𝑏) where 𝑎 or 𝑏 may be of the same or different types of
data elements. Unicorn consists of a unified Encoder, a Mixture-of-Experts layer, and a Matcher that will
decide whether (𝑎, 𝑏) is a match (1) or a non-match (0).

e.g., a multilayer perceptron (MLP), to predict either 1 (for match) or 0 (for non-match) by taking
the above representation as input.

Our notable contributions are summarized as follows.
(1) As far as we know, Unicorn is the first unified multi-tasking model towards supporting

various matching tasks in data integration. We formally define the problem of data matching
tasks and introduce an overview of the Unicorn framework (Section 2).

(2) We develop effective techniques for two keymodules in the Unicorn framework.We introduce
a unified representation learning method for the Encoder module (Section 3) and design
effective methods for the Mixture-of-Experts layer (Section 4).

(3) We conduct a thorough evaluation on 20 datasets for the seven common data matching
tasks shown in Figure 1. Extensive experiments show that Unicorn, as a unified model,
outperforms the state-of-the-art specific models on most tasks and on average (Section 5
Exp-3). In addition, Unicorn can well serve new matching tasks with zero-shot learning
(Section 5 Exp-4).

(4) We make a unified benchmark for multiple data matching tasks available at Github1 . We stan-
dardize the format of datasets from different data matching tasks, making these datasets more
convenient to use. We publish the source code of Unicorn, and provide the trained Unicorn

1https://github.com/ruc-datalab/Unicorn

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

https://github.com/ruc-datalab/Unicorn

84:4 Jianhong Tu et al.

model with multi-task learning in Hugging Face2, so that researchers and practitioners can
either use it out-of-the-box, or fine-tune it for specific tasks.

2 PROBLEM AND SOLUTION OVERVIEW
This section formalizes the data matching problem (Section 2.1), and presents an overview of our
Unicorn framework (Section 2.2).

2.1 Problem: Data Matching Tasks

Data Elements. In this paper, we consider a data element as a basic unit of information in data
integration, which has a unique meaning. We consider data elements in the following five categories:

• String. A string is a sequence of words, which could be a noun or a natural language sentence,
denoted as ⟨word𝑖⟩1≤𝑖≤𝑘 .

• Tuple. A tuple is a row contained in a table, consisting of a set of attribute-value pairs
{(attr𝑖 , val𝑖)}1≤𝑖≤𝑘 , where attr𝑖 and val𝑖 are respectively the 𝑖-th attribute name and
value of the tuple.

• Column. A column is a set of values {val𝑖 }1≤𝑖≤𝑘 of a particular attribute attr within a table,
one value for each row of the table.

• Ontology.An ontology identifies and distinguishes hierarchical concepts and the relationships
among the concepts. An ontology is formalized as a tree structure ont = {node𝑖 , pnode𝑖 }1≤𝑖≤𝑘 ,
where pnode𝑖 is the parent of node𝑖 . The unique node, which does not have a parent node, is
called the root node.

• Knowledge Graph Entity. A knowledge graph entity (or KG-entity for short) describes
a real-world entity, such as people, places, and things, in a knowledge graph. Formally, a
knowledge graph (KG) is defined as a graph structure KG = (𝐸, 𝑅,𝐴,𝑉 ,𝑇𝑟 , 𝑃𝑎), where ent ∈ 𝐸,
rel ∈ 𝑅, attr ∈ 𝐴, and val ∈ 𝑉 represent an entity, a relation, an attribute, and an attribute
value respectively. Moreover, (ent𝑖 , rel𝑘 , ent𝑗) ∈ 𝑇𝑟 (ent𝑖) denotes a relational triple, and
(attr𝑘 , val𝑗) ∈ 𝑃𝑎 (ent𝑖) denotes an attribute-value pair.

Figure 2 shows example data elements with the categories of String (in pink color), Tuple (in
yellow color), Column (in green color), Ontology (in blue color), and KG-Entity (in cyan color).
Data Matching. Let 𝐴 = {𝑎1, . . . , 𝑎𝑛} and 𝐵 = {𝑏1, . . . , 𝑏𝑚} be two sets of data elements. The
problem of data matching is to find all the pairs (𝑎𝑖 , 𝑏 𝑗) ∈ 𝐴 × 𝐵 that are matched, where the
semantic of whether (𝑎𝑖 , 𝑏 𝑗) is matched or unmatched depends on the specific data matching tasks,
which are presented as follows.
Data Matching Task Types. Based on various combinations of types of input pair (𝑎, 𝑏) and the
matching semantics, we consider the following seven common types of data matching tasks, as
shown in Figure 2. For each task, we describe the existing solutions and our formal definitions.
(1) Entity matching refers to the task of determining whether two different tuples from two tables
refer to the same real-world object [7, 18]. Existing solutions either define similarity functions
based on aligned attributes (e.g., Magellan [14]), use word embeddings (e.g., DeepER [19] and
DeepMatcher [34]), or piggyback pre-trained language models (e.g., Ditto [30] and DADER [48]).

We formalize entity matching as determining whether a (Tuple, Tuple) pair matches or not. For
example, an entity matching task in Figure 2 determines whether the pair (𝑎1, 𝑏1) of two records
(with attributes Name, City and Age) refer to the same person. Note that, for some entity matching
benchmarks, an entity could be of the JSON format (e.g., the Web Data Commons dataset [35]). In

2https://huggingface.co/RUC-DataLab/unicorn-plus-v1

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

https://huggingface.co/RUC-DataLab/unicorn-plus-v1

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:5

Entity matching Entity linking

Name City
18Dave Smith Atlanta
Age peak

hallin fell
ranking

203
map
ne

guide
fe

a1 (Tuple) b1 (Tuple)
a2 (Tuple) b2 (KG-entity)

Zen-Studios 50
numberOfEmployees

Pinball-FX

product

Hangary
location

Zen-Studios 2003inception

Budapest
headquatersLocation

Entity alignment
b3 (KG-entity)

5938 chestnut st
philadelphia pa
19139

5938 chestnut street
philadelphia pa
19139

a5 (String)

String matching

Catalog-cornell

College-of-Engineering

Earth-and-Atmospheric-
Sciences

Catalog-washington

College-of-Arts-and-
Sciences

Earth-and-Space-
Sciences

Ontology matching

a4 (Ontology)

Male
Female
Male

…

???

Column type annotation

a6 (Column) b6 (Ontology)
Gender

a7 (Column)

F
F
M
…

Sex

b7 (Column)

Schema matching

a3 (KG-entity)
b4 (Ontology)

b5 (String)

Hallin Fell
 a hill in the English Lake
District surrounded on three
sides by Ullswater

description

Gender

Name City
19David Smith Atlanta
Age

Male
Female
Male

…

Fig. 2. Samples of common data matching tasks over heterogeneous data elements with the following five
categories: String (in pink color), Tuple (in yellow color), Column (in green color), Ontology (in blue color),
and KG-Entity (in cyan color).

this case, a JSON-entity can be first converted into a tuple-entity, such that it falls into our entity
matching task.
(2) Entity linking refers to the task of determining whether a mention in a table refers to the same
object with a KG-Entity in a knowledge base. A mention is represented by a tuple that contains
multiple attributes. Existing solutions typically retrieve potential entities from knowledge bases
and then sort them by calculating their similarities (e.g., Hybrid II [20] and TURL [10]).
We formalize entity linking as determining whether a (Tuple, KG-Entity) pair matches or not.

An example of entity linking is shown in Figure 2 to determine whether a tuple 𝑎2 in a web table is
matched with the “Hallin Fell” entity in a knowledge base.
(3) Entity alignment refers to a task of determining whether two KG-entities, typically from different
knowledge graphs (e.g., DBPedia and YAGO), are the same real-world object (see [56] for a survey).
Existing solutions mainly learn entity embeddings and realize the matching of embeddings through
graph neural networks (e.g., GCN [26], CUEA [57]) or pre-trained language models (e.g., BERT-
INT [46]).

Entity alignment can be naturally formalized as determining whether a (KG-Entity, KG-Entity)
pair matches or not. Typically, the two KG-entities to be matched, such as (𝑎3, 𝑏3) in Figure 2, may
have different attributes or relational triples, where 𝑎3 has one attribute-value pair “(numberOfEm-
ployees, 50)” and two relational triples “(Zen-Studios, location, Hangary)” and “(Zen-Studios, product,
Pinball-FX)”, and 𝑏3 has one another attribute-value pair and one another relational triple.
(4) String matching refers to the task of determining whether two strings from two data sources
are semantically the same or not. Existing solutions use string similarity functions [50] or machine
learning methods such as the decision tree model to predict the results (e.g., Smurf [39] and
Falcon [8]).

We formalize the task as determining whether a (String, String) pair matches, e.g., determining
whether 𝑎5 (“5938 Chestnet St., Philadelphia, PA 19139”) and 𝑏5 (“5938 Chestnet Street, PHL, PA 19139”)
in Figure 2 indicate the same address.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

84:6 Jianhong Tu et al.

(5) Column type annotation typically determines the semantic types of a column in a table. Existing
solutions use a single cell embedding or column embedding to represent a column through neural
networks and then determine its type by similarity function or machine learning, where the type is
a category (e.g., HNN+P2Vec [5] and TURL [10]).
We formalize it as determining whether a (Column, Ontology) pair matches or not. Consider

column 𝑎6 in Figure 2, the problem is to decide whether an ontology 𝑏6 (e.g., “Gender”) is an
appropriate column type for the given Column 𝑎6.
(6) Schema matching determines the correspondences between columns of two schemata from
different tables. Existing solutions commonly define heuristic rules or calculate similarities between
schemas (e.g., COMA [12]).

We formalize the schema matching task as determining whether a (Column, Column) pair matches
or not. Consider the pair of 𝑎7 (named “Gender”) and 𝑏7 (named “Sex”) in Figure 2: schema matching
is the process of identifying whether there is semantic correspondence between these two columns,
e.g., referring to the same attribute of a person.
(7) Ontology matching finds correspondences between semantically related entities from different
ontologies. Existing solutions calculate similarities such as Jaccard similarity cross different nodes
of ontology and use machine learning models to predict the results (e.g., GLUE [15]).
We formalize ontology matching as determining a (Ontology, Ontology) pair matches or not.

Consider the pair (𝑎4, 𝑏4) in Figure 2: ontology matching is to determine whether “Earth-and-
Atmospheric-Sciences” from “College-of-Engineering” in “Cornell” and “Earth-and-Space-Sciences”
from “College-of-Arts-and-Sciences” in “Washington” refer to the same specialized subject.

2.2 A Unified Multi-Tasking Framework
Given multiple data matching tasks, the widely used practice is to build task-specific solutions,
e.g., using different models or with various parameters. On the contrary, we introduce a unified
multi-tasking framework called Unicorn for multiple data matching tasks, which has the following
notable advantages.

• Task unification standardizes task-specific solutions into a unified framework, achieving
lower development complexity, smaller model sizes and easier adaption of new tasks.

• Multi-task learning enables the possible opportunities of knowledge sharing among
different data matching tasks compared with training each task separately.

Figure 3 shows an overview of the Unicorn framework. The basic idea is to unify multiple data
matching tasks into a text-to-prob format due to its flexibility and extensibility, thus achieving a
unified input and output of different tasks. Specifically, Unicorn unifies the input by serializing
any pair (𝑎, 𝑏) of data elements into a text sequence, and outputs a probability 𝑦 to indicate if 𝑎 and
𝑏 match. To this end, Unicorn utilizes three main modules, namely Encoder, Mixture-of-Experts
and Matcher. Next, we introduce the input and the main modules of Unicorn as follows.
Input: Multiple Data Matching Tasks. Instead of considering an individual data matching task,
Unicorn takes as input a collection of data matching tasks, denoted as T = {𝑇𝑖 }. In particular, each
task 𝑇𝑖 = (𝐴𝑖 , 𝐵𝑖 , 𝜏𝑖 ,D𝑖) is composed of two sets of data elements to be matched, i.e., 𝐴𝑖 and 𝐵𝑖 , and
𝜏𝑖 is the type of task 𝑇𝑖 (see Section 2.1 for the supported task types). D𝑖 ⊂ 𝐴𝑖 × 𝐵𝑖 × {0, 1} is a set
of labeled examples, each of which denotes whether a pair of elements 𝑎 ∈ 𝐴𝑖 and 𝑏 ∈ 𝐵𝑖 is a match
(i.e., label 1) or a non-match (i.e., label 0). Figure 3 (a) shows three example data matching tasks, i.e.,
entity matching over 𝐴1 and 𝐵1, entity linking over 𝐴2 and 𝐵2 and schema matching over 𝐴3 and 𝐵3.
Note that Unicorn is extensible that new task types can be easily supported.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:7

A1 B1

Entity Matching Task

A2 B2

Entity Linking Task

A3 B3

Schema Matching Task

a(,)a a(,)a
a(,)a

a(,) a(,)a

Entity
Matching

Entity
Linking

Schema
Matching

Match Non-match

Matcher

0/1

Match Non-match

(a) Multiple Data Matching tasks

(b) Representations of data
pairs without feature alignment

(c) Representations of data
pairs with feature alignment

{(Tuple, Tuple),1/0}

{(Tuple, KG-entity),1/0}

{(Column, Column),1/0}

Pair-to-Text Serialization
text x = S(a, b)

Pre-Trained LM
x = F(x)

Encoder

x’ = MoE(x)

(feature alignment)x
Mixture-of-Experts

X’

a(,)

Fig. 3. An overview of our proposed Unicorn framework. (a) Unicorn learns from multiple data matching
tasks or datasets. (b) A generic Encoder converts any pair of data elements (𝑎, 𝑏) into a representation in the
form of a high-dimensional vector. (c) A Mixture-of-Experts layer aligns matching semantics of multiple
tasks by enhancing the learned representation into a better representation. Based on the representation, a
Matcher, i.e., a binary classifier, decides whether 𝑎 matches 𝑏.

Encoder: The Input Layer. Given an element pair (𝑎, 𝑏) from any data matching task (e.g., Fig-
ure 3 (a)), the aim of Encoder is to first serialize the pair into a text sequence 𝑥 , and then map 𝑥
into a high-dimensional vector-based representation x, i.e.,

x = F(𝑥) = F(S(𝑎, 𝑏)), (1)
where S(·) is a generic function for serializing any data element pair (𝑎, 𝑏) from the matching
tasks in T into a text sequence, and F(·) is a pre-trained language model (PLM) for deriving high-
dimensional feature vectors from the serialized sequences. For example, in Figure 3 (b), circles,
triangles and squares respectively represent feature vectors of the entity matching task, the entity
linking task and the schema matching task, where a solid shape (resp. a hollowed shape) denotes a
match (resp. a non-match).
Mixture-of-Experts: The Intermediate Layer. Although all the pairs from different tasks are
mapped into one feature space, the distributions of their representations may not be aligned, as
shown in Figure 3 (b). Consequently, it is hard to train a good Matcher.

To address the problem, we introduce an intermediate layer Mixture-of-Experts (MoE) [28, 33,
40, 44] to align the representations of different tasks, such that a good Matcher is easier to learn,
as shown in Figure 3 (c). The basic idea is to transform original features of the pairs into an aligned
feature space, i.e., x′ = MoE(x).

The Mixture-of-Experts layer is an ensemble learning method that consists of two key compo-
nents, Experts and Gating. Intuitively, it divides the input feature space into sub-spaces, and trains
an Expert model for the feature alignment on each subspace. Then, given a new input vector x, it
utilizes the Gating model to decide which experts to use for x. Formally, we use Expert𝑖 and 𝑔𝑖 to
represent the 𝑖-th Expert and its gating weight. Then, we have

x′ = MoE(x) = (𝑔1 · Expert1 (x)) + . . . + (𝑔𝑘 · Expert𝑘 (x)). (2)

We will discuss the challenges and our proposal on designing the above Experts and Gating models
in Section 4.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

84:8 Jianhong Tu et al.

Matcher: The Output Layer. Given the representation x′, the Matcher is a binary classifier, which
takes a vector x′ as input and outputs its probabilities 𝑦 of matching. For Matcher, MLP is the most
common choice used in existing deep learning-based classifier (e.g., DeepER [19] and Ditto [30]),
which is denoted as 𝑦 = M(x′).
Multi-task Training.We adopt multi-task supervised learning to train Unicorn, using a lot of
labeled match/non-match examples coming from all tasks in T . Specifically, we union all the labeled
element pairs in T to generate a training set D =

⋃
𝑖 D𝑖 , and train the above three modules of

Unicorn in an end-to-end manner.
Data Matching Prediction. After multi-task training over all the tasks in T , Unicorn can support
the following prediction scenarios.
(1) Unified Prediction on Existing Tasks. In this scenario, we use Unicorn to predict the test setDtst

𝑖

of any task𝑇𝑖 ∈ T . Note that Dtst
𝑖 is unlabeled and disjoint with the training set D𝑖 of𝑇𝑖 , e.g., any

unseen pairs for the existing tasks in Figure 3 (a).
(2) Zero-Shot Prediction on New Tasks.We can also use Unicorn to predict a new task 𝑇 , which is
not included in T , with a zero-shot setting such that the pairs in the new task have zero labels. For
example, given the learned models in Figure 3, we may use them to directly predict new unseen
datasets of various task types (e.g., string matching and column type annotation).
Remarks.We adopt the blocking technology [2, 14] to obtain appropriate labeled match/non-match
examples for each task. For example, we can use simple string distance calculation rules, such as
word overlapping, edit distance and euclidean distance, to filter out pairs that are unlikely matched.
We also use a proportion of labeled match/non-match pairs as validation set, which is standard and
thus not presented in this section for simplicity.

3 THE ENCODER MODULE
There are two main challenges in designing the Encoder. First, it is non-trivial to devise a generic
serialization function S(·) for various types of matching tasks over heterogeneous data elements.
Second, existing works choose different pre-trained language models (PLMs) on individual matching
tasks, e.g., RoBERTa for entity matching [30] and BERT for entity alignment [46]. Thus, it remains
an unresolved question on whether a unified PLM could achieve good performance on many
different matching tasks.
Inspired by the recent successes of unified frameworks that treat many NLP tasks as a “text-

to-text” problem [41, 54], we propose to serialize all data matching tasks into the text format and
then utilize a unified PLM for encoding data element pairs in the tasks. To this purpose, in this
section, we seek to answer two main questions: (1) which format should be used to unify different
matching tasks; and (2) which unified PLM model should be utilized, so as to avoid the limitation
that different PLMs have been used for different tasks.

3.1 Pair-to-Text Serialization
PLMs are natural choices for encoders, which typically take a sequence of tokens as input. Hence,
we propose to serialize a pair of data elements (𝑎, 𝑏) into a sequence of tokens (like Ditto [30]) as:

𝑥 = S(𝑎, 𝑏) = [CLS] S(𝑎) [SEP] S(𝑏) [SEP] (3)

where [CLS] is a special token to indicate the start of the sequence, the first [SEP] is a special
token to separate the sequence of element 𝑎 (i.e., S(𝑎)) and the sequence of element 𝑏 (i.e., S(𝑏)),
and the last [SEP] token is used to indicate the end of the sequence.

Next, we will describe how to serialize each type of the data elements.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:9

(,)

(,)

a4 b4
Ontology matching

(,)

a7 b7
Schema matching

(,)

a1 b1(,)
Entity matching

a2 b2
Entity linking

a3 b3
Entity alignment

(,)

a5 b5
String matching

(,)

a6 b6
Column type annotation

[CLS] [ATT] Name [VAL] Dave Smith [ATT] City [VAL] Atlanta [ATT] Age
[VAL] 18 [SEP] [ATT] Name [VAL] David Smith [ATT] City [VAL] Atlanta
[ATT] Age [VAL] 19 [SEP].

[CLS] [ATT] peak [VAL] hallin fell ... [SEP] Hallin Fell [ATT] description
[VAL] a hill in the English Lake… [SEP]

[CLS] Zen-Studios [ATT] numberOfEmployees [VAL] 50 [TRI] Zen-Studios
product Pinball-FX ... [SEP] Zen-Studios [ATT] inception [VAL] 2003
[TRI] Zen-Studios headquatersLocation Budapest ... [SEP]

[CLS] catalog-cornell College-of-Engineering Earth-and-Atmospheric-
Sciences [SEP] catalog-washington College-of-Arts-and-Sciences
Earth-and-Space-Sciences [SEP]

 [CLS] 5938 chestnut st... [SEP] 5938 chestnut street ... [SEP]

[CLS] [VAL] Male Female Male ... [SEP] Gender [SEP]

[CLS] [ATT] Gender [VAL] Male Female Male ... [SEP] [ATT] Sex
[VAL] F F M ... [SEP]

Fig. 4. A generic pair-to-text serialization that serializes pairs from data matching tasks into text sequences.

String serialization. Given a string str with words ⟨wordi⟩1≤𝑖≤𝑘 , we use the WordPiece tokeniza-
tion algorithm, like BERT [11], to serialize str into a sequence of sub-words (tokens) as

S(str) = token1 token2 . . . token𝑘 ′ .

For example, “Hallin Fell is a hill in the English Lake District surrounded on three sides by Ullswater”
is serialized into the token sequence “Hall ##in Fell is a hill in the ##Eng ##lish Lake Dis ##trict su
##rround ##ed...”. Note that we use this method to serialize all strings except special keywords in
the following data elements.
Tuple serialization. Given a tuple tupwith attribute-value pairs {(attr𝑖 , val𝑖)}1≤𝑖≤𝑘 , we serialize
it into a sequence as

S(tup) = [ATT] attr1 [VAL] val1 . . . [ATT] attr𝑘 [VAL] val𝑘 ,
where [ATT] and [VAL] are two special tokens for specifying attributes and values respectively.
Take tuple 𝑎1 of entity matching in Figure 2 as an example: we serialize it into “[ATT] Name [VAL]
Dave Smith [ATT] City [VAL] Atlanta [ATT] Age [VAL] 18”.
Column serialization.Given a column colwith an attribute name and values (attr, {val𝑖 }1≤𝑖≤𝑘),
we concatenate the attribute name and values of a whole column and serialize it as

S(col) = [ATT] attr [VAL] val1 val2 . . . val𝑘 .
Note that, in the case of too many values in the column, we randomly select a proportion of the
values. Take the column 𝑎7 of schema matching in Figure 2 as an example: we serialize 𝑎7 into
sequence “[ATT] Gender [VAL]Male Female Male . . . ”.
Ontology serialization. Given a tree-based ontology ont and a specific node𝑘 in the ontology, we
represent it as a sequence by concatenating all nodes in the path from root to node𝑘 as

S(node𝑘) = node1 node2 . . . node𝑘 .

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

84:10 Jianhong Tu et al.

Consider 𝑎4 in Figure 2, the serialized sequence is “catalog-cornell College-of-Engineering Earth-
and-Atmospheric-Sciences”.
KG-entity serialization. Given a KG-entity, which is also denoted as a subject entity sub in
the knowledge graph, it has not only some attribute values {(attr𝑖 , val𝑖)}1≤𝑖≤𝑘 , but also some
relational triples with other entities {⟨sub, rel𝑖 , obj𝑖⟩}1≤𝑖≤𝑚 . Based on the structure, we serialize
the KG-entity sub into sequence

S(sub) = sub [ATT] attr1 [VAL] val1 . . . [ATT] attr𝑘 [VAL] val𝑘
[TRI] sub rel1 obj1 . . . [TRI] sub rel𝑚 obj𝑚,

where [TRI] is a special token for specifying relational triples. As shown in Figure 2, we serialize
𝑎3 as “Zen-Studios [ATT] numberOfEmployees [VAL] 50 [TRI] Zen-Studios product Pinball-FX
[TRI] Zen-Studios location Hungary”.
Figure 4 depicts the examples of serialized sequences for all data element pairs from the seven

matching tasks as shown in Figure 2.
Zero-shot Instruction. For using Unicorn in zero-shot prediction on new tasks (see Section 2.2),
we further utilize instruction [51, 52] to improve the performance. As a way to boost the infer-
ence ability of large-scale PLMs for downstream tasks in zero-shot/few-shot settings, instruc-
tion has been proven to be effective in many unified models, such as OFA [51], which specifies
instruction templates described in natural language for a variety of multimodal tasks. SUPER-
NATURALINSTRUCTIONS [52] integrates 1,616 natural language processing tasks into a unified
framework using instruction and performs well on new tasks.

Inspired by these unified model, we develop a simple task-agnostic instruction for data mathing
tasks in this paper. The basic idea is to define an appropriate natural language template to make
downstream tasks (e.g., matching tasks in our paper) conform to the natural language form of
pre-training tasks. Specifically, we design the following simple instruction template, which is shown
to be effective in our experiments (see Section 5 Exp-5).

𝑥 = S(𝑎, 𝑏) = [CLS] does S(𝑎) [SEP] match with S(𝑏) [SEP] (4)

Consider schema matching of (𝑎7, 𝑏7) in Figure 4. By employing the above instruction tem-
plate, the pair is serialized into a sequence “[CLS] does [ATT] Gender [VAL] Male Fe-
male Male . . . [SEP] match with [ATT] Sex [VAL] F F M . . . [SEP]”.
Remarks. We only design a simple instruction template for matching tasks and preliminarily
verify its performance on matching tasks in our experiments. We will discuss more instruction
methods in the future work, such as specifying different instructions for different types of data
matching tasks. In addition, prompt [29, 31, 54] is also an effective method to stimulate the ability
of PLMs for downstream tasks, which will be systematically investigated in our future work.

3.2 Representation Learning of Serialized Pairs with Pre-trained Language Models
Given a sequence 𝑥 serialized from pair (𝑎, 𝑏), we employ a transformer-based pre-trained lan-
guage models (PLM) as encoder to convert the sequence into a high-dimensional vector-based
representation x. PLMs have proven to be the most effective methods of learning representations.
Representative PLMs include BERT [11], RoBERTa [32], DeBERTa [24], etc. However, different

from NLP tasks, the key challenge in Unicorn is to support structure-aware encoding, as tokens in
a serialized sequence may have specific structure information and depend on other tokens. For
example, consider entity alignment over (𝑎3, 𝑏3) in Figure 4, where the serialized sequence is

S(𝑎3, 𝑏3)=“[CLS] Zen-Studios [ATT] numberOfEmployees [VAL] 50 [TRI] Zen-Studios product
Pinball-FX. . . ”.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:11

In this example, “50” is a specific value, which highly depends on its attribute “numberofEm-
ployees”. Moreover, the token “Zen-Studios” after “[CLS]” plays more important roles in matching
compared with the same token after “[TRI]”, as the former is the name of the KG-entity 𝑎3 to be
matched and the latter just describes another entity connected to 𝑎3. Thus, the former “Zen-Studios”
should be paid more attention compared with the latter. Obviously, the conventional self-attention
mechanism in Transformer has limitations to support the structure-aware encoding.
To address the problem, we employ DeBERTa [24] as the PLM for structure-aware encoding.

The main reason is that DeBERTa has a new positional encoding scheme that captures relative
positions of tokens in the sequence, which is helpful to understand the structure among the tokens.
Consider our previous example again. The same token “Zen-Studios” will be encoded into different
representations, as the first one is relatively near to “[CLS]”, and thus should be attended by the
entire sequence, while the second one only needs to be attended in the smaller scope of “[TRI]”.
Specifically, DeBERTa [24] introduces disentangled attention and enhanced mask decoder to

explicitly consider both relative and absolute positions of the tokens in an input sequence. The
idea of disentangled attention is that, when calculating attention score (i.e., relation score) between
two tokens, DeBERTa considers not only the conventional content attention, but also an attention
score based on relative positions. Formally, the attention score of two tokens at positions 𝑖 and 𝑗 in
the sequence is calculated by the function (from the original DeBERTa paper [24]):

𝐴𝑖, 𝑗 = {𝐻𝑖 , 𝑃𝑖 | 𝑗 } × {𝐻 𝑗 , 𝑃 𝑗 |𝑖 }𝑇 = 𝐻𝑖𝐻
𝑇
𝑗 + 𝐻𝑖𝑃

𝑇
𝑗 |𝑖 + 𝑃𝑖 | 𝑗𝐻

𝑇
𝑗 + 𝑃𝑖 | 𝑗𝑃𝑇𝑗 |𝑖 , (5)

where𝐻𝑖 represents the content of token at the 𝑖-th position, and 𝑃𝑖 | 𝑗 represents its relative position
to the token at the 𝑗-th position. The above function shows that the attention between two tokens
is computed by disentangled matrices, which consider both contents and positions as a sum of four
attention scores: content-to-content, content-to-position, position-to-content, and position-to-position.
Moreover, the enhanced mask decoder incorporates absolute position to context embedding right
after all the transformer layers but before the Softmax layer during Masked Language Modeling
(MLM) pre-training, which enables the model to understand absolute positions. Also, DeBERTa
uses virtual adversarial training to improve the generalization of the model. More details can be
found in the original paper of DeBERTa [24].

We also explore the benefits and limitations of a variety of PLMs, which are listed as follows.

• BERT [11] and RoBERTa [32] consider absolute positions of the input sequence, but do not
explicitly model relative positions. Moreover, the MLM pre-training task used in BERT is
also helpful for understanding absolute positions.

• XLNet [55] aims to capture relative positions by devising a pre-training task Permuted
Language Modeling, which may damage the understanding of absolute positions.

• MPNet [45] considers both relative and absolute positions by position compensation.
• DistilRoBERTa [43], and DistilBERT [43] are some representative distillation models, which
are smaller and faster to train.

Please refer to Section 5 Exp-1 for a comprehensive comparison of different PLMs for Unicorn.

4 THE MIXTURE-OF-EXPERT MODULE
The objective of the Mixture-of-Experts (MoE) layer [21, 28, 44] in Unicorn is to map different
distributions of multiple tasks to a same shared distribution. Thus, equipping Unicorn withMoE
will make it not only easily supporting multiple data matching tasks with different semantics and
various input formats, but also being extensible to support new matching tasks.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

84:12 Jianhong Tu et al.

MoE

(a, b)

Pair-to-text Serialization

Encoder

Representation x

Gate

Representation x’

Matcher

Expert 1 Expert 2 Expert k

x

0.33

0.17
0.25

Fig. 5. An overview of the Mixture-of-Experts layer. Experts are a set of neural networks to map x to
different representations, and Gating is to combine the outputs of Experts according to learned weights that
depend on the input x.

Formally, the layer MoE(x) : R𝑑1 → R𝑑2 is a function that converts an original feature vector
x ∈ R𝑑1 into a new feature vector x′ ∈ R𝑑2 . In this paper, we adopt the most common Mixture-of-
Experts architecture [25] that contains two key components, Experts and Gating. Experts are a
set of neural networks, whose parameters are not shared, to individually map x to x′ in the shared
feature space. The aim ofGating is to combine the outputs of Experts according to different weights
that depend on the input feature vector x. Next, we first present the neural network design and the
training algorithm forMoE in Section 4.1, and then introduce an optimization strategy for better
routing among Experts in Section 4.2.

4.1 MoE Model Design and Training
Our neural network design for the Experts and Gating components inMoE is shown in Figure 5.
Neural Network Design. For each Expert𝑖 , we use a fully-connected layer with LeakyReLU as
activation function to convert the input feature vector x into an output x𝑖 ∈ R𝑑2 :

x𝑖 = LeakyReLU(x𝑊 (𝑖)) (6)

where𝑊 (𝑖) ∈ R𝑑1×𝑑2 are trainable parameters.
The Gating component also takes the feature vector x as input, and produces a gating vector

g = (𝑔1, 𝑔2, . . . , 𝑔𝑘) where 𝑘 is the number of Experts and 𝑔𝑘 is the routing weight of Expert𝑖 .
Specifically, we design two fully-connected layers with LeakyReLU and Softmax as activation

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:13

functions, i.e.,
g = Softmax

(
LeakyReLU(x𝑊 G

1)𝑊 G
2
)

(7)

where𝑊 G
1 ∈ R𝑑1×ℎ and𝑊 G

2 ∈ Rℎ×𝑘 are trainable parameters, ℎ is dimension of the hidden layer,
and 𝑘 is the number of experts.
Based on Equations (6) and (7), we obtain 𝑘 feature vectors, x1, x2, ..., x𝑘 through the 𝑘 Experts,

and then use weighted average to calculate a unified representation as x′, i.e.,

x′ = MoE(x) = 𝑔1 · x1 + 𝑔2 · x2 + · · · + 𝑔𝑘 · x𝑘 . (8)

Figure 5 illustrates an example of MoE. Given an encoded representation x from a pair (𝑎, 𝑏),
MoE divides the input feature space into 𝑘 sub-spaces, each of which is handled with a trainable
Expert model. It also devises a Gating model to compute 𝑘 weights, e.g., (0.33, 0.17, . . . , 0.25) from
each individual input x. Finally, MoE computes the weighted average of the outputs of the Experts.
End-to-End Model Training. We train the components Encoder, MoE and Matcher of Unicorn
in an end-to-end manner, as presented previously. Specifically, the output x′ of MoE is fed into
Matcher to produce the predicted result 𝑦 = M(x′). Given all labeled pairs D =

⋃
𝑖 D𝑖 from

different matching tasks (see Section 2.2), we can compute the cross entropy loss as

L = E(x′,𝑦) ∈DLCE (𝑦,𝑦), (9)

where (x′, 𝑦) is a labeled matching/non-matching pair outputted by the previous Encoder and
Mixture-of-Experts modules and LCE is the cross entropy function.

Next, by iteratively applying minibatch stochastic gradient descent, parameters of the modules
Encoder,MoE and Matcher are optimized, and thus Unicorn could be improved towards producing
accurate matching results for different tasks.

4.2 MoE Optimization for Expert Routing
One obstacle of training MoE is that various input vectors {x} may use the same few Experts; that
is, these Experts have larger gating weights than others for almost all the inputs. This phenomenon
will affect the performance of MoE, as it fails to take advantage of different Experts for various
data matching tasks.

To address this problem, we introduce an optimization strategy for Expert Routing. The basic idea
is to improve the original loss function in Equation (9) by further considering two more objectives:
(1) Inspired by Sparsely-Gated MoE [44], for the overall training set, we want all the experts to

be used in a balanced way.
(2) For any specific training pair, we would like to assign a few specific experts to it, instead of

evenly assigning it to all the Experts, which is shown to achieve better performance in our
experiments.

Technically, to achieve the first objective, we compute the “utilization” of all the experts on the
overall training set D. Formally, we compute an Expert utilization vector u for the 𝑘 Experts as:

u = (
∑︁
x∈D

𝑔1,
∑︁
x∈D

𝑔2, . . . ,
∑︁
x∈D

𝑔𝑘), (10)

where
∑

x∈D 𝑔𝑖 is the sum of gating weights for Expert𝑖 on all the training examples in D. As we
want to achieve more balanced utilization of the Experts, we compute a load balancing loss, denoted
as LBal by computing coefficient of variation of utilization u as:

LBal = [𝜎 (u)
` (u)]

2 (11)

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

84:14 Jianhong Tu et al.

where 𝜎 (u) and ` (u) are respectively standard deviation and mean of the utilization vector u.
Intuitively, the smaller the loss LBal is, the more balanced the utilization of the Experts is.

To achieve the second objective, we compute the entropy of the gating vector g for each training
examples. The idea is that, we want that different Experts are trained to handle different feature
sub-spaces, to make full use of the ensemble ability ofMoE. Formally, we define an entropy loss
function LEnt over training examples:

LEnt = E(x′,𝑦)Entropy(g) = E(x′,𝑦)−
𝑘∑︁
𝑖=1

𝑔𝑖 · log(𝑔𝑖) (12)

By considering the above loss functions, we derive a new loss function for training Unicorn as:

Lnew = L + LBal + LEnt (13)

Note that, we apply the sameminibatch stochastic gradient descent for training Unicorn given the
new loss function. Specifically, in each training iteration, we compute the loss based on Equation (13)
for training examples in a minibatch, and then update all the parameters in Unicorn by using
back-propagation.

5 EVALUATION
Next, we report the experimental evaluation for Unicorn. The key questions we answer with our
evaluation are presented as follows.
Exp-1: Which pre-trained language model should be employed as Encoder in Unicorn?
Exp-2: Which strategy performs well in the Mixture-of-Experts layer?
Exp-3: How does a unified model Unicorn (i.e., trained using labeled datasets from multiple tasks)

compare with specific state-of-the-art (SOTA) models (i.e., each model is separately trained
for ad-hoc tasks and datasets)?

Exp-4: How does Unicorn perform on a new task with zero labeled matching/non-matching pairs?
Exp-5: Whether our proposedMoE and instruction techniques are helpful in the zero-shot setting?
Exp-6: How does Unicorn perform for unseen tasks of totally new task types?

5.1 Experimental Setup

Datasets. Recall that Unicorn so far supports seven types of common data matching tasks (see
Figure 2), including entity matching, entity linking, entity alignment, string matching, column
type annotation, schema matching, and ontology matching. For each task type, we employ the
commonly used datasets for evaluation, as shown in Table 1, each of which is denoted as a task
(see definition of task in Section 2.2). Each task contains two sets, 𝐴 and 𝐵, of data elements with
different categories. Then, for each task, we derive the set D of labeled matching/non-matching
pairs, and divide D into training Dtrn, validation Dval and test Dtst. For fair comparisons of
SOTA methods for each task, we prepare Dtrn, Dval and Dtst as follows.

(1) For each entity matching task, we directly use the training, validation and test sets prepared
by the SOTA method Ditto [30], which have a ratio of 3:1:1, for a fair comparison with Ditto.
(2) For each entity alignment task, we follow the SOTA method BERT-INT [46] for data prepa-

ration. We first split the matching pairs for training, validation and test in a ratio of 2:1:7. Then,
for each matching pair (𝑎, 𝑏) for training and validation, we prepare one non-matching pair by
replacing 𝑏 with a randomly sampled data element 𝑏′ ∈ 𝐵. For test set, we first find all matching
pairs {(𝑎, 𝑏)}, and then use all other combinations of {𝑎} and {𝑏} as non-matching pairs.

(3) For each task of string matching, schema matching, ontology matching, column type annotation
and entity linking, the SOTA methods have not provided the prepared training, validation and test

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:15

Table 1. Dataset Statistics, where |𝐴| (or |𝐵 |) represents the number of data elements in set 𝐴 (or
𝐵) in each task, # Matches (# Non-Matches) represents the number of matches (non-matches) in
the labeled set D of the task. Metric is the commonly-adopted measurement for evaluating the
corresponding data matching task.

Task Type Task |𝐴| |𝐵 | # Matches # Non-Matches Metric

Entity Matching (EM)
(Tuple, Tuple)

Walmart-Amazon (WA) 2,554 22,074 962 9,280 F1
DBLP-Scholar (DS) 2,616 64,263 5,347 23,360 F1
Fodors-Zagats (FZ) 533 331 110 836 F1
iTunes-Amazon (IA) 6,907 55,923 132 407 F1

Beer (Be) 4,345 3,000 68 382 F1
Column Type

Annotation (CTA)
(Column, Ontology)

Efthymiou (Ef) 620 31 620 18,600 Acc.
T2D (T2D) 383 37 383 13,788 Acc.

Limaye (Lim) 174 27 179 4,519 Acc.
Entity Linking (EL)
(Tuple, KG-Entity)

T2D (T2D) 11,650 26,025 20,666 131,945 F1
Limaye (Lim) 659 4,166 1,447 36,020 F1

String Matching (StM)
(String, String)

Address (Ad) 24,650 29,531 9,850 1,062 F1
Names (Na) 10,341 15,396 5,132 2,763 F1

Researchers (Re) 8,342 43,549 4,556 4,767 F1
Product (Pr) 2,554 22,074 1,154 79,310 F1
Citation (Ci) 2,616 64,263 5,347 34,152 F1

Schema Matching (ScM)
(Column, Column)

FabricatedDatasets (Fa) 11,172 11,352 7,692 109,762 Recall
DeepMDatasets (DM) 41 41 41 268 Recall

Ontology Matching (OM)
(Ontology, Ontology)

Cornell-Washington
(CW) 176 166 53 285 Acc.

Entity Alignment (EA)
(KG-Entity, KG-Entity)

SRPRS: DBP-YG (SYG) 15,000 15,000 15,000 38,891 Hits@K
SRPRS: DBP-WD (SWD) 15,000 15,000 15,000 38,492 Hits@K

sets. Thus, we adopt blocking techniques to obtain appropriate labeled matching/non-matching
examples. Specifically, we combine all data elements from 𝐴 and 𝐵, and then apply some heuristic
blocking rules (such as having no common words or smaller string similarities) to filter out the
pairs which are very likely to be non-matching, resulting in a candidate set. Then, we divide the
candidate set into training, validation and test sets in a ratio of 2:1:7.
Evaluation Metrics. For fair comparisons with SOTA methods, we use the evaluation metrics
which are also used by these methods.

(1) For entity matching, entity linking, and string matching tasks, following the SOTA methods,
we use F1 score as the evaluation metric. F1 score is the harmonic mean of precision and recall
for the matching pairs, where precision 𝑃 is the proportion of predicted true matching pairs to all
predicted matching pairs, recall 𝑅 is the proportion of predicted true matching pairs to all true
matching pairs, and the F1 score is computed as 2 · 𝑃 · 𝑅/(𝑃 + 𝑅).

(2) For column type annotation and ontology matching tasks, the SOTA methods use accuracy as
the evaluation metric. By following them, we also use accuracy (Acc. for short), which is the ratio
of the correct predicted pairs to all candidate pairs.

(3) For entity alignment, we use the common evaluation metric Hits@K, which is defined as the
proportion of elements in 𝐴 whose true matched elements in 𝐵 are in the top-𝐾 matching results
returned by an approach. Obviously, the higher the Hits@K is, the better an approach is. Following
BERT-INT [46], we report Hits@1.
(4) For schema matching, like the SOTA method Valentine [27], we use Recall as the metric,

which is the proportion of predicted matching schema pairs to all matching schema pairs.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

84:16 Jianhong Tu et al.

Table 2. Results for Representative Pre-trained Language Models for the EncoderModule.

Type Task Metric BERT RoBERTa DistilBERT DistilRoBERTa XLNet MPNet DeBERTa

EM

Walmart-Amazon F1 84.24 84.37 75.07 68.99 79.43 83.01 86.89
DBLP-Scholar F1 95.7 94.88 93.92 95.53 95.62 95.02 95.64
Fodors-Zagats F1 97.67 95.24 92.68 95.24 100 97.67 100
iTunes-Amazon F1 94.55 96.3 90 87.1 89.66 94.55 96.43

Beer F1 87.5 90.32 86.67 90.32 84.85 90.32 90.32

CTA
Efthymiou Acc. 98.43 98.1 97.51 97.68 97.58 98.13 98.42

T2D Acc. 99.29 98.75 98.22 98.27 98.17 98.89 99.14
Limaye Acc. 96.63 96.35 96.26 96.2 96.2 96.63 96.75

EL T2D F1 93.65 89.3 85.08 78.86 78.85 92.17 91.96
Limaye F1 85.08 85.8 66.71 78.94 82.53 83.37 86.78

StM

Address F1 98.49 98.59 96.75 97.13 98.15 98.56 98.68
Names F1 92.58 94.37 55.47 90.71 76.26 80.97 91.19

Researchers F1 98.99 97.71 97.88 95.65 98.72 98.44 97.66
Product F1 81.13 80.67 65.8 63.71 71.73 76.81 82.9
Citation F1 96.28 95.7 93.74 95.11 95.91 95.28 96.27

ScM FabricatedDatasets Recall 77.85 77.72 42.96 77.48 70.99 70.62 89.6
DeepMDatasets Recall 88.89 88.89 92.59 92.59 100 88.89 96.3

OM Cornell-Washington Acc. 90.64 86.38 91.06 68.94 77.45 75.74 92.34

EA SRPRS: DBP-YG Hits@1 99.34 99.49 99.24 99.22 98.69 99.47 99.67
SRPRS: DBP-WD Hits@1 97.3 97.13 97.34 96.62 96.78 97.47 97.22

AVG 92.71 92.3 85.75 88.21 89.38 90.6 94.21

Implementation Details of Unicorn. For Encoder, we explore the performance of BERT [11],
RoBERTa [32], DeBERTa [24], MPNet [45], XLNet [55], DistilRoBERTa [43], and DistilBERT [43].
We use the pre-trained base size checkpoints directly on the Hugging Face [1]. For (BERT, RoBERTa,
DeBERTa, MPNet, XLNet)-base models, they use 12 transformer layers and output a 768 dimensional
hidden embedding. For DistilRoBERTa and DistilBERT, there are 6 transformer layers. We set the
maximum sequence length as 128. For theMoE layer, we choose expert number from 2 to 15, and
set hidden dimensions of gate and output size of experts from {384, 768, 1024} according to the
performance of validation set. A single fully connected layer is used for Matcher to output matching
probabilities. We choose learning rate from {3e-5, 3e-6}, set batchsize as 32, and use maximum
epoch number as 10.
Model Size. We compute the number of parameters of models to measure the model size. We use
a python program to directly get the number of parameters. For Encoder, DeBERTa-base (used
by Unicorn), RoBERTa-base (used by Ditto), BERT-base-multilingual (used by BERT-INT) and
TinyBERT (used by TURL) have 139 Million (139M for shot), 125M, 178M and 14.5M parameters
respectively. The Mixture-of-Experts layer has 8 Million parameters. We ignore the single layer
in Matcher as it is too small. Thus, we compute the total model size for all methods by summing
the numbers of parameters in the Encoder and theMoE layer (if any).
All the experiments are implemented using PyTorch [38] version 3.6.5 and the Transformers

library [53], and evaluated on a server with 4 CPU cores (Intel Xeon Gold 6138 CPU @ 2.00GHz), 4
NVIDIA RTX 24GB GPUs, and 1024GB memory.

5.2 Evaluation on Unified Prediction
This section reports the experimental results for evaluating unified prediction (see Section 2.2).
Specifically, we train a shared model Unicorn by multi-tasking training over all training sets
from the data matching tasks, use the checkpoint of the model with the best average validation
performance, and report the model performance on the test sets of different tasks.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:17

Table 3. The Overall Result for Unified Prediction. Unicorn w/o MoE is a variant of Unicorn that has
no MoE layer. Unicorn is our proposed framework with Encoder, MoE and Matcher. Unicorn ++ is
improved withMoE optimization for Expert Routing.

Type Task Metric Unicorn w/oMoE Unicorn Unicorn ++ Previous SOTA (Paper)

EM

Walmart-Amazon F1 85.12 86.89 86.93 86.76 (Ditto [30])
DBLP-Scholar F1 95.38 95.64 96.22 95.6 (Ditto [30])
Fodors-Zagats F1 97.78 100 97.67 100 (Ditto [30])
iTunes-Amazon F1 94.74 96.43 98.18 97.06 (Ditto [30])

Beer F1 90.32 90.32 87.5 94.37 (Ditto [30])

CTA
Efthymiou Acc. 98.08 98.42 98.44 90.4 (TURL [10])

T2D Acc. 98.81 99.14 99.21 96.6 (HNN+P2Vec [5])
Limaye Acc. 96.11 96.75 97.32 96.8 (HNN+P2Vec [5])

EL T2D F1 79.96 91.96 92.25 85 (Hybrid I [20])
Limaye F1 83.12 86.78 87.9 82 (Hybrid II [20])

StM

Address F1 97.81 98.68 99.47 99.91 (Falcon [39])
Names F1 86.12 91.19 96.8 95.72 (Falcon [39])

Researchers F1 96.59 97.66 97.93 97.81 (Falcon [39])
Product F1 84.61 82.9 86.06 67.18 (Falcon [39])
Citation F1 96.34 96.27 96.64 90.98 (Falcon [39])

ScM FabricatedDatasets Recall 81.19 89.6 89.35 81 (Valentine [27])
DeepMDatasets Recall 66.67 96.3 96.3 100 (Valentine [27])

OM Cornell-Washington Acc. 90.64 92.34 90.21 80 (GLUE [15])

EA SRPRS: DBP-YG Hits@1 99.46 99.67 99.49 100 (BERT-INT [46])
SRPRS: DBP-WD Hits@1 97.11 97.22 97.28 99.6 (BERT-INT [46])

AVG 90.8 94.21 94.56 91.84
Model Size 139M 147M 147M 995.5M

Exp-1: Which pre-trained language model (PLM) should be employed in Unicorn? We first
evaluate the performance of different PLMs. Under the same Unicorn framework, we use seven
PLMs in base size as Encoder. Except for Encoder, we use the same settings and hyper-parameters
to train the unified model. The results are reported in Table 2, where bold values are the best for
each task. We can see that Unicorn works well for all PLMs as Encoder, which proves the stability
and generality of the framework. Also, we find that DeBERTa achieves the best performance on 11
tasks and on average, and performs as the second best in the remaining tasks. The main reason
is that DeBERTa has a new positional encoding scheme that captures relative positions of tokens
in the sequence, which is helpful to understand the structure among the tokens, as we discussed
in Section 3.2. Furthermore, we find that the performance of DistilRoBERTa and DistilBERT are
slightly worse than other base size models, mainly because distillation models sacrifice performance
for time. Note that, in what follows, we will use DeBERTa by default.

Finding 1: Overall, we find that DeBERTa is the most suitable encoder for Unicorn, which
requires structure-aware encoding and high generalization.

Exp-2: Which strategy performs well in Mixture-of-Experts of Unicorn? Table 3 reports
the overall results for all tasks. Unicorn w/oMoE is a variant of Unicorn that has noMoE layer,
i.e., only using an Encoder and a Matcher. Unicorn is our proposed framework, which consists
of an Encoder, a MoE intermediate layer, and a Matcher. Unicorn ++ is our proposed Unicorn
improved with MoE optimization for Expert Routing (see Section 4.2).
We find that both Unicorn and Unicorn ++ are better than Unicorn w/o MoE, which means

that MoE is helpful to our proposed unified architecture. In particular, Unicorn ++ achieves the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

84:18 Jianhong Tu et al.

EA:SYG
EA:SWD

EL:Lim
EM:IA
EM:Be

OM:CW
CTA: Ef_

CTA:T2D
CTA:Lim

StM:Ad
StM:Na
ScM:Fa

ScM:DM
StM:Ci
EM:DS
StM:Pr

EM:WA
StM:Re
EM:FZ

EL:T2D

1 2 3 4 5 6
Exper t ID

T
as
ks

(a) Unicorn

EA:SYG
EA:SWD

EL:Lim
EM:IA
EM:Be

OM:CW
CTA:Ef_

CTA:T2D
CTA:Lim

StM:Ad
StM:Na
ScM:Fa

ScM:DM
StM:Ci
EM:DS
StM:Pr

EM:WA
StM:Re
EM:FZ

EL:T2D

1 2 3 4 5 6
Exper t ID

(b) Unicorn ++

Fig. 6. Visualization of average utilization weights of the Experts in each task. (a) For Unicorn with
typical MoE, all tasks mainly use the first four Experts, while the weights of the Experts are even. (b)
For Unicorn ++ with optimizedMoE, the distinction of the Experts is more obvious.

best performance for most tasks and on average, which shows that Expert Routing can improve
the overall performance. To provide an in-depth analysis, we visualize the average utilization
weights of the Experts in each task using a heatmap shown in Figure 6 (the darker the color,
the greater the weight). For Unicorn, Figure 6 (a) shows that all tasks mainly use the first four
Experts, while the weights of the Experts are even. For Unicorn ++, Figure 6 (b) shows that the
distinction of the Experts is more obvious. We find that similar tasks can be aggregated to the
same expert. For example, all entity alignment (EA) tasks are (KG-entity, KG-entity) pairs and
mainly aggregated to Expert 1. All column type annotation (CTA) are (Column, Ontology) pairs and
aggregated to Expert 2. All schema matching (ScM) are (Column, Column) pairs and aggregated to
Expert 3. For Expert 4 and Expert 5, the string matching (Stm) task StM:Ci and the entity matching
(EM) task EM:DS are about bibliographies, while StM:Pr and EM:WA are about products. The above
results show that our optimization technique that considers two new additional loss functions in
Equation (13) is quite effective.

Finding 2: The MoE intermediate layer is quite helpful for Unicorn, while our MoE opti-
mization for Expert Routing can further improve the overall performance.

Exp-3: How does a unifiedmodel Unicorn (i.e., trained using labeled datasets frommultiple
tasks) compare with specific models (i.e., each model is separately trained for only one
task)? We compare performance with the previous SOTA methods: Previous SOTA in Table 3
shows the results of the best task-specific model, which are reported by the existing papers, for

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:19

Table 4. Zero-shot Performance of Unicorn (# of Labels is the number of labels needed by SOTA
methods). Unicorn w/oMoE has noMoE layer. Unicorn has Encoder,MoE and Matcher. Unicorn-ins is
improved with our proposed instruction technique.

Type Task Metric Unicorn w/o MoE Unicorn Unicorn-ins SOTA (# of labels)
EM DBLP-Scholar F1 90.91 95.39 97.08 95.6 (22,965)
CTA Limaye Acc. 96.2 96.59 96.5 96.8 (80)
EL Limaye F1 74.16 78.92 82.8 82 (-)
StM Product F1 60.71 74.92 78.76 67.18 (1,020)
ScM DeepMDatasets Recall 74.07 92.59 96.3 100 (-)
EA SRPRS: DBP-WD Hits@1 95.55 97.25 96.17 99.6 (4,500)

AVG 81.93 89.28 91.27 90.2

each corresponding task. Because eight separated PLMs are used for BERT-INT [46], Ditto [30]
and TURL [10], while other solutions use lightweight strategies without PLMs. For simplicity, we
compute the model size of previous SOTA by just summing model sizes of the PLMs.

The experimental results show that our unifiedmodels (i.e., Unicorn and Unicorn ++) outperform
the previous SOTA methods on 15 over 20 tasks. For example, our unified models achieve the best
accuracy on all tasks of column type annotation, significantly outperforming the previous SOTA
method. Overall, our unified model Unicorn ++ gains an average evaluation score 94.56, while
the previous SOTA is 91.84. Moreover, thanks to task unification, the model size of a unified
Unicorn is much smaller, i.e., 147M vs. 995.5M, where 147M is 139𝑀 + 8𝑀 for DeBERTa-base plus
MoE layer and 995.5M is 125𝑀 × 5 + 14.5𝑀 + 178𝑀 × 2 for five Ditto models, one TURL model, and
two BERT-INT models in Previous SOTA (see Section 5.1 for calculation details of each model),
compared with multiple specific models. The performance superiority of Unicorn is attributed to
itsmulti-task learning that enables the unified model to learn from multiple tasks and multiple
datasets to make full use of knowledge sharing. Specifically, as discussed in Exp-2, the data domains
(e.g., bibliographies, products, and so on) of entity matching and string matching tasks are similar,
which enables Unicorn to have a better understanding of these specific data. Entity alignment and
entity linking enable Unicorn to have a better understanding of knowledge graph entities. Column
type annotation and schema matching have similar data elements (columns), which can improve
the understanding ability of column data for Unicorn.

Finding 3: Our unified model achieves better performance on most datasets and on average,
compared with the SOTA specific models trained for ad-hoc tasks and datasets separately.

5.3 Evaluation on Zero-Shot Prediction

Exp-4: How does Unicorn perform on unseen tasks with a zero-shot setting? This section
explores the zero-shot effectiveness of our trained unified model Unicorn, i.e., directly using the
trained Unicorn to predict unseen new tasks without any labels. Specifically, for each task type,
we randomly choose one task as new unlabeled task for testing, and only use the remaining tasks
for multi-task training of Unicorn. As shown in Table 4, the results of Unicorn with zero label are
comparable with previous SOTA methods with many labels. For example, for the entity matching
task on DBLP-Scholar, the best variant of Unicorn, i.e., Unicorn-ins achieves 97.08 on F1 score
with zero label, outperforming 95.6 of Ditto [30] with 22, 965 labels. We also find that the overall
performance of Unicorn-ins is better than that of previous SOTA methods, i.e., 91.27 vs. 90.2.
These results show that Unicorn can also well serve new matching tasks with zero-shot learning,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

84:20 Jianhong Tu et al.

Table 5. Zero-shot Performance of Unicorn for new unseen task types. (# of Labels is the number of
labels needed by SOTA methods). Unicorn-ins is improved with instruction.

Type Task Metric Unicorn-ins SOTA (# of labels)
EM DBLP-Scholar F1 94.5 95.6 (22,965)
CTA Limaye Acc. 96.23 96.8 (80)
EL Limaye F1 79.59 82 (-)
StM Product F1 74.26 67.18 (1,020)
ScM DeepMDatasets Recall 88.89 100 (-)
EA SRPRS: DBP-WD Hits@1 97 99.6 (4,500)

AVG 88.41 90.2

as it has good matching knowledge sharing ability for new tasks. This also encourages us to release
checkpoints of Unicorn, which are trained from multiple data matching tasks or multiple datasets
for researchers and practitioners to use.

Finding 4: Unicorn can be effectively applied to new tasks, which are not included in the
multi-task training, in a zero-shot setting such that pairs in the new task are unlabeled.
Exp-5: Whether our proposedMoE and instruction techniques are helpful in the zero-shot
setting? We evaluate the performance of zero-shot learning on new tasks for three variants of
Unicorn, namely Unicorn w/oMoE, Unicorn and Unicorn-ins. Table 4 shows the experimental
results. We can see that Unicorn w/oMoE has the worst performance among the there variants.
This result indicates that theMoE Layer is more conducive to preserving the performance of model
on a new task, that is, to better use knowledge of seen tasks to predict on new unseen task. The
main reason is that, the MoE layer learns from data instances what is the best way of aligning
distributions between a new task and existing tasks, such that the models trained on the existing
tasks can be used (or adapted) to the new task.
We also find that Unicorn-ins achieves the best performance, i.e., outperforming the original

Unicorn by about 2% on average, as reported in Table 4. This result shows that the simple instruction
template in Equation (4) is also quite promising in building one model to unify data matching tasks.
There are some recent studies on exploring more sophisticated instruction or prompting techniques
for matching tasks [36, 51, 52]. We will explore this direction as future work.

Finding 5: There is great potential for studying Mixture-of-Experts and instruction on
Unicorn to further improve the performance of zero-shot predictions.

Exp-6: How does Unicorn perform for unseen tasks of totally new task types? We evaluate
the performance of Unicorn for unseen tasks of totally new task types. To this end, we conduct
experiments with Unicorn-ins, a version of Unicorn improved by our proposed instruction tech-
nique. The results are reported in Table 5, where each row represents an unseen task (i.e., Task) of
a total new task type (i.e., Type). Take the first row of Table 5 as an example. For testing DBLP-
Scholar of entity matching, we remove all the tasks/datasets of entity matching from the training
data of Unicorn-ins. Similarly, for testing Limaya of column type annotation, the training data
of Unicorn-ins does not contain any task/dataset of column type annotation. We can see that
the performance of Unicorn-ins is comparable to that of the SOTA specific models, e.g., 88.41
vs. 90.2 on average, and sometimes Unicorn-ins is even better. For example, on the Product task,
Unicorn-ins with zero labels performs better than the SOTA specific model with 1,020 labels (74.26

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:21

(a) ScM: DeepMDatasets (b) CTA: Limaye (c) StM: Product (d) EM: DBLP-Scholar

Fig. 7. Knowledge sharing capability of Unicorn across different task types. (a) and (b) evaluate knowledge
sharing between schema matching (ScM) and column type annotation (CTA), while (c) and (d) consider entity
matching (EM) and string matching (StM).

vs. 67.18). The results show that our unified model is competitive to the SOTA specific models even
if the unified model has never seen the type of a task and has no specific labels from the task.

The above results inspire us to conduct an in-depth analysis on the knowledge sharing capability
of Unicorn across different task types. To this end, we first consider a pair of task types, e.g., schema
matching (ScM) and column type annotation (CTA), and then compare the results of one task type
with and without the other task type used for training Unicorn. Some representative experimental
results are reported in Figure 7, from which we have following interesting observations.
(1) Similar task types.We first investigate similar task types that involve same data elements. Specif-
ically, we examine column type annotation (CTA) and schema matching (ScM), both of which
consider the column element. As shown in Figure 7(a), training Unicorn with CTA tasks is helpful
for the ScM task DeepMDatasets (96.3 vs. 70.37 on Recall). Similarly, Figure 7(b) shows that using
ScM tasks to train Unicorn is also helpful for the CTA task Limaye (95.96 vs. 85.89 on Acc.).
(2) Similar tasks.We also examine similar tasks in common domains, e.g., products, citations, etc.
Specifically, we find that the two task types, entity matching (EM) and string matching (StM),
have similar tasks in common domains. For example, The EM tasks, Walmart-Amazon and iTunes-
Amazon, are about products, while the StM task Product is also about products. Thus, we report
the knowledge sharing capability of Unicorn across these two task types. Figure 7(c) shows that
training Unicorn with EM tasks is very helpful for improving the performance of the EM task
Product (59.98 vs. 18.76 on F1), and vice versa (see Figure 7(d)).
it is worth noting that the knowledge sharing capability of Unicorn is only preliminarily dis-

cussed here, and we will conduct a more systematic study in our future work.
Finding 6: Unicorn performs well for unseen tasks of totally new task types in the zero-shot
setting. Moreover, Unicorn enables the possible opportunities of knowledge sharing among
different task types.

6 RELATEDWORK
6.1 Data Matching Tasks
The “data matching” process is central to most, if not all, data integration problems. We consider
the following common data matching tasks in this paper. (1) Entity matching discovers duplicate
entities (or tuples), i.e., those refer to the same real-world objects [7, 18]. Existing solutions define
similarity functions based on attributes (e.g., Magellan [14]) or use pre-trained language models to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

84:22 Jianhong Tu et al.

predict results as a binary classification task (e.g., DeepER [19], Ditto [30], and DADER [48])). (2)
Entity linking [10] is a task of determining if a reference entity in a knowledge base is the potential
mention of a tuple within table. Existing solutions typically retrieve potential entity mentions
from knowledge bases and then sort them by calculating their similarities (e.g., Hybrid II [20]). (3)
Entity alignment refers to the task of identifying equivalent entities across different knowledge
graphs (KGs) [56]. Existing solutions mainly learn entity embedding and realize the matching
of embedding through graph neural networks (e.g., GCN [26]) or pre-trained language models
(e.g., BERT-INT [46]). (4) String matching [37] decides whether two strings are equivalent, either
synthetically or semantically. Existing solutions use string similarity functions [50] or machine
learning methods such as decision tree to predict the results (e.g., Smurf [39], Falcon [8]). (5) Column
type annotation decides semantic type (e.g., Gender) of a column (e.g., {male, female, female, . . .}).
Existing solutions use a single cell embedding or column embedding to represent a column through
neural networks and then determine its type by similarity function or machine learning, where the
type is a string or category (e.g., HNN+P2Vec [5], TURL [10]). (6) Schema matching aims at finding
the correspondence between schemas across different tables [27]. Existing solutions commonly
define heuristic rules or calculate similarities between schemas (e.g., COMA [12]). (7) Ontology
matching [16] is the problem of finding semantic mappings between two given ontologies. Existing
solutions calculate similarities such as Jaccard similarity cross different nodes of ontology and use
machine learning to predict the results (e.g., GLUE [15]).

Although these problems have been studied for several decades, because they lie at the heart of
data integration with almost all applications, they remain to be important. Existing approaches try
to solve each problem separately, e.g., using different frameworks or different training methods.
Moreover, these solutions are not only task-specific, but also oftentimes dataset-specific (e.g., for
each new task, saying entity matching between Walmart and Amazon products, we have to re-train
the model only for serving this dataset). Different from them, Unicorn aims at a unified matching
model that can be used for multiple matching tasks and datasets.

6.2 Transformer-based Language Models
The paper “Attention Is All You Need” [49] introduces a novel architecture called Transformer,
which uses the attention mechanism for sequence to sequence learning. Transformer was originally
proposed for natural language processing. Recently, Transformer has shown good performance for
images [17], as well as for many modalities such as DeepMind Gato [42]. In addition, Transformer-
based language models such as BERT [11] and RoBERTa [32] have also been used to deal with
some database tasks (such as PASTA [23] and SCPromt [22] for Text-to-SQL translation, and
Symphony [6] for querying data lakes) and data integration tasks (such as Ditto [30] for entity
matching and DeepBlocker [47] for the blocking task in entity matching).
Inspired by these recent successes using Transformer-based models in a wide range of appli-

cations, in this paper, we investigate the possibility of training a unified model that is generally
capable of supporting a large number of matching tasks, which is crucial to data integration and
data management, but is not well explored.

6.3 Mixture-of-Experts Models
Mixture-of-Experts [21, 25, 28, 44] (abbreviated as MoE) is an ensemble learning technique that
implements the idea of training multiple experts on sub-tasks. Generally speaking,MoE trains each
expert to examine a different part of the space (e.g., different tasks of input data in our problem). A
gating network is responsible for combining various experts. Recently, MoE has been widely used
in big tech companies such as Google, Microsoft, and Facebook.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:23

MoE is a good fit to Unicorn for two reasons. First, Unicorn aims at supporting multiple data
matching tasks with different semantics and various input formats, for which each expert can focus
on learning matching relevant to specific data inputs. Second, equipping Unicorn with MoE will
make it easily extensible, e.g., to support a new matching task between a tuple and an image (see
our discussion in Section 7).

7 CONCLUSION AND FUTUREWORK
We have proposed Unicorn, the first unified model for supporting multiple data matching tasks. So
far, Unicorn supports seven data matching tasks over five different types of data elements. This
unifiedmodel can enable knowledge sharing by learning frommultiple tasks andmultiple datasets,
and also support zero-shot prediction for new tasks with zero labeled pairs. We developed a
general framework for Unicorn that employs an Encoder, a Mixture-of-Experts and a Matcher.
We conducted experiments on 20 datasets of the seven matching tasks. Experimental results show
that Unicorn is not only comparable or even better than SOTA specific models, but also well
performs zero-shot learning on unseen new tasks.

Unicorn still has a lot of potential to expand. The optimized MoE and instruction we discussed
lead to obvious improvements, and we will continue to explore more possibilities in the future, e.g.,
using data augmentation techniques to synthesize new labeled data, to reduce human annotation
cost and improve model performance. Another interesting future work is to extend Unicorn to
support more modalities (e.g., images), such as whether a picture matches a person (e.g.,Michael
Jordan) in a knowledge graph. As data matching tasks are typically supervised, for the tasks
Unicorn already supports and those that we plan to support as discussed above, another immediate
future work is to collect more labeled data and enrich our current benchmark.

ACKNOWLEDGMENTS
This work was partly supported by the NSF of China (U1911203, 62122090, 62072461,
62072458, 62232009, and 61925205), National Key Research and Development Program of China
(2020YFB2104101), Huawei, TAL education, and Beijing National Research Center for Information
Science and Technology (BNRist).

REFERENCES
[1] 2020. HuggingFace Datasets. https://huggingface.co/datasets
[2] Fabio Azzalini, Songle Jin, Marco Renzi, and Letizia Tanca. 2021. Blocking techniques for entity linkage: A semantics-

based approach. Data Science and Engineering 6 (2021), 20–38.
[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Chengliang Chai, Nan Tang, Ju Fan, and Yuyu Luo. 2023. Demystifying Artificial Intelligence for Data Preparation.
Proceedings of the 2023 ACM SIGMOD international conference on Management of data.

[5] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles Sutton. 2019. Learning semantic annotations for
tabular data. arXiv preprint arXiv:1906.00781 (2019).

[6] Zui Chen, Zihui Gu, Lei Cao, Ju Fan, Samuel Madden, and Nan Tang. 2023. Symphony: Towards Natural Language
Query Answering over Multi-modal Data Lakes. In 2023 Conference on Innovative Data Systems Research (CIDR).

[7] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis, and Kostas Stefanidis. 2020. An
overview of end-to-end entity resolution for big data. ACM Computing Surveys (CSUR) 53, 6 (2020), 1–42.

[8] Sanjib Das, Paul Suganthan GC, AnHai Doan, Jeffrey F Naughton, Ganesh Krishnan, Rohit Deep, Esteban Arcaute,
Vijay Raghavendra, and Youngchoon Park. 2017. Falcon: Scaling up hands-off crowdsourced entity matching to build
cloud services. In Proceedings of the 2017 ACM International Conference on Management of Data. 1431–1446.

[9] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, SiboWang, Michael Stonebraker, Ahmed K. Elmagarmid, Ihab F.
Ilyas, Samuel Madden, Mourad Ouzzani, and Nan Tang. 2017. The Data Civilizer System. In 8th Biennial Conference on
Innovative Data Systems Research, CIDR 2017, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

https://huggingface.co/datasets

84:24 Jianhong Tu et al.

[10] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table Understanding through Representation
Learning. Proceedings of the VLDB Endowment 14, 3 (2020), 307–319.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

[12] Hong Hai Do and Erhard Rahm. 2002. COMA - A System for Flexible Combination of Schema Matching Approaches.
In VLDB. Morgan Kaufmann, 610–621.

[13] AnHai Doan, Alon Halevy, and Zachary Ives. 2012. Principles of data integration. Elsevier.
[14] AnHai Doan, Pradap Konda, Paul Suganthan GC, Yash Govind, Derek Paulsen, Kaushik Chandrasekhar, Philip

Martinkus, and Matthew Christie. 2020. Magellan: toward building ecosystems of entity matching solutions. Commun.
ACM 63, 8 (2020), 83–91.

[15] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, and Alon Halevy. 2003. Learning to match
ontologies on the semantic web. The VLDB journal 12, 4 (2003), 303–319.

[16] AnHai Doan, Jayant Madhavan, Pedro M. Domingos, and Alon Y. Halevy. 2004. Ontology Matching: A Machine
Learning Approach. In Handbook on Ontologies. Springer, 385–404.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, DirkWeissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa
Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In ICLR.

[18] Halbert L. Dunn. 1946. Record Linkage. American Journal of Public Health 36, 12 (1946), 1412–1416.
[19] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad Ouzzani, and Nan Tang. 2018. Distributed

representations of tuples for entity resolution. Proceedings of the VLDB Endowment 11, 11 (2018), 1454–1467.
[20] Vasilis Efthymiou, Oktie Hassanzadeh, Mariano Rodriguez-Muro, and Vassilis Christophides. 2017. Matching web tables

with knowledge base entities: from entity lookups to entity embeddings. In International Semantic Web Conference.
Springer, 260–277.

[21] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity. , 5232–5270 pages.

[22] Zihui Gu, Ju Fan, Nan Tang, Lei Cao, Bowen Jia, Samuel Madden, and Xiaoyong Du. 2023. Few-shot Text-to-SQL
Translation using Structure and Content Prompt Learning. Proceedings of the 2023 ACM SIGMOD international
conference on Management of data.

[23] Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiaoman Zhao, and Xiaoyong Du. 2022. PASTA: Table-Operations Aware
Fact Verification via Sentence-Table Cloze Pre-training. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022. Association for
Computational Linguistics, 4971–4983.

[24] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. Deberta: Decoding-enhanced bert with disentan-
gled attention. arXiv preprint arXiv:2006.03654 (2020).

[25] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991. Adaptive mixtures of local experts.
Neural computation 3, 1 (1991), 79–87.

[26] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907 (2016).

[27] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry Brons, Marios Fragkoulis, Christoph Lofi,
Angela Bonifati, and Asterios Katsifodimos. 2021. Valentine: Evaluating matching techniques for dataset discovery. In
2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 468–479.

[28] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam
Shazeer, and Zhifeng Chen. 2020. Gshard: Scaling giant models with conditional computation and automatic sharding.
arXiv preprint arXiv:2006.16668 (2020).

[29] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt tuning. arXiv
preprint arXiv:2104.08691 (2021).

[30] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. 2020. Deep Entity Matching with
Pre-Trained Language Models. Proceedings of the VLDB Endowment 14, 1 (2020), 50–60.

[31] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2021. Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586
(2021).

[32] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[33] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. 2018. Modeling task relationships in multi-task
learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining. 1930–1939.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

Unicorn: A Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration 84:25

[34] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park, Ganesh Krishnan, Rohit Deep,
Esteban Arcaute, and Vijay Raghavendra. 2018. Deep learning for entity matching: A design space exploration. In
Proceedings of the 2018 International Conference on Management of Data. 19–34.

[35] Hannes Mühleisen and Christian Bizer. 2012. Web Data Commons-Extracting Structured Data from Two Large Web
Corpora. LDOW 937, 133–145.

[36] Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher Ré. 2022. Can Foundation Models Wrangle Your Data?
CoRR abs/2205.09911 (2022). arXiv:2205.09911

[37] Gonzalo Navarro. 2001. A Guided Tour to Approximate String Matching. ACM Comput. Surv. 33, 1 (mar 2001), 31–88.
https://doi.org/10.1145/375360.375365

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32 (2019), 8026–8037.

[39] GC Paul Suganthan, Adel Ardalan, AnHai Doan, and Aditya Akella. 2019. Smurf: Self-service string matching using
random forests. Proceedings of the VLDB Endowment 12, 3 (2019).

[40] Zhen Qin, Yicheng Cheng, Zhe Zhao, Zhe Chen, Donald Metzler, and Jingzheng Qin. 2020. Multitask mixture of
sequential experts for user activity streams. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 3083–3091.

[41] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of
Machine Learning Research 21, 1 (2020), 5485–5551.

[42] Scott E. Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel Barth-Maron,
Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards,
Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. 2022. A Generalist
Agent. CoRR abs/2205.06175 (2022).

[43] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019).

[44] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. 2017.
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538
(2017).

[45] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. Mpnet: Masked and permuted pre-training for
language understanding. Advances in Neural Information Processing Systems 33 (2020), 16857–16867.

[46] Xiaobin Tang, Jing Zhang, Bo Chen, Yang Yang, Hong Chen, and Cuiping Li. 2021. BERT-INT: a BERT-based interaction
model for knowledge graph alignment. In Proceedings of the Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence. 3174–3180.

[47] Saravanan Thirumuruganathan, Han Li, Nan Tang, Mourad Ouzzani, Yash Govind, Derek Paulsen, Glenn Fung, and
AnHai Doan. 2021. Deep learning for blocking in entity matching: a design space exploration. Proceedings of the VLDB
Endowment 14, 11 (2021), 2459–2472.

[48] Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Chengliang Chai, Guoliang Li, Ruixue Fan, and Xiaoyong Du. 2022.
Domain adaptation for deep entity resolution. In Proceedings of the 2022 International Conference on Management of
Data. 443–457.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30.

[50] Jiannan Wang, Jianhua Feng, and Guoliang Li. 2010. Trie-join: Efficient trie-based string similarity joins with edit-
distance constraints. Proceedings of the VLDB Endowment 3, 1-2 (2010), 1219–1230.

[51] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou, and
Hongxia Yang. 2022. Ofa: Unifying architectures, tasks, and modalities through a simple sequence-to-sequence learning
framework. In International Conference on Machine Learning. PMLR, 23318–23340.

[52] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva Naik, Arjun
Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, et al. 2022. Super-naturalinstructions: General-
ization via declarative instructions on 1600+ nlp tasks. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing. 5085–5109.

[53] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, et al. 2019. Huggingface’s transformers: State-of-the-art natural language
processing. arXiv preprint arXiv:1910.03771 (2019).

[54] Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga, Chien-Sheng Wu, Ming
Zhong, Pengcheng Yin, Sida I Wang, et al. 2022. Unifiedskg: Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. arXiv preprint arXiv:2201.05966 (2022).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

https://arxiv.org/abs/2205.09911
https://doi.org/10.1145/375360.375365

84:26 Jianhong Tu et al.

[55] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized
autoregressive pretraining for language understanding. Advances in neural information processing systems 32 (2019).

[56] Kaisheng Zeng, Chengjiang Li, Lei Hou, Juanzi Li, and Ling Feng. 2021. A comprehensive survey of entity alignment
for knowledge graphs. AI Open 2 (2021), 1–13.

[57] Xiang Zhao, Weixin Zeng, Jiuyang Tang, Xinyi Li, Minnan Luo, and Qinghua Zheng. 2022. Toward Entity Alignment
in the Open World: An Unsupervised Approach with Confidence Modeling. Data Science and Engineering 7, 1 (2022),
16–29.

Received July 2022; revised October 2022; accepted November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 84. Publication date: May 2023.

	Abstract
	1 Introduction
	2 Problem and Solution Overview
	2.1 Problem: Data Matching Tasks
	2.2 A Unified Multi-Tasking Framework

	3 The Encoder Module
	3.1 Pair-to-Text Serialization
	3.2 Representation Learning of Serialized Pairs with Pre-trained Language Models

	4 The Mixture-of-Expert Module
	4.1 MoE Model Design and Training
	4.2 MoE Optimization for Expert Routing

	5 Evaluation
	5.1 Experimental Setup
	5.2 Evaluation on Unified Prediction
	5.3 Evaluation on Zero-Shot Prediction

	6 Related Work
	6.1 Data Matching Tasks
	6.2 Transformer-based Language Models
	6.3 Mixture-of-Experts Models

	7 Conclusion and Future Work
	Acknowledgments
	References

