
1

Distribution-Aware Crowdsourced
Entity Collection

Ju Fan, Zhewei Wei, Dongxiang Zhang, Jingru Yang, Xiaoyong Du

Abstract—The problem of crowdsourced entity collection solicits people (a.k.a. workers) to complete missing data in a database and
has witnessed many applications in knowledge base completion and enterprise data collection. Although previous studies have
attempted to address the “open world” challenge of crowdsourced entity collection, they do not pay much attention to the “distribution”
of the collected entities. Evidently, in many real applications, users may have distribution requirements on the collected entities, e.g.,
even spatial distribution when collecting points-of-interest. In this paper, we study a new research problem, distribution-aware
crowdsourced entity collection (CROWDDEC): Given an expected distribution w.r.t. an attribute (e.g., region or year), it aims to collect a
set of entities via crowdsourcing and minimize the difference of the entity distribution from the expected distribution. Due to the
openness of crowdsourcing, the CROWDDEC problem calls for effective crowdsourcing quality control. We propose an adaptive worker
selection approach to address this problem. The approach estimates underlying entity distribution of workers on-the-fly based on the
collected entities. Then, it adaptively selects the best set of workers that minimizes the difference from the expected distribution. Once
workers submit their answers, it adjusts the estimation of workers’ underlying distributions for subsequent adaptive worker selections.
We prove the hardness of the problem, and develop effective estimation techniques as well as efficient worker selection algorithms to
support this approach. We deployed the proposed approach on Amazon Mechanical Turk and the experimental results on two real
datasets show that the approach achieves superiority on both effectiveness and efficiency.

Index Terms—Crowdsourcing, Entity Collection, Sampling, Distribution-Aware

✦

1 INTRODUCTION

Crowdsourcing exploits human intelligence to solve prob-
lems that are inherently difficult to machines, and has at-
tracted growing interest recently. Many solutions have been
proposed to support various operations on crowdsourced
data, which can be broadly classified into two categories.
The first one is crowdsourced data evaluation, which asks
the crowd to evaluate data according to some criteria, in-
cluding filter [32], [22], join [26], [39], sort/top-k [14], [7], etc.
The second category is crowdsourced data collection [38],
[6], [36], [35], which solicits the crowd to complete missing
data in a database, where the missing data can be either
specific attributes (e.g., homepage of a researcher) or entire
entities (e.g., new researchers).

This paper focuses on the aforementioned second catego-
ry of crowdsourced operations. In particular, we study the
problem of crowdsourced entity collection that seeks to acquire
missing entities (i.e., tuples) from the crowd to complete
a database. As a running example, suppose that a market
research analyst wants to study restaurants in New York C-
ity (NYC). The analyst can pose an entity collection query
to publish crowdsourcing tasks of collecting restaurants in

• J. Fan, J. Yang and X. Du are with the Key Lab of Data Engineering
and Knowledge Engineering and the School of Information, Renmin
University of China. E-mails:{fanj, jingru, duyong}@ruc.edu.cn

• Z. Wei is with the School of Information, Renmin University of China and
Beijing Key Laboratory of Big Data Management and Analysis Methods.
Email: zhewei@ruc.edu.cn

• D. Zhang is with the School of Computer Science and Engineering,
University of Electronic Science and Technology of China. Email: zhang-
do@uestc.edu.cn

the city from the crowd. Crowdsourced entity collection has
many applications, including knowledge base completion,
structured data collection, etc.

A fundamental challenge of crowdsourced entity collec-
tion is the “open world” nature of crowdsourcing which
may return unbounded amount of answers [38]. Recently,
some approaches have been proposed to address the chal-
lenge. Trushkowsky et al. focused on estimating the cover-
age of the current entity set collected from the crowd [38].
Chung et al. have extended the estimation techniques to
support aggregate queries, such as SUM, AVG, MAX/MIN,
etc [6]. Rekatsinas et al. extended the data model to a
structured domain with hierarchical structure, and aimed
to maximize collection coverage under a budget [36]. Park
and Widom developed a general framework CrowdFill that
shows a partially filled table and asks the crowd to con-
tribute new entities, fill empty cells, and up-vote/down-
vote existing entities [35]. However, the studies do not
pay much attention to the underlying distribution of the
collected entities, which is often indispensable in the process
of data collection.

Evidently, in many real scenarios, users may have distri-
bution requirements on the entities collected from the crowd.
One application is crowdsourced point-of-interest (POI)
collection [17], which asks the crowd to submit locations
with additional information, such as road-side parkings.
Naturally, users often want the collected POIs (e.g., road-
side parkings) to be evenly distributed in an area, instead of
following a skew spatial distribution (e.g., only containing
POIs near some popular regions). Distribution requirement
is also common in market research. For example, suppose
that a real estate expert wants to curate a list of representa-
tive houses via crowdsourcing. To make the research more

2

comprehensive, the expert may want to include various
house types, such as number of bedrooms, and would
like to specify an expected distribution of the types based
on her experience of the market. Moreover, distribution
requirement is also desirable in other data collection tasks.
For example, a university who wants to find faculty can-
didates from the job market is likely to have an expected
distribution requirement on specialization of the applicants,
such as machine learning, database, etc., based on its
development directions.

Motivated by this requirement, we study a new re-
search problem, distribution-aware crowdsourced entity col-
lection (CROWDDEC), in this paper. Given a user-specific
distribution requirement, a CROWDDEC query aims to find
the best crowdsourcing strategy that makes the collected
data to satisfy the distribution as much as possible, i.e.,
minimizing difference of the collected entity distribution
from the expected distribution.

This CROWDDEC query is quite challenging to answer
due to the openness of crowdsourcing, i.e., the entities are
collected by an unknown group of people (i.e., workers).
First, each individual worker may have its own bias of data
collection, leading to diverse distributions across different
workers. For instance, a worker only collects POIs in a
particular spot, while another one randomly provides POIs
in an area. Second, it is known that workers may have
unevenly contributions: some workers, referred as streakers
in [38], may provide significantly more entities than other
workers. Therefore, the distribution of the collected entities
will become unpredictable if no effective strategy is utilized
to control the crowdsourcing process.

To tackle the difficulties in answering CROWDDEC, we
introduce an adaptive crowdsourcing approach. The ap-
proach on-the-fly estimates the underlying entity distribu-
tion of each worker based on the observed entities the work-
er has submitted. Then, it selects an optimal set of workers
such that entities to be provided by these workers would
minimize the difference from the user-expected distribution.
Moreover, once a worker submits her answers, it adjusts
its estimation of the underlying distributions of workers to
improve the subsequent worker selection. In such a way,
the approach continuously estimates workers behaviors and
adaptively selects workers, so as to approximate the col-
lected entities to the expected distribution. To support this
approach, we first formalize “difference” of entity distribu-
tion from the expected distribution using Kullback-Leibler
(KL) divergence and formulate the CROWDDEC problem.
Then, we introduce a probabilistic framework and effective
statistical methods to estimate the underlying entity distri-
bution of a worker, based on the worker’s “history”, i.e., the
entities already collected by the worker. Next, by using the
estimates, we select an optimal set of workers to minimize
the KL divergence. We have proved the optimal worker
selection problem is NP-complete, and developed a best-
effort algorithm to find the exact solution and an approxi-
mate local search algorithm for instant worker selection. We
conducted experiments on a real crowdsourcing platform,
i.e., Amazon Mechanical Turk (AMT), and the experimental
results show the performance superiority of our proposed
techniques (Section 5).

To summarize, we make the following contributions.

(1) To the best of our knowledge, this is the first paper
to study the problem of distribution-aware crowdsourced
entity collection. We formalize the problem and introduce an
adaptive crowdsourcing approach to solve it (see Section 2).

(2) We devise a probabilistic framework and effective s-
tatistical methods for estimating the underlying distribution
of entities provided a worker based on the observed entities
already provided by the worker (see Section 3).

(3) We have proved that the problem of optimal worker
selection is NP-complete and developed a best-effort algo-
rithm to find the exact solution and an approximate local
search algorithm for instant worker selection (see Section 4).

2 OVERVIEW OF CROWDDEC
In this section, we present an overview of CROWDDEC.
We define the distribution-aware entity collection query in
Section 2.1, introduce a crowdsourcing model in Section 2.2,
and propose an adaptive worker selection framework to
fulfill CROWDDEC in Section 2.3.

2.1 Distribution-Aware Entity Collection

Consider entities in a specific data domain (e.g., movie),
and an attribute A of the entities (e.g., year of the movie)
with a value domain, Ω = {a1, a2, . . . an}. We assume
that Ω is already known by design, which is common in
many practical applications. We will take the problem with
unknown attribute domains in future work.

This paper studies the problem of collecting a set of
entities, denoted by S, in the data domain. In particular,
we would like to measure the distribution of the collected
entities in S w.r.t. attribute A, which is defined as the ratios
of entities having the attribute values:

Definition 1 (Entity Distribution). Entity distribution of an
entity set S w.r.t. attribute A is a set of ratios defined on
domain Ω, ΦS

A = {φS1 , φS2 , . . . φSn}. The i-th ratio φSi is
defined as

φSi =

∑
e∈S 1[e.A = ai]

|S| , (1)

where 1[event] is an indicator function equal to 1 if the
event occurs and 0 otherwise, and

∑n
i=1 φ

S
i = 1.

As mentioned in Section 1, users often have distribu-
tion requirements on the collected entities w.r.t. attribute
A. Therefore, we propose to study the distribution-aware
entity collection query. In such a query, one is given an
expected distribution w.r.t. attribute A, denoted by ΨA =
{ψ1, ψ2, . . . ψn} and the number k of entities to be collected.
The answer of this query is a set S of entities with size k
(|S| = k) such that the entity distribution ΦS

A is as close to
ΨA as possible. For ease of presentation, we use ΦS and Ψ
to represent ΦS

A and ΨA respectively if the context is clear.

Definition 2 (Distribution-Aware Entity Collection). Given
an expected distribution Ψ = {ψ1, ψ2, . . . ψn} and the
number k of entities to be collected, a distribution-aware
entity collection query collects a set of entities S with
size |S| = k that minimizes the difference D(Ψ,ΦS) of
entity distribution ΦS from the expected distribution Ψ,
i.e., S∗ = argS,|S|=k minD(Ψ,ΦS).

3

TABLE 1
An Example of Restaurant Entities

ID Region ID Region ID Region
e1 South e6 North e11 Center

e2 South e7 North e12 Center

e3 South e8 North e13 Center

e4 South e9 North e14 Center

e5 South e10 North e15 Center

We use the well-known Kullback-Leibler (KL) diver-
gence [20] to measure the above difference. Formally, the
KL divergence of ΦS from Ψ, denoted by DKL(Ψ||ΦS), is a
measure of the information gained when one revises one’s
beliefs from ΦS to Ψ, i.e.,

DKL(Ψ||ΦS) =
n∑

i=1

ψi · log ψi

φSi
. (2)

Example 1. Table 1 provides some entities in the Restaurant
domain and an attribute Region with {South, North,
Center} as its value domain Ω. Let us consider a set S1

of entities {e1, e6, e7, e11, e12, e13}: its entity distribution
w.r.t Region is { 16 , 13 , 12} as there are one restaurant in
South, two in North and three in Center. Given an
expected distribution Ψ = { 13 , 13 , 13}, the KL divergence
DKL(Ψ||ΦS1) of ΦS1 from Ψ is 0.27. Based on this,
we consider a distribution-aware entity collection query
with Ψ and a number 6. The answer of this query is a
set S∗ of entities such that |S∗| = 6 and the difference
DKL(Ψ||ΦS∗

) is minimized1.

2.2 Crowd Model for Crowdsourced Entity Collection

We employ crowdsourcing for entity collection. We publish
human intelligence tasks (HITs) on existing crowdsourcing
platforms, such as Amazon Mechanical Turk2 (AMT) to
solicit a set of workers, denoted by W = {w1, w2, . . . , wm},
where each HIT asks a worker to submit “one more” entity
with a value of attribute A from domain Ω. An example
of such HIT would be asking the worker to provide “a
restaurant in NYC with attribute Region”.

The crowdsourcing process works iteratively: at each
time point t, some workers in W request for HITs which
will be assigned by our worker selection framework (see
Section 2.3). After they submit their entities, we pay them
and proceed to the next time point t + 1 till k entities have
been collected. In such a way, we finally obtain a collection
of entity sets, S1, S2, . . . , Sm from the workers, where Sj is
the entities submitted by worker wj . Then, we consolidate
the entities from the workers to generate an integrated set
S. Note that this paper assumes that data integration issues
involved in generating S, e.g., entity resolution and attribute
consolidation, can be perfectly addressed manually or by
existing techniques [8], which is orthogonal to this paper.

Example 2. Figure 1(a) provides an example of crowdsourc-
ing process with four workers, where each row is entities
submitted by a worker and each column is a time point.
Each labelled cell represents a submitted entity where the

1. Note that there may be more than one sets of collected entities
that minimize the distribution difference, and any one of them can be
regarded as the answer of the query in this paper.

2. https://www.mturk.com/

N C C C

S N C C C C

S C S C

S N S S N N S S

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

w1

w2

w3

w4

Workers

Time

(a) Entities collected from example workers.

0.2
0.4
0.6

S N C #

0.2
0.4
0.6

S N C #

0.2
0.4
0.6

S N C #

0.2
0.4
0.6

S N C #

Worker w1 Worker w2

Worker w3 Worker w4

(b) Underlying distribution of the workers.
Fig. 1. The crowd model for crowdsourced entity collection (where S, N,
C and # represent South, North, Center and no answer).

label is its attribute value (S, N and C represent South,
North and Center respectively), while a blank cell means
no entity is submitted. Considering to collect 10 entities,
we terminate the crowdsourcing process at time point t5
and obtain an integrated entity set S.

Based on the experiments on real datasets (Section 5.2),
we have observed that crowdsourcing has its own charac-
teristics for entity collection, which is discussed as follows.

1) Diverse Bias: As workers have different backgrounds,
each of them may have her own bias of entities she knows,
leading to quite diverse entity distributions across different
workers. For example, worker w1 in Figure 1(a) may have
bias on restaurants in South and North, while w2 know
better for those in Center. In our experiments, we measure
KL divergence for each pair of workers, and observe that
most of the pairs have quite large divergence values.

2) Uneven Contribution: It is known that crowdsourcing
workers usually have unevenly contributions [38], [6]: some
workers, referred as streakers in [38], may provide signifi-
cantly more entities than the other workers. In our example
shown in Figure 1(a), worker w1 is likely to be a streaker
as she contributes more than the other ones. In our real
dataset of collecting movie entities, one worker submits
1250 entities, while most of the workers only provide tens
of entities (see Section 5.2 for more details).

The above observations imply that contributions from
workers may be rather irregular, thus making it very chal-
lenging to model their behaviors. To address the challenge,
we introduce a probabilistic model to model worker’s be-
havior for entity collection. The basic idea of this model
is to consider the generation of entity set Sj from wj as a
sampling process from an unknown entity distribution. Our
model has a property of incorporating both diverse bias and
uneven contribution into consideration.

4

TABLE 2
Frequently Used Notations

e, A, Ω entity, attribute, attribute value domain
ΦS

A distribution of entity set S w.r.t. A
ΨA an expected entity distribution w.r.t. A

DKL(Ψ||ΦS) KL divergence of ΦS from Ψ.
wj , Sj crowdsourcing worker, entity set of worker
Pwj wj ’s probabilistic model of entity collection

Formally, let Pwj denote worker wj ’s underlying prob-
ability distribution at a time point t. In particular, Pwj is
defined as {pj1, pj2, . . . , pjn, pj#}, where pji is the probability
that wj provides an entity with attribute value ai, p

j
is the

probability that wj provides no entity and
∑

i p
j
i + pj# = 1.

Based on this, our model considers that entity set Sj is
generated by sampling entities from distribution Pwj in the
following way. At any time point t, we throw a dice with
|Ω|+ 1 faces, {a1, a2, . . . , an,#}, where the probabilities of
the result are Pwj . If the result of dice throwing is ai, wj

provides an entity e with attribute value ai, and otherwise
(i.e., the result is #), wj does not provide any entity.

Example 3. Figure 1(b) provides the underlying entity dis-
tributions of the four workers in Figure 1(a). We can
see that the model can formalize both diverse bias and
uneven contribution of workers: On the one hand, the
distributions of the workers are obviously quite differ-
ent from each other. On the other hand, workers have
various probability pw# that models “unwillingness” of
contribution. For example, p1# of the streaker w1 is much
smaller than those of the other workers, which meansw1

is more likely to be zealous to provide more entities.

To facilitate our presentation, all the frequently used
notations are listed in Table 2.

2.3 An Adaptive Worker Selection Framework

This section presents an adaptive worker selection frame-
work to support distribution-aware crowdsourced entity
collection. The framework mainly addresses two challenges.
First, the underlying distribution Pwj of worker wj is
actually unknown, resulting in a challenge of accurate Pwj

estimation. Second, as the diversity of Pwj across workers is
significant, it calls for an effective approach to finding a sub-
set of W such that the “aggregated” distribution provided
by these workers is as close to the expected Ψ as possible.

Algorithm 1 shows the pseudo-code of the framework,
which takes as input an expected distribution Ψ coupled
with a number k and outputs an entity set S. Initially, it
constructs an empty entity set S and worker set W , and
then starts to select workers periodically in time3.

At each time point t, it first identifies the current active
workers W̃ who are ready to work on the HITs (line 3). Like
our previous work in [9], we may use different methods to
this end. For example, if the span from the last time point
when a worker requests for HITs to the current time point
is smaller than a threshold (e.g., 15 minutes), we consider
the worker is still active and can be assigned with HITs. For

3. We can define various granularity for time points, such as seconds,
minutes, hours, etc. See more details of time point settings in our
experiments.

Algorithm 1: CROWDDEC-FRAMEWORK (Ψ, k)
Input: Ψ: expected distribution; k: a number
Output: S: a set of collected entities
Initialize entity set S ← ∅, worker set W ← ∅ ;1

for each time point t do2

W̃ ← DETECTACTIVES (t) ;3

for each wj ∈ W̃ do4

if wj /∈W then Sj ← QUALIFICATION (wj) ;5
ˆPwj ← ESTIMATE (wj , Sj) ;6

W ←W ∪ W̃ ;7

W ∗ ← SELECTWORKERS (W̃ , { ˆPwj},Ψ, S) ;8

for each action from worker wj do9

if wj /∈W ∗ then continue ;10

if wj .action = req then Assign wj an HIT;11

else if wj .action = ans then12

Insert entity e from wj into Sj ;13

INTEGRATEENTITY (S, e) ;14

if |S| = k then return S ;15

each active worker wj , the framework checks if wj is a new
worker who has not answered our HITs yet (i.e., wj /∈ W).
If so, it assigns wj qualification HITs for collecting some
initial entities Sj (line 5). Intuitively, a qualification HIT asks
wj to fill attribute values of a pre-defined entity list. The
purpose of the qualification is two-fold. First, as we know
the ground-truth attribute values of the entities in the list, if
wj provides too many wrong answers, we block this “low-
quality” worker. Second, the qualification HIT can address
the “cold-start” problem: it helps us to collect an initial set
of entities from wj to facilitate the following estimation.

Next, the framework estimates wj ’s underlying prob-
abilistic model Pwj from the “historical” entities Sj sub-
mitted by wj (line 6). Then, it selects a subset W ∗ of
active workers such that the difference from Ψ is minimized
after collecting entities from W ∗ (line 8). Based on W ∗, it
selectively assigns HITs to workers at time point t as follows.
For each request from a worker wj , the framework “blocks”
the request4 if wj /∈ W ∗. If wj is selected (wj ∈ W ∗), our
framework assigns HITs and collects the entities from wj .

Finally, it integrates the entities into S by using existing
data integration techniques [8] (line 14) and examines if the
number of collected entities reaches k (line 15). If enough
entities have been collected, it terminates. Otherwise, it
proceeds to the next time point for further collection.

From the above algorithm, we can see that the proposed
framework is adaptive since it continuously estimates work-
ers’ probabilistic models and selects workers based on the
current estimation. This allows us to on-the-fly utilize the
most appropriate set of workers by finding better workers
and eliminating worse ones. Note that the implementation
of Algorithm 1 on the crowdsourcing platform AMT can
utilize the “external question” mechanism that manages the
HITs and assignment in our own web server (refer to [9] for
more details of the mechanism).

Example 4. We use the example in Figure 1 to illustrate

4. For “blocking”, we can actually provide user-friendly messages,
e.g., “We currently do not have questions. Please try later...”

5

the framework. Given an expected entity distribution
Ψ = { 13 , 13 , 13} and a number 12, the framework selects
workers periodically as follows. At any time, say t6, it
first identifies active workers {w1, w2, w4}. If any worker
wj is a new worker the framework uses qualification to
initialize entity set Sj . Then, it estimates ˆPw1 , ˆPw2 and
ˆPw4 based on the sets S1, S2 and S4. Suppose that the

current estimation is accurate to capture the underlying
distribution in Figure 1(b). Then, it may only select
workers w2 and w4 while blocking w1, as the relative
ratio of restaurants in Center needs to be increased.
Finally, if 12 entities have been collected, the framework
terminates and returns the integrated entity set S.

This paper focuses on developing techniques to address
two challenging problems in the framework. First, Section 3
introduces effective approaches to estimating worker wj ’s
underlying probabilistic model Pwj (i.e., function ESTIMATE

in line 6). Second, Section 4 discusses optimal worker set
selection to minimize the difference from expected distribu-
tion Ψ (i.e., function SELECTWORKERS in line 8).

3 WORKER PROBABILISTIC MODEL ESTIMATION

This section presents an estimation problem for computing
probabilistic model Pwj of a worker wj . The basic idea of
the estimation is to utilize wj ’s historical entities, i.e., the
observed entity set Sj from wj . Note that historical entity
set Sj also includes # as a special entity which means no
answer from wj is provided. We consider that the observed
Sj is also generated from the underlying model Pwj , and
thus we can infer Pwj from this observation. This estimation
problem can be formally defined as follows.
Definition 3 (Worker Probabilistic Model Estimation). Giv-

en a worker wj and her historical entity set Sj , it
aims to estimate wj ’s underlying probabilistic model
P̂wj = {p̂j1, p̂j2, . . . , p̂jn, p̂j#}, where p̂ji (or p̂j#) is the es-
timated probability of sampling an entity e with attribute
value ai (or no answer) from wj given observation of wj ’s
historical entity set Sj , i.e., p̂ji = Pr{ai|Sj}.
Take worker w1 in Figure 1 as an example. The corre-

sponding S1 is the the first row of entities provided by w1 in
Figure 1(a). For instance, at time point t5, S1 = {S,#,N,S,S}.
Then, the problem aims to estimate P̂w1 of w1 in Figure 1(b)
based on S1. This section introduces estimation techniques
to address the problem. We discuss an empirical proba-
bility method in Section 3.1, a Good-Turing estimation in
Section 3.2, and a hybrid method in Section 3.3.

3.1 Empirical Probability Estimation

A simple method for estimating P̂wj is to use the empirical
probability, or relative frequency in Sj . For example, at time
point t5 in Figure 1(a), as worker w1 has provided three
entities of South, one of North, zero of Center and one
of #, the estimated probabilistic model P̂w1 = { 35 , 15 , 0, 15}.
Similarly, we have P̂w2 = { 15 , 15 , 0, 35}, P̂w3 = { 15 , 0, 15 , 35}
and P̂w4 = {0, 15 , 15 , 35} at time point t5. However, em-
pirical probability estimation is usually not accurate, as a
sample Sj with limited size may not capture the underlying
distribution. Moreover, it may also lead to the “sparsity”

N N S S Sw1

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

0.2
0.4
0.6

S N C #

Good-Turing Estimates

1

2

0 1 2

Nr

3 r

Frequency of frequencies

… …

Fig. 2. Illustration of Good-Turing estimation.

problem that assigns “zero” to many attribute values that
are not observable in Sj , which actually deviates the true
underlying probabilistic distribution.

To overcome the above drawbacks, a commonly used
approach is smoothing that considers the fact that Sj does
not represent the “whole-world” of entities from wj . In our
work, we adopt the well-known Laplace smoothing [23], i.e.,

p̂ji =

∑
e∈Sj

1[e.A = ai] + α

|Sj |+ α · (|Ω|+ 1)
, (3)

where α ≥ 0 is a pseudocount that is used for smoothing.
If α = 1, Equation (3) is also called add-one smoothing. Take
w2 as an example again: given α = 1, the estimated worker
model at t5 after smoothing is P̂w2 = { 29 , 29 , 19 , 49}.

3.2 Good-Turing Estimation

Good-Turing estimation is also commonly used for estimating
probabilistic distribution [13], [29], [30]. The basic idea of
this technique is to utilize the “frequency of frequencies”
in observed set Sj , i.e., the number of distinct attribute
values having the same occurrence in Sj . As shown in
Figure 2, there are two distinct values, e.g., N and #, that
occurs 2 times. Subsequently, we obtain the “frequency
of frequencies” in the top left corner, which can help us
estimate the underlying probabilistic distribution.

More formally, let fSj(ai) denote the frequency of at-
tribute value ai in Sj

5, i.e., the number of entities in Sj

having attribute value ai. For ease of presentation, we use
f(ai) to represent fSj (ai) if the context is clear. LetN denote
the size of Sj (N = |Sj |) and Nr denote the number of
attribute values with frequency f(ai) = r. Then, given the
observation f(ai) = r, the Good-Turing method estimates
probability p̂ji as the conditional expectation of p̂ji for those
attribute values which occur r times in Sj , i.e.,

p̂ji = E[pji |f(ai) = r] =
∑
i

pji · Pr{pji |f(ai) = r}, (4)

Now, we show the estimate in Equation (4) can be
derived by using aforementioned Nr as follows.
Lemma 1. Given the observation f(ai) = r, a Good-Turing

estimate p̂ji can be derived as

p̂ji =
r + 1

N + 1
· EN+1[Nr+1]

EN [Nr]
, (5)

5. For ease of presentation, we consider # as a special case of ai.

6

where EN [Nr] is the expectation of the number of dis-
tinct attribute values which occur exact r times in entity
set Sj of worker wj with size N .

Proof 1. By applying the Bayesian formula, we can transfor-
m Equation (4) as follows.

p̂ji =
∑
i

pji · Pr{pji |f(ai) = r}

=
∑
i

pji ·
Pr{f(ai) = r|pji} · Pr{pji}∑
i′ Pr{f(ai′) = r|pji′} · Pr{pji′}

,

where Pr{pji} is a prior of attribute values. In our work,
we assume uniform priors, i.e., Pr{pji} = 1/(|Ω|+ 1).
Pr{f(ai) = r|pji } is the probability that ai occurs r
times in Sj given its underlying probability pji . Based on
our sampling model mentioned in Section 2.2, it can be
computed as Pr{f(ai) = r|pji } = Cr

N ·(pji)r ·(1−pji)N−r ,
under the assumption of independent sampling. Thus,
the estimate p̂ji can be further derived as

p̂ji =
∑
i

pji ·
Cr

N · (pji)r · (1− pji)N−r∑
i′ C

r
N · (pji′)r · (1− pji′)N−r

=
r + 1

N + 1
·
∑

i C
r+1
N+1 · (pji)r+1 · (1 − pji)N−r∑

i′ C
r
N · (pji′)r · (1 − pji′)N−r

=
r + 1

N + 1
· EN+1[Nr+1]

EN [Nr]
.

Hence, we prove the lemma. �
Now, we show the Good-Turing estimation satisfies the

probabilistic distribution property, i.e.,
Theorem 1. The Good-Turing estimation in Equation (5)

satisfies the property
∑

i p̂
j
i = 1.

Proof 2. As the number of the ai’s that occurs exactly r times
is Nr, we have

∑
i

p̂ji =
N∑
r=0

EN [Nr] · r + 1

N + 1
· EN+1[Nr+1]

EN [Nr]

=

∑N
r=0 (r + 1) · EN+1[Nr+1]

N + 1
.

Obviously, we have
∑N

r=0 (r + 1) · EN+1[Nr+1] = N+1.
Thus, we prove the theorem. �
The non-trivial part in Equation (5) is EN [Nr], which is

the expected number of the attribute values which occur
exact r times in Sj with size N . For example, given r = 1,
EN [N1] is the expected number of singletons in Sj with |Sj | =
N . The expectation is difficult to compute unless we know
pji , which is actually what we want to estimate. To address
this issue, we adopt an existing method [29] to compute the
Good-Turing estimates p̂ji as

p̂ji =
r + 1

N
· Nr+1

Nr
. (6)

Obviously, Nr could be zero in Equation (6), and thus
smoothing techniques also need to be applied. We use
the smoothing technique introduced in [29] to use N ′

r =
max{Nr, 1}, and thus the estimation becomes

p̂ji = ((r + 1) ·N ′
r+1)/(N

′ ·N ′
r), (7)

where N ′
r = max{Nr, 1} and N ′ is a term used for normal-

ization and N ′ =
∑

r:Nr>0Nr · (r + 1) ·N ′
r+1/N

′
r.

Example 5. Figure 2 shows an example to illustrate Good-
Turing estimation. Given the observation of S1 at time
point t7, it first generates the “frequency of frequencies”
as shown in the top left corner, i.e., {N0 = 1, N2 =
2, N3 = 1}. Then, it computes the estimates by us-
ing Equation (7) and obtains {0.5, 0.1875, 0.125, 0.1875},
compared with the estimates computed by the empirical
estimation method, {0.36, 0.27, 0.1, 0.27}.

3.3 A Hybrid Estimation Strategy

As discussed in the previous work [29], [30], Good-Turing
estimation performs well for attribute values with low
frequencies, i.e., small values of r, while it may produce
unsatisfactory results for larger r. This can be explained
by the fact that Nr+1 tends to be zero for large values of
r, and thus it becomes inappropriate to approximate the
expectation EN+1[Nr+1] in Equation (5).

To address the above problem, we introduce a hybrid
estimation method that combines Good-Turing and empir-
ical estimation. The basic idea is to utilize Good-Turing for
low values of r and empirical method for high values of
r. Formally, by comparing r and Nr+1, the hybrid method
produces the estimate p̂ji as

p̂ji =

{
r/(N ′) r > Nr+1,

((r + 1) ·N ′
r+1)/(N

′ ·N ′
r), 0 ≤ r ≤ Nr+1.

(8)

where N ′ is introduced for normalization, i.e., N ′ =∑
r≤Nr+1

Nr · (r + 1) ·N ′
r+1/N

′
r +

∑
r>Nr+1

Nr · r. In prac-
tice, we also interpolate a uniform frequency 1/(1 + |Ω|)
for smoothing. A recent theoretical study [30] has shown
that the hybrid estimator is uniformly optimal for estimat-
ing every distribution in terms of KL-divergence. We also
demonstrate its effectiveness via experiments in Section 5.

4 OPTIMAL WORKER SELECTION

This section presents an approach to optimal worker se-
lection for minimizing divergence from the expected dis-
tribution in the query. We first formalize this problem in
Section 4.1, prove its hardness in Section 4.2, and develop a
best-effort algorithm for finding exact solution in Section 4.3
as well as an approximate solution in Section 4.4.

4.1 Formalization of Optimal Worker Selection

Intuitively, optimal worker selection aims to “approximate”
the expected distribution ΨA at the best by incorporating
entities of some judiciously selected workers. We slightly
abuse the notations to also useW to denote the set of current
active workers if the context is clear. Let W ′ be a subset of
W and ΦW ′

A be distribution of entities to be collected by W ′.
The optimal worker selection problem is defined as follows.

Definition 4 (Optimal Worker Selection). Given an expected
distribution ΨA and current active worker setW , it finds
a set of workers W ∗ ⊆W that minimizes KL divergence
from ΨA, i.e., W ∗ = argW ′⊆W minDKL(ΨA||ΦW ′

A).

7

0.2
0.4
0.6

Worker w1

0.2
0.4
0.6

Worker w3

0.2
0.4
0.6

S N C #

Worker w4

0.3

S N C #

0.5

S N C

0.1

0.5

Rescale

0.1

0.3

Fig. 3. Example of worker model aggregation.

Computation of Distribution ΦW ′
A . The key in Definition 4

is to compute distribution ΦW ′
A of the entities to be provided

by the workers in W ′. Based on our worker model, this dis-
tribution mainly depends on how the entities are sampled
from an aggregated probabalistic model of these workers. The
basic idea is illustrated in Figure 3, which consists of the
following two steps.
Step 1 - Aggregating Worker Models. We first compute an ag-
gregated probabalistic model PW ′

by combining the estimated
P̂wj of each individual worker wj in W ′. Intuitively, each
probability in PW ′

corresponds to the event of sampling an
entity from W ′ with attribute value ai (or #). This process
can be considered as throwing multiple dices, each of which
corresponds to a worker wj in W ′ and has |Ω| + 1 faces
as {a1, a2, . . . , an,#}. After throwing, we count the result
of how many dices with faces a1, a2, . . . , # respectively.
Then, we compute PW ′

by normalizing the obtained num-
bers. As we already capture the “uneven contribution” in
P̂wj , we can simply use 1/|W ′| for the normalization, i.e.,
pW

′
i =

∑
wj∈W ′ p̂

j
i · 1

|W ′| .
Step 2 - Rescaling to Entity Distribution. Notice that the ag-
gregated model PW ′

is not equivalent to entity distribution
ΦW ′

A , as the former contains probability pW
′

of sampling
no entity which obviously has no effect on ΦW ′

A . Thus, we
need to “rescale” PW ′

to obtain ΦW ′
A by only considering

the cases in which W ′ provides entities, i.e.,

φW
′

i =
pW

′
i∑n

l=1 p
W ′
l

=

∑
wj∈W ′ p̂

j
i∑

wj∈W ′
∑n

l=1 p̂
j
i

. (9)

Example 6. Consider the example shown in Figure 3 with
three workers W ′ = {w1, w3, w4}. To compute ΦW ′

A ,
we first combine P̂w1 , P̂w3 and P̂w4 to generate an
aggregated model PW ′

, then rescale the probabilities
by applying Equation (9), and finally obtain the entity
distribution ΦW ′

A = { 7
16 ,

4
16 ,

5
16}.

Transforming Optimization Objective. Next, we transform
the original optimization objective DKL(ΨA||ΦW ′

A) into a
more compact objective. Based on the definition of KL
divergence in Equation (2), we have

DKL(ΨA||ΦW ′
A) =

n∑
i=1

ψi logψi −
n∑

i=1

ψi log φ
W ′
i . (10)

As
∑n

i=1 ψi logψi is a constant w.r.t. worker setW ′, min-
imization of DKL(ΨA||ΦW ′

A) can be transformed into max-

imizing
∑n

i=1 ψi logφ
W ′
i . For ease of presentation, we call

it impact of W ′ and use I(W ′) to denote
∑n

i=1 ψi logφ
W ′
i .

Thus, the problem of optimal worker selection is now
transformed to selecting a worker set W ∗ ⊆ W that
maximizes the impact, i.e., W ∗ = argW ′ maxI(W ′) =
argW ′ max

∑n
i=1 ψi logφ

W ′
i .

Discussion. Our method can be extended to the case
that distribution ΦS

A of the existing collected entity set S
deviates the expected distribution ΨA. In this case, the
objective of optimal worker selection is not minimizing
DKL(ΨA||ΦW ′

A) any more. Instead, it aims to “adjust” ΦS
A

to approximate ΨA by incorporating entities from work-
er set W ′ into S, which can be formalized as W ∗ =
argW ′ minDKL(ΨA||ΦW ′

A ⊕ ΦS
A), where ΦW ′

A ⊕ ΦS
A is distri-

bution of combining existing entities in S and those to be
collected from W ′. In the remainder of this section, for ease
of presentation, we only consider the case that minimizes
DKL(ΨA||ΦW ′

A) without ΦS
A.

4.2 Hardness of Optimal Worker Selection

We show that the optimal worker selection problem in
Definition 4 is a NP-complete problem, and thus we cannot
hope for a polynomial time algorithm.

Theorem 2. The worker selection problem is NP-Complete.

We reduce the Subset Sum problem to our problem. The
input of the Subset Sum problem is a set S of integers and a
target integer t, and the goal is to determine if there is any
subset of S that sums up to t. To construct the reduction, we
consider the Fixed Size Subset Sum (FSSS) problem, which
essentially fixes the size of the subset.

Definition 5 (Fixed Size Subset Sum). Given a set S of n
natural numbers S = {s1, . . . , sn}, and a target number
t, is there a subset S ′ of S such that |S′| = k and∑

si∈S′ si = t?

It is easy to see that if we can solve the FSSS problem in
polynomial time for arbitrary k, then we can run the algo-
rithm for k = 1, . . . , n and solve the Subset Sum problem in
polynomial time. We now show that if there is a polynomial
time algorithm for the worker selection problem, then we
can solve the FSSS problem in polynomial time for arbitrary
k, thus proving the NP-completeness of the FSSS problem.

Given an instance of the FSSS problem, we construct an
instance of the worker selection problem as follows. Let s =∑n

j=1 sj . The attribute domain Ω consists of two values, a1
and a2. We construct a set W of n + 1 workers as follows.
For the first n workers, we define the estimated distribution
of worker wj to be{

p̂j1 =
sj

2(k + 1)s
, p̂j2 = 1− sj

2(k + 1)s

}
,

for j = 1, . . . , n. Note that under this construction, the
probability of sampling worker wj samples no entities at
each step is p̂j# = 0. We define Pn =

∑n
j=1 p̂

j
1 to be the

summation of the estimated probabilities of the first entity
over all workers. Note that Pn =

∑n
j=1

sj
2(k+1)s = 1

2(k+1) ,
which is a minor probability. We further construct an
extra worker wn+1 with uniform estimated distribution{
p̂n+1
1 = 1

2 , p̂
n+1
2 = 1

2

}
.

8

Moreover, the expected distribution is defined to be{
ψ1 =

1
2 + t

2(k+1)s

(k + 1)
, ψ2 = 1−

1
2 + t

2(k+1)s

(k + 1)

}
.

To get some intuitions of this construction, we observe
that the probability mass for the first entity of the first n
workers is dominated by that of the (n + 1)-th worker. So

if there is a subset W ∗ such that
∑

wj∈W∗ p̂j
1

|W∗| = ψ1, then the
(n + 1)-th worker must reside in W ∗. This will ensure that
|W ∗| cannot deviates from k+1, and thus the rest k workers
make up the optimal worker set. In particular, we have the
following Lemma that states the algorithm that solves the
worker selection problem can also solve the FSSS problem.

Lemma 2. Suppose the worker selection problem finds a
subset W ∗ of W that maximizes the impact. Then, the
original FSSS problem has a solution if and only if
∑

wj∈W∗ p̂j
1

|W∗| = ψ1.

Proof 3. Recall that the worker selection problem finds a
subset W ′ of W that maximizes the impact I(W ′) of
worker set W ′:

ψ1 log

∑
wj∈W ′ p̂

j
1

|W ′| + ψ2 log

∑
wj∈W ′ p̂

j
2

|W ′| . (11)

Since ψ1 + ψ2 = 1 and p̂j1 + p̂j2 = 1 for j = 1 . . . , n+ 1,
the impact I(W ′) equals to

ψ1 log

∑
wj∈W ′ p̂

j
1

|W ′| + (1− ψ1) log

(
1−

∑
wj∈W ′ p̂

j
1

|W ′|

)
.

(12)
Consider the function f(x) = ψ1 log x+(1−ψ1) log(1−
x). Jensen’s inequality suggests that f(x) takes maxi-
mum if and only if x = ψ1. It follows that the impact

I(W ′) takes maximum if and only if
∑

wj∈W ′ p̂j
1

|W ′| = ψ1.
Now suppose there is a subset W ∗ ∈ W that satisfies∑

wj∈W∗ p̂
j
1

|W ∗| = ψ1. (13)

The first observation is that the (n + 1)-th worker wn+1

must be selected toW ∗. For a proof, notice that if wn+1 is

not in W ∗, then
∑

wj∈W∗ p̂j
1

|W∗| is bounded by the maximum

p̂j1 for j = 1, . . . , n , which is in term bounded by the
summation

∑n
i=1 p̂

j
1 = 1

2(k+1) . Since ψ1 >
1

2(k+1) , this is
contradicting to equation (13).
The second observation is that W ∗ contains exactly (k+
1) workers. For a proof, we assume |W ∗|
= k + 1. If
|W ∗| ≤ k, we have∑

wj∈W∗ p̂
j
1

|W ∗| ≥ p̂n+1
1

k
≥ 1

2k
.

Notice that

ψ1 =

1
2 + t

2(k+1)s

(k + 1)
≤

1
2 + s

2ks

(k + 1)

≤ 1

2(k + 1)
+

1

2k(k + 1)
<

1

2k
,

which is contradicting to equation (13). On the other
hand, if |W ∗| ≥ k + 2, then∑

wj∈W∗ p̂
j
1

|W ∗| ≤
∑n

i=1 p̂
j
1 + p̂n+1

1

k + 2
=

1
2(k+1) +

1
2

(k + 2)
<

1

2(k + 1)
.

Notice that

ψ1 =

1
2 + t

2(k+1)s

(k + 1)
>

1

2(k + 1)
.

This also implies a contradiction to equation (13).
Summarizing the two observations, we havewn+1 ∈ W ∗

and |W ∗| = k + 1. Combining with equation (13), it
follows that

∑
wj∈W∗ p̂

j
1 = ψ1(k+1), which implies that

∑
wj∈W∗,j �=n+1

p̂j1 = ψ1(k + 1)− p̂n+1
1 =

t

2(k + 1)s
.

Plugging p̂j1 = sj
2(k+1)s , we have∑
wj∈W∗,j �=n+1 sj

2(k + 1)s
=

t

2(k + 1)s
,

that is, ∑
wj∈W∗,j �=n+1

sj = t.

In other words, if we select the subset S∗ ∈ S such that
S∗ = {sj | wj ∈ W ∗ \ {wn+1}}, then S∗ forms a feasible
solution of the FSSS problem.
On the other hand, if there is a subset S∗ ∈ S such
that

∑
sj∈S∗ sj = t, then by picking W ∗ = {wj |

sj ∈ S∗ ∪ {wn+1}}, we construct a worker subset with
∑

wj∈W∗ p̂j
1

|W∗| = ψ1. This worker subset will maximize the
impact function I(W ′).
This proves that the original FSSS problem has a solution

if and only if
∑

wj∈W∗ p̂j
1

|W∗| = ψ1. �

4.3 A Best-Effort Algorithm for Worker Selection

This section presents a best-effort algorithm to compute
exact solution for optimal worker selection. The basic idea is
to estimate the upper bound of any worker set and preferen-
tially compute impact for the worker sets with larger upper
bounds, so as to prune insignificant worker sets.

Algorithm 2 provides the pseudo-code. The algorithm
initializes a max-heap H for supporting preferential access
to worker sets, which considers that each worker set W ∗ in
heapH has one of the following two states:

1) bounded: upper bound of impact of W ∗ is estimated;
2) computed: exact impact of W ∗ is computed.
It first inserts an empty worker set into H, and then

iteratively accesses elements in H. In each iteration, it pops
the top element 〈W ∗, I(W ∗), state〉 from heapH.

1) If the state is bounded, it expands W ∗ to W ′ by
including every worker w inW −W ∗. In particular, for each
expanded worker set W ′, it estimates bound I(W ′), which
is the upper bound of any superset of W ′. Then, it inserts
W ′ with I(W ′) as well as state bounded into H. After that,
it computes the exact impact for W ∗ and inserts it back to
H with state computed if W ∗ is not empty (lines 6 - 12).

9

Algorithm 2: BESTEFFORTSELECT (W, {P̂wj},Ψ, S)

Input: W : workers; {P̂wj}: estimated worker models;
Ψ: expected distribution; S: collected entities

Output: W∗: a selected worker set
Initialize a max-heapH ;1

Insert 〈∅,−∞, bounded〉 into H ;2

while H
= ∅ do3

〈W ∗, I(W ∗), state〉 ← H.pop() ;4

if state = bounded then5

for each w ∈ W −W ∗ do6

W ′ ←W ∗ ∪ {w} ;7

I(W ′)← ESTIMATEUB (W ′, {P̂wj},Ψ) ;8

Insert 〈W ′, I(W ′), bounded〉 into H ;9

if W ∗
= ∅ then10

I(W ∗)← CALCIMPACT (W ∗, {P̂wj},Ψ) ;11

Insert 〈W ∗, I(W ∗), computed〉 into H ;12

else if state = computed then13

if I(W ∗) >
∑n

i=1 ψi logφ
S
i then return W ∗ ;14

else return ∅ ;15

2) If the state is computed, it can safely ensure that
impact I(W ∗) of W ∗ is larger than upper bounds of any
other worker sets. Then, the algorithm examines whether
W ∗ can reduce the KL divergence of ΦS from Ψ by com-
paring I(W ∗) and

∑n
i=1 ψi logφ

S
i . If the former is larger, it

returns W ∗ as the selected worker set. Otherwise, it gives
up W ∗ and waits for the next time point (lines 14-15).

Upper Bound Estimation. Obviously, the success of Algo-
rithm 2 relies on the performance of bound estimation.
Lemma 3. The impact of any worker set W is bounded by

I(W) ≤ log

∑
wj∈W μj∑
wj∈W νj

, (14)

where μj =
∑n

i=1 ψi · p̂ji and νj =
∑n

i=1 p̂
j
i .

Proof 4. According to the definition of I(W) and Equa-
tion (9), we have

I(W) =
n∑

i=1

ψi log

∑
wj∈W p̂ji∑

wj∈W

∑n
l=1 p̂

j
i

.

Then, as
∑

i ψi = 1, we can apply the Jensen’s inequality
to the above equation, i.e.,

I(W) ≤ log

∑
wj∈W

∑n
i=1 ψi · p̂ji∑

wj∈W

∑n
l=1 p̂

j
i

≤ log

∑
wj∈W μj∑
wj∈W νj

.

Hence, we prove the lemma. �
Lemma 3 allows us to estimate the upper bound of any

candidate worker set W ∗ as follows. For each active worker
wj , we precompute its μj =

∑n
i=1 ψi · p̂ji and νj =

∑n
i=1 p̂

j
i .

Then, we sort μj for all wj ’s in descending order and use
μ(l) to denote the one in the l-th position of the sorted list.
Similarly, we sort all νj ’s in ascending order and use ν(l) to

Algorithm 3: LOCALSEARCHSELECT (W, {P̂wj},Ψ, S)

Input: W : workers; {P̂wj}: estimated worker models;
Ψ: expected distribution; S: collected entities

Output: W∗: a selected worker set
Initialize a worker set W ∗ = ∅, I(W ∗) = 0 ;1

while true do2

for each w ∈ W −W ∗ do3

I ← CALCIMPACT (W ∗ ∪ {w}, {P̂wj},Ψ) ;4

if I > I(W ∗)/(1 + ε) then5

W ∗ ←W ∗ ∪ {w}, I(W ∗)← I;6

break;7

if having insertion then continue ;8

for each w ∈ W ∗ do9

I ← CALCIMPACT (W ∗ \ {w}, {P̂wj},Ψ) ;10

if I > I(W ∗)/(1 + ε) then11

W ∗ ←W ∗ \ {w}, I(W ∗)← I;12

break;13

if having deletion then continue ;14

for each w ∈ W −W ∗ ∧w′ ∈ W ∗ do15

I ← CALCIMPACT16

(W ∗ ∪ {w} \ {w′}, {P̂wj},Ψ) ;
if I > I(W ∗)/(1 + ε) then17

W ∗ ←W ∗ ∪ {w} \ {w′};18

break;19

if having swap then continue ;20

if I(W ∗) >
∑n

i=1 ψi log φ
S
i then return W ∗ ;21

else return ∅ ;22

denote the one in the l-th position. Recall that I(W ∗) is used
to denote the upper bound of any super set of W ∗. Then, we
have the following estimate of I(W ∗).

I(W ∗) = max
L=0...(|W |−|W∗|)

log

∑
wj∈W∗ μj +

∑L
l=0 μ

(l)∑
wj∈W∗ νj +

∑L
l=0 ν

(l)
.

(15)
Lemma 4. Given active worker set W , I(W ∗) in Equa-

tion (15) is an upper bound for any super set of W ∗.

Note that we can also apply some incremental computa-
tion and pruning techniques to compute Equation (15). We
omit the details due to the space constraint.

4.4 A Local Search Algorithm for Worker Selection

Due to the hardness of the problem (see Theorem 2), to
achieve better performance than the exact algorithm, we
also develop a local search based algorithm to approximately
solve the optimal worker selection problem.

Initially, we arbitrarily select a subsetW ∗ fromW . Then,
we define three operations based on local search scheme: 1)
add: add a new worker p ∈ (W \W ∗) to W ∗; 2) remove:
remove a worker from W ∗, if |W ∗| > 1; 3) swap: swap a
worker in W ∗ with another one in (W \W ∗). We repeatedly
perform one of the three operations to improve the impact,
and the search process terminates when no new operation
can produce a better result. One technical issue is that the
improvement of each operation may be small, leading to

10

TABLE 3
Statistics of Datasets

Datasets attribute A |Ω| # of workers # of answers
movie decade 7 74 5,000
car body style 15 91 1,975

too many operations which prevent the algorithm from
finishing in polynomial time. To avoid this, we perform one
of the three operations when the impact is improved by a
factor of 1 + ε, where ε is an arbitrary small constant.

Algorithm 3 shows the pseudo-code. It starts from an
empty worker set W ∗ = ∅, and examines the improvement
on impact of each add/remove/swap operation. Specifical-
ly, if the impact I after an operation is improved by a factor
of 1 + ε, i.e., I > I(W ∗)/(1 + ε), it performs the operation
and then examines the possibility of subsequent operations.
The algorithm terminates when none of the three operations
can improve the impact by a factor of 1 + ε. Let Imax be
the maximum possible impact over all possible subsets, and
then the number of operations is bounded by log1+ε Imax,
which is polynomial in the input size.

5 EXPERIMENTS

This section evaluates the performance of our approach.
First, we report some observations on worker behaviors
for entity collection. Then, we evaluate the methods for
estimating the probabilistic model of each worker. Finally,
we compare different strategies for worker selection.

5.1 Experiment Setup

Datasets. We conduct experiments on the well-known
crowdsourcing platform Amazon Mechanical Turk (AMT)
and evaluate the approaches on two real datasets collected
from the workers on AMT. 1) The movie dataset contains a
set of movie entities: each worker is asked to submit movies
she knows, together with an attribute decade indicating the
time a movie firstly publishes. The domain of this attribute
contains 7 distinct values, ranging from 1950s to 2010s.
2) The car dataset contains a set of car entities from the
workers, together with an attribute body style which has
15 distinct values, such as sedans, suvs, etc.

Specifically, these two datasets are collected from the
workers in the following way. We publish a set of human
intelligent tasks (HITs) on AMT, where each HIT asks a
worker to submit 10 entities together with their attribute
values (e.g., 10 cars with their body style). To ensure that
all approaches are compared on the same set of workers,
we ask workers to submit as many entities as they can.
In particular, each record in a dataset consists of entity
name, attribute value, worker ID and submission time. For
example, a record in the movie dataset is { Black Swan,
2010s, A13FVM2C914A3H, 2016-04-15 19:54:22 }. Then, based
on these records, we can run different approaches for work-
er selection and compare their performance. Table 3 shows
statistics of the datasets and answers collected from AMT.
Compared approaches. We implement our approach and
compare with baseline approaches. Note that we compare
both worker model estimation and online worker selection.

For worker model estimation, we compare five methods:
1) Empirical applies the empirical estimator with smooth-
ing. 2) GoodTuring exploits the Good-Turing estimator.

TABLE 4
Uneven Contributions across Workers

answers / worker [0, 30) [30, 60) [60, 90) ≥ 90

workers movie 50 10 5 9
car 76 6 5 4

3) JelinekMercer utilizes the Jelinek-Mercer technique
in [16]. 4) AbsoluteDisc uses the absolute discounting tech-
nique in [28]. 5) Hybrid is our hybrid approach combining
empirical and Good-Turing estimators.

For adaptive worker selection, we implement the best-
effort and the local-search algorithms proposed in Section 4,
and compare with alternative worker selection methods. 1)
NoSelect does not perform worker selection, that is, it
accepts all the active workers and includes their entities.
2) RandomSelect applies a random selection strategy that
randomly picks a subset of active workers. Note that we
run RandomSelect multiple times and use the average
as its result. 3) BestEffort utilizes our best effort algo-
rithm that selects a subset of workers having minimum
KL divergence from the expected distribution in the query.
4) LocalSearch employs the local search algorithm that
approximately solves the worker selection problem.
Evaluation metrics. We evaluate approaches on both effec-
tiveness and efficiency. Effectiveness is measured by the actu-
al KL divergence of the collected entities from the expected
distribution in a query, while efficiency is measured by the
elapsed time of worker selection.
Experiment settings. To evaluate performance on effective-
ness, we sort records in a dataset in ascending order of the
submission time and access the records one by one. Then,
given a query, we apply a worker selection approach to
run the framework in Algorithm 1. In particular, we set the
granularity of the “time point” in Algorithm 1 as 5 hours.
Finally, when enough entities are collected, we measure the
KL divergence of the collected entities from the expected
distribution. On the other hand, to evaluate performance on
efficiency, we implement all the programs in JAVA and run
all the experiments on a Mac machine with an Intel Core i5
2.8 GHz processor and 8 GB memory.

5.2 Observations of Crowdsourced Entity Collection

We first investigate worker behaviors on crowdsourced en-
tity collection by analyzing the collected answers on each
dataset. Table 4 shows the uneven contribution of crowd-
sourcing workers. For example, on the movie dataset, 68%
of workers provide less than 30 entities, while a few “streak-
ers” provide more than 90 entities. In particular, the most
zealous worker contributes 1250 entities, which are much
more than that of other workers.

Next, we examine diverse bias of crowdsourcing workers,
by using all entities of a worker to compute entity distribu-
tion of the worker. We first consider each pair of workers
and compute KL divergence between distributions of their
entities 6. Figure 4(a) shows the percentage of worker pairs
in various ranges of KL divergence (e.g., [0, 1), [1, 2), . . .). It
is obvious to see that most of the worker pairs have large
values of KL divergence, e.g., more than 80% of worker

6. As KL divergence is not asymmetric, we compute KL divergence
on both sides, and then use the average.

11

 0

 5

 10

 15

 20

0 1 2 3 4 5 6 7 8 9 101112131415

%

o
f

w
o
r
k
e
r

p
a
i
r
s

Range of KL divergence [i, i+1)

movie-dataset
car-dataset

(a) Pairwise KL

 0

 10

 20

 30

 40

 50

0 1 2 3 4 5 6 7 8 9 1011121314

%

o
f

w
o
r
k
e
r
s

Range of KL divergence [i, i+1)

movie-dataset
car-dataset

(b) KL w.r.t query

Fig. 4. Diverse entity distributions across workers.

 0
 0.2
 0.4
 0.6
 0.8
 1

 1.2
 1.4
 1.6
 1.8
 2

-2 -1 0 1 2

E
s
t
i
m
a
t
i
o
n

e
r
r
o
r

(
K
L
)

Smoothing parameter α (log)

Sample Ratio = 0.1
Sample Ratio = 0.2
Sample Ratio = 0.3
Sample Ratio = 0.4
Sample Ratio = 0.5

(a) movie dataset

 0
 0.2
 0.4
 0.6
 0.8
 1

 1.2
 1.4
 1.6
 1.8
 2

-2 -1 0 1 2

E
s
t
i
m
a
t
i
o
n

e
r
r
o
r

(
K
L
)

Smoothing parameter α (log)

Sample Ratio = 0.1
Sample Ratio = 0.2
Sample Ratio = 0.3
Sample Ratio = 0.4
Sample Ratio = 0.5

(b) car dataset

Fig. 5. Effect of smoothing in empirical estimation.

pairs on the movie dataset and more than 95% on the car
dataset having KL divergence larger than 1. This validates
our claim in Section 2 that different workers have quite
diverse biases on the entities they know.

Moreover, we also examine the deviation of each in-
dividual worker’s entity distribution from an expected
distribution. On each dataset, given an expected query
distribution, we compute the KL divergence according to
Equation (2) for each worker, and then plot percentages of
workers in various ranges of KL divergence in Figure 4(b).
As seen in the figure, almost 50% of workers on the movie
dataset and more than 80% of workers on the car dataset
have KL divergence larger than 1 from the query. This
experimental result shows that it is not effective to only rely
on individual workers for entity collection. Thus, to achieve
better performance, we need to select a set of workers and
aggregate their entities, which validates the necessity of the
worker selection problem introduced in this paper.

5.3 Evaluation on Worker Model Estimation

We evaluate the approaches to estimating worker proba-
bilistic model in this section. For each worker, we select
some percentage (e.g., 20%) of her entities as a “sample set”
that feeds an estimator to estimate P̂w . Then, we measure
the KL divergence of the estimated distribution from the
actual distribution of the worker, i.e., DKL(Pw||P̂w). Next,
we average values of KL divergence of all workers as
estimation error to measure the performance of an estimator.

We first examine the empirical estimator mentioned in
Section 3.1. In particular, we vary the smoothing parameter
α in Equation (3) as 0.01, 0.1, 1, 10 and 100, and report
the result in Figure 5. As seen in the figure, with the
increase of smoothing parameter α, the estimation error first
decreases and then increases. This is mainly attributed to
the following reasons. The Laplace smoothing can improve
the performance of probability estimation, because it adds
a pseudocount α to empirical relative frequencies. This pseu-
docount can on the one hand estimate probabilities for the

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.1 0.2 0.3 0.4

E
s
t
i
m
a
t
i
o
n

e
r
r
o
r

(
K
L
)

Sample Ratio

Empirical
Good-Turing

Jelinek-Mercer
Absolute-Disc

Hybrid

(a) movie dataset

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

0.1 0.2 0.3 0.4

E
s
t
i
m
a
t
i
o
n

e
r
r
o
r

(
K
L
)

Sample Ratio

Empirical
Good-Turing

Jelinek-Mercer
Absolute-Disc

Hybrid

(b) car dataset

Fig. 6. Evaluation on worker model estimation.

attribute values not seen in the sample, and on the other
hand smooth relative frequencies of those frequently occur
in the sample. However, when α is too large, e.g., α = 10 or
100 in Figure 5, this pseudocount will “dominate” relative
frequencies, which fails to capture relative frequencies and
thus brings damages to the estimation. In our experiment,
we observe that α = 0.1 performs well in most of cases.
Thus, we set α = 0.1 as a default smoothing parameter for
the empirical estimator in the remainder of this section.

Next, we compare different approaches for worker mod-
el estimation. Note that parameters of approaches (e.g.,
discounting parameter in AbsoluteDisc) are tuned using
held-out estimation [4]. The experimental result is reported
in Figure 6. We have the following observations.

First, on the movie dataset, GoodTuring performs bet-
ter than Empirical for small sample ratios. For example,
GoodTuring can achieve about 7% improvement on esti-
mation error when sample ratio is 0.1. However, when the
sample ratio is large, e.g, 0.3 or 0.4, GoodTuring produces
worse estimates. This is because GoodTuring is usually
good for estimating attribute values with low frequencies
in the sample [30]. Specifically, when sample ratio is small,
many attribute values only have low frequencies or even
do not occur in the sample. In this case, Empirical on-
ly adds a uniform pseudocount α for smoothing, while
GoodTuring considers “frequency of frequencies” by ap-
plying Equation (5) which can better capture the underly-
ing probability distribution than a uniform pseudocount.
However, when sample ratio is large, many attribute values
occur frequently in the sample. According to Equation (6),
we can see that GoodTuring may not perform well in this
case, because Nr+1 is very likely to be zero. In addition,
on the car dataset, GoodTuring performs worse than
Empirical. This is because the dataset is relatively sparse,
i.e., only having 1975 entities for 91 workers (the movie
dataset has 5000 entities for 74 workers), and thus may
increase the error of estimating EN [Nr] in GoodTuring.

Second, the Hybrid estimator combining GoodTuring
and Empirical achieves the lowest estimation error. For
example, when sample ratio is 0.1, it achieves 17% improve-
ment to Empirical and 14% improvement to GoodTuring
on the movie and car datasets respectively. It also per-
forms better than JelinekMercer and AbsoluteDisc,
which are “common practical estimators” [30]. This result
validates the practice that GoodTuring is often used in
conjunction with Empirical [30]: for attribute values with
low or zero frequencies, GoodTuring can capture the un-
derlying probability distribution, while for those with high
frequencies, Empirical can avoid the zero Nr+1 problem.

12

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

100 200 300 400 500

K
L

w
r
t

q
u
e
r
y

of collected entities

NoSelect
RandomSelect

BestEffort
LocalSearch

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

100 200 300 400 500

K
L

w
r
t

q
u
e
r
y

of collected entities

NoSelect
RandomSelect

BestEffort
LocalSearch

(a) movie dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

100 200 300 400 500

K
L

w
r
t

q
u
e
r
y

of collected entities

NoSelect
RandomSelect
BestEffort

LocalSearch

(b) car dataset

Fig. 7. Effectiveness of worker selection methods.

5.4 Evaluation on Adaptive Worker Selection

This section compares different approaches to worker selec-
tion on both effectiveness and efficiency.
Evaluation on Effectiveness. On each dataset, we run the
framework in Algorithm 1 and apply different approaches
for function SELECTWORKERS. We vary the number of col-
lection k from 100 to 500, and report the KL divergence of
the collected entities from the query.

Figure 7 shows the experimental result. First, approach
NoSelect produces the largest KL divergence from the
query on both datasets. This validates our claim in the Intro-
duction that distribution of entities will become unpredictable
if no effective strategy is utilized to control the collection
process. Second, the random strategy RandomSelect only
has limited improvement compared with NoSelect, and
sometimes it may not be stable, e.g., producing worse result
on the movie dataset when collecting 500 entities. This
result justifies the motivation of our framework that is aware
of current entity distribution and selects workers to reduce
the KL divergence as much as possible. Third, our proposed
exact solution BestEffort achieves the best performance
in all the cases. For example, it achieves about 50% improve-
ment on both datasets, which can significantly reduce the
KL divergence of the collected entities from the query. The
improvement is mainly attributed to our worker selection
objective that minimizes the estimated KL divergence (or
maximizes the impact) of a worker set. Moreover, coupled
with the effective worker model estimator, BestEffort
can finally output a proper set of entities that best approx-
imates the expected distribution. Fourth, our approximate
solution LocalSearch, although performing worse than
the the exact solution BestEffort, also achieves good
performance and outperforms the baselines, NoSelect and
RandomSelect, with a large margin.
Evaluation on Efficiency. Next, we evaluate the efficiency
of the proposed worker selection algorithms in Section 4.
To this end, we build a simulation environment with two
parameters, number of workers (i.e.,m) and size of attribute
value domain Ω (i.e., n). Considering a specified settings of
m and n, we generatemworkers by randomly assigning en-
tity distributions of size n to them. Then, given an expected
distribution, we run different worker selection algorithms
and report the time. By default, we set m = 20 and n = 20.
We compare three alternative algorithms: 1) Enumeration
is a brute-force algorithm that enumerates all possible sets of
workers, computes KL divergence for each of them, and se-
lects the one with the minimum divergence; 2) BestEffort
is our best-effort algorithm (Algorithm 2); 3) LocalSearch
is the approximate algorithm (Algorithm 3).

 1

 5

 25

 125

 625

 3125

 15625

 78125

 20 30 40 50 60

T
i
m
e

(
m
s
)

of workers

Enumeration
BestEffort

LocalSearch

(a) Efficiency

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

20 30 40 50 60

K
L

w
r
t

q
u
e
r
y

of workers

Enumeration
BestEffort

LocalSearch

(b) Approximation

Fig. 8. Evaluation of worker selection methods in simulation.

We first consider the effect of number m of workers by
varying the value of m. Figure 8 shows the experimental
results. As seen in Figure 8(a), Enumeration is inefficient
and it cannot select workers for the number of workers
larger than 20 (we wait for 30 minutes and still cannot get
the result of Enumeration). This result is not surprising
due to the hardness of the worker selection problem as
stated in Theorem 2. Our exact solution BestEffort is
efficient and can select workers in hundreds of milliseconds.
For example, when the number of workers is 60, it can
produce the result within about 500 milliseconds. This is
mainly due to our best effort framework and upper-bound
estimation techniques, which can preferentially compute
exact impact for the worker sets with larger upper bounds,
so as to prune the insignificant worker sets. Our approx-
imate solution LocalSearch achieves the best efficiency,
and it can select workers within 10 ms, which is faster than
BestEffort by one order of magnitude. Moreover, as seen
in Figure 8(b), LocalSearch also has good approximate
performance. This result shows that LocalSearch is also
good enough to be used for worker selection, if we have
real-time requirements on worker selection.

We also evaluate the efficiency against the size of at-
tribute value domain Ω (i.e., n), and find that n only slightly
affects the efficiency. This is because n only affects the
functions of computing impact or KL divergence, which
is not the bottleneck of the computation. Due to the space
constraint, we omit this result in this paper.
Summarization. Finally, we summarize the main conclu-
sions of our experiments as follows. 1) Our experimental
result supports our claim about worker behaviors on crowd-
sourced entity collection, i.e., the two properties, diverse bias
and uneven contribution. 2) Our hybrid estimation method
that combines Empirical and GoodTuring achieves the
best performance on estimating worker models. 3) Our exact
best-effort algorithm BestEffort can significantly reduce
the KL divergence of the collected entities from the expected
distribution in query and is much more efficient on time
than the brute-force algorithm. 4) Our approximate algorith-
m LocalSearch selects workers within 10 ms and thus can
fulfill real-time worker selection requirements. Also, it has
good approximation performance and overall effectiveness
in our experiments.

6 RELATED WORK

The studies most related to our work are the recently
proposed crowdsourced entity collection [38], [6], [36], [35].
Park and Widom developed a general framework CrowdFill
that shows a partially filled table and asks the crowd to

13

contribute new entities, fill empty cells, and up-vote/down-
vote existing entities [35]. However, CrowdFill neither pays
attention to estimating worker behaviors on entity collec-
tion, nor considers statistical properties of the collected
entities. Trushkowsky et al. is the first work to study worker
behaviors on collecting entities [38] and utilized statistical
approaches for reasoning completeness of the collected data.
Chung et al. extended the estimation techniques to support
aggregate queries, such as SUM, AVG, MAX/MIN, etc., by
analyzing both coverage of the collected entities and the
correlation between attributes and entities [6]. Rekatsinas
et al. extended the underlying data model to a structured
domain with hierarchical structure (e.g., restaurant with
location and cuisine), and aimed to maximize collection
coverage under a monetary budget. The key difference of
our work from these previous studies is three-fold. First,
the problem settings are different: we focus on the under-
lying distribution of the collected entities, which is often
indispensable in data collection but ignored by previous
studies. Second, the estimation tasks are different: the ex-
isting approaches focused on estimating overall statistics
of the entire entity set collected from the crowd, such as
the coverage and aggregate results. In contrast, we aim at
estimating the underlying probability distribution of each
individual worker. The previous estimation techniques cannot
be adapted to solve our more fine-grained problem. Third,
the optimization problems are different: as far as we know,
we are the first to study the problem of selecting workers to
minimize the difference from expected distributions.

Recently, many studies in the database community have
aimed to leverage crowdsourcing to build database systems,
such as CrowdDB [12], Qurk [25], Deco [34] and CDAS [22],
[11], and develop various operators, such as filter [32], [22],
join [26], [39], [10], sort/top-k [14], [7], graph search [33],
[15], and counting [24]. To achieve effective crowdsourcing
performance, existing studies investigated quality control
strategies in crowdsourcing. Most of the strategies applied a
redundancy-based approach which assigns a crowdsourcing
task to multiple workers and aggregates worker answers
by using weighted majority voting. Some approaches [22],
[32] leveraged a small amount of crowdsourcing tasks with
ground truth to estimate workers reliability as aggregation
weight, while other approaches [37], [18] simultaneously
estimated worker weights and predicted aggregated results
using an Expectation-Maximization (EM) strategy. Howev-
er, most of crowdsourcing-powered operators as well as
quality control techniques only consider crowdsourced data
evaluation, which asks the crowd to evaluate the existing
data according to some criteria, such as filtering useless
data, and joining data from various sources. In contrast, this
paper focuses on studying crowdsourced entity collection
which asks the crowd to collect data instead of evaluating
existing data. The key difference and the main challenge of
crowdsourced entity collection is the “open world” nature
of crowdsourcing which may returns unbounded amount
of answers. To address this challenge, we have devised
novel estimation and quality control techniques for adaptive
worker selection.

Crowdsourcing has many successful applications in dif-
ferent areas. Solyent [3] is a word processor that employs
the Find-Fix-Verify interaction method. gMission is a gen-

eral platform for supporting spatial crowdsourcing [5] A-
drenaline [2] is a crowd-powered camera that supports real-
time crowdsourcing by using an interaction method called
rapid refinement. Our work also has large potentials to be
utilized in the so-called data curation applications [27], such
as knowledge base completion [19], domain-aware entity
(e.g., points-of-interest in twitter) collection.

Probability estimation discussed in Section 3 is exten-
sively studied in the area of statistical learning. Good-
Turing is a well-known approach to this end [13], [29], [30].
Gale et. al [13] discussed the derivation of Good-Turing
estimates and applied this method to the smoothing prob-
lem in natural language processing. The studies [29], [30]
theoretically proved the effectiveness of Good-Turing and
suggested to combine Good-Turing and empirical estimates.
In this paper, we utilize the Good-Turing method to a new
problem, i.e., estimating entity distribution of workers, and
conduct extensive experiments to compare it with other es-
timation techniques. Recently, some recommendation stud-
ies [1], [21], [31] also considered to model and estimate user
behaviors (e.g., reputation). Compared with these studies,
our work focuses to estimate worker behaviors on entity
collection, which are not well studied in the existing works.

7 CONCLUSION

In this paper, we studied the problem of distribution-aware
crowdsourced entity collection that controls the crowd-
sourcing process to collect entities following an expected
distribution from the crowd. We introduced an adaptive
worker selection framework to estimate worker’s distribu-
tion based on her historical entity set and select a sub-
set of workers that minimizes the KL divergence from
the expected distribution. We devised effective statistical
estimation approaches to estimating worker’s distribution
with low estimation error. We proved that the problem of
worker selection is NP-complete and developed a best-effort
algorithm to find exact solution and an approximate local
search algorithm for instant worker selection. We deployed
the proposed approach on AMT and the experimental re-
sults on two real datasets show that the approach achieves
superiority on both effectiveness and efficiency.

ACKNOWLEDGEMENT

This work was partly supported by the National Natu-
ral Science Foundation of China (NSFC) under Grant No.
61602488, No. 61632016, No. 61502503, and No. 61602087,
the 973 Program of China (Project No. 2012CB316205), the
Start-up Research Grant of Renmin University of China
(Project No. 16XNLF02), and Tencent.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation
of recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE Trans. Knowl. Data Eng., 17(6):734–749,
2005.

[2] M. S. Bernstein, J. Brandt, R. C. Miller, and D. R. Karger. Crowds
in two seconds: enabling realtime crowd-powered interfaces. In
UIST 2011, pages 33–42, 2011.

[3] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Acker-
man, D. R. Karger, D. Crowell, and K. Panovich. Soylent: a word
processor with a crowd inside. In UIST 2010, pages 313–322, 2010.

14

[4] S. F. Chen and J. Goodman. An empirical study of smoothing
techniques for language modeling. Computer Speech & Language,
13(4):359–393, 1999.

[5] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng,
C. C. Cao, Y. Tong, and C. J. Zhang. gmission: A general spatial
crowdsourcing platform. PVLDB, 7(13):1629–1632, 2014.

[6] Y. Chung, M. L. Mortensen, C. Binnig, and T. Kraska. Estimating
the impact of unknown unknowns on aggregate query results. In
SIGMOD 2016, pages 861–876, 2016.

[7] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd for
top-k and group-by queries. In ICDT 2013, pages 225–236, 2013.

[8] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
record detection: A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–
16, 2007.

[9] J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng. icrowd: An adaptive
crowdsourcing framework. In SIGMOD 2015, pages 1015–1030,
2015.

[10] J. Fan, M. Lu, B. C. Ooi, W. Tan, and M. Zhang. A hybrid machine-
crowdsourcing system for matching web tables. In ICDE 2014,
pages 976–987, 2014.

[11] J. Fan, M. Zhang, S. Kok, M. Lu, and B. C. Ooi. Crowdop: Query
optimization for declarative crowdsourcing systems. IEEE Trans.
Knowl. Data Eng., 27(8):2078–2092, 2015.

[12] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin.
Crowddb: answering queries with crowdsourcing. In SIGMOD
2011, pages 61–72, 2011.

[13] W. A. Gale and G. Sampson. Good-turing frequency estimation
without tears. Journal of Quantitative Linguistics, 2(3):217–237, 1995.

[14] S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So who won?:
dynamic max discovery with the crowd. In SIGMOD 2012, pages
385–396, 2012.

[15] X. Huang, H. Cheng, R. Li, L. Qin, and J. X. Yu. Top-k structural
diversity search in large networks. VLDB J., 24(3):319–343, 2015.

[16] F. Jelinek and R. L. Mercer. Probability distribution estimation
from sparse data. IBM Technical Disclosure Bulletin, 1985.

[17] S. Kajimura, Y. Baba, H. Kajino, and H. Kashima. Quality control
for crowdsourced POI collection. In PAKDD 2015, pages 255–267,
2015.

[18] D. R. Karger, S. Oh, and D. Shah. Iterative learning for reliable
crowdsourcing systems. In NIPS 2011, pages 1953–1961, 2011.

[19] S. K. Kondreddi, P. Triantafillou, and G. Weikum. Combining
information extraction and human computing for crowdsourced
knowledge acquisition. In ICDE 2014, pages 988–999, 2014.

[20] S. Kullback and R. A. Leibler. On information and sufficiency.
Annals of Mathematical Statistics, 22(1):79–86, 1951.

[21] B. Li, R. Li, I. King, M. R. Lyu, and J. X. Yu. A topic-biased user
reputation model in rating systems. Knowl. Inf. Syst., 44(3):581–
607, 2015.

[22] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. CDAS:
A crowdsourcing data analytics system. PVLDB, 5(10):1040–1051,
2012.

[23] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
information retrieval. Cambridge University Press, 2008.

[24] A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh. Counting
with the crowd. PVLDB, 6(2):109–120, 2012.

[25] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Demonstration of qurk: a query processor for humanoperators.
In SIGMOD 2011, pages 1315–1318, 2011.

[26] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Human-powered sorts and joins. PVLDB, 5(1):13–24, 2011.

[27] R. J. Miller. Big data curation. In COMAD 2014, page 4, 2014.
[28] H. Ney, U. Essen, and R. Kneser. On structuring probabilistic

dependences in stochastic language modelling. Computer Speech
& Language, 8(1):1–38, 1994.

[29] A. Orlitsky, N. P. Santhanam, and J. Zhang. Always good turing:
Asymptotically optimal probability estimation. In FOCS 2003,
pages 179–188, 2003.

[30] A. Orlitsky and A. T. Suresh. Competitive distribution estimation:
Why is good-turing good. In NIPS 2015, pages 2143–2151, 2015.

[31] W. Pan, S. Xia, Z. Liu, X. Peng, and Z. Ming. Mixed factorization
for collaborative recommendation with heterogeneous explicit
feedbacks. Inf. Sci., 332:84–93, 2016.

[32] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis,
A. Ramesh, and J. Widom. Crowdscreen: algorithms for filtering
data with humans. In SIGMOD 2012, pages 361–372, 2012.

[33] A. G. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzotis,
and J. Widom. Human-assisted graph search: it’s okay to ask
questions. PVLDB, 4(5):267–278, 2011.

[34] H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina, N. Poly-
zotis, and J. Widom. Deco: A system for declarative crowdsourc-
ing. PVLDB, 5(12):1990–1993, 2012.

[35] H. Park and J. Widom. Crowdfill: collecting structured data from
the crowd. In SIGMOD 2014, pages 577–588, 2014.

[36] T. Rekatsinas, A. Deshpande, and A. G. Parameswaran.
Crowdgather: Entity extraction over structured domains. CoRR,
abs/1502.06823, 2015.

[37] V. S. Sheng, F. J. Provost, and P. G. Ipeirotis. Get another label?
improving data quality and data mining using multiple, noisy
labelers. In SIGKDD 2008, pages 614–622, 2008.

[38] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar. Crowd-
sourced enumeration queries. In ICDE 2013, pages 673–684, 2013.

[39] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowd-
sourcing entity resolution. PVLDB, 5(11):1483–1494, 2012.

Ju Fan received the BEng degree in computer
science from Beijing University of Technology,
China in 2007 and the PhD degree in computer
science from Tsinghua University, China in 2012.
He worked as a research fellow in the School
of Computing, National University of Singapore
(NUS) from 2012 to 2015. He is currently an
associate professor at Renmin University of Chi-
na. His research interests include crowdsourc-
ing data management, big data analytics, and
database usability.

Zhewei Wei received the B.Sc. in Mathematics
from Peking University, China in 2007 and the
PhD degree in computer science and engineer-
ing from The Hong Kong University of Science
and Technology, Hong Kong in 2012. He worked
as a Postdoc in the Centre for Massive Da-
ta Algorithmics (MADALGO), Aarhus University,
Denmark from 2012 to 2014. He is currently
an associate professor at Renmin University of
China. His research interests include massive
data algorithms and database management.

Dongxiang Zhang is a Professor in the School
of Computer Science and Engineering, Universi-
ty of Electronic Science and Technology of Chi-
na. He received his B.Sc. degree from Fudan
University, China in 2006 and the PhD degree
from National University of Singapore in 2012.
He worked as a research fellow at the NeXT
center in Singapore from 2012 to 2014 and was
promoted as a senior research fellow in 2015.
His research interests include spatial databases,
cloud computing and big data analytics.

Jingru Yang obtained the B.S. degree from Bei-
jing Forestry University, Beijing, China, in 2016.
She is currently a PhD student at the School of
Information and the Key Lab of Data Engineering
and Knowledge Engineering, Renmin University
of China. Her current research interests include
crowdsourced data collection and data visualiza-
tion.

Xiaoyong Du obtained the B.S. degree from
Hangzhou University, China, in 1983, the M.E.
degree from Renmin University of China, in
1988, and the Ph.D. degree from Nagoya Insti-
tute of Technology, Japan, in 1997. He is cur-
rently a Professor with the School of Information,
Renmin University of China. He has authored or
coauthored more than 100 papers. His current
research interests include databases and intelli-
gent information retrieval.

