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Influence Maximization on Social Graphs:
A Survey

Yuchen Li, Ju Fan∗, Yanhao Wang, and Kian-Lee Tan

Abstract—Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the
expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its
immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper,
we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the
following key aspects: (1) a review of well-accepted diffusion models that capture information diffusion process and build the foundation
of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous
theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with
novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges
and research directions to expand the boundary of IM research.

Index Terms—Influence Maximization, Information Diffusion, Social Networks, Algorithm Design
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1 INTRODUCTION

THE last decades have witnessed the booming of online
social networks where hundreds of millions of people

interact with each other and produce an unprecedented
amount of content. The prevalence of online social networks
has prompted much attention on information diffusion, as
a piece of information could quickly become pervasive
through the “word-of-mouth” propagation among friends
in the network. This diffusion phenomenon has been shown
to be powerful in many applications [40], such as adoption
of political standpoints and technical innovations. A very
recent example is Donald Trump’s presidential campaign in
2016, where Twitter is almost daily used as a campaign tool.
As such, information diffusion in online social networks
has attracted extensive research efforts from multiple fields,
including computer science, physics, epidemiology, etc.

As a key algorithmic problem in information diffusion
research, influence maximization (IM) has been extensively
studied recently due to its potential commercial value.
IM aims to select a set of k users in an online social
network, aka. seed set with the maximum influence spread,
i.e., the expected number of influenced users through the
seed set in information diffusion is maximized. A well-
known application of IM is viral marketing [25], where a
company may wish to spread the adoption of a new product
from some initially selected adopters through the social
links between users. Besides viral marketing, IM is also the
cornerstone in many other important applications such as
network monitoring [62], rumor control [8], [45], and social
recommendation [112].
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Despite its immense application potential, IM embraces
enormous research challenges. The first challenge is how to
model the information diffusion process in a social network,
which would heavily affect the influence spread of any seed
set in IM. Second, the IM problem is theoretically complex
in general. It has been proven that obtaining an optimal
solution of IM is NP-hard under most of the diffusion
models [10], [50], [71]. Furthermore, due to the stochastic
nature of information diffusion, even the evaluation of in-
fluence spread of any individual seed set is computationally
complex. These theoretical results have shown that it is
very challenging to retrieve a (near) optimal seed set and to
scale to massive social graphs at the same time. Third, very
recently, online social networks are being equipped with
novel features, e.g., location-based services, topical analysis,
streaming content, etc. This has opened up an opportunity
of combining IM with various contexts, such as location, time
and topic information, in order to improve the effectiveness
of IM. Many technical challenges naturally arise in solving
such context-aware influence maximization problems.

The aforementioned challenges have driven a prolifera-
tion of researches in the past decade on developing tech-
niques for influence maximization. In this paper, we aim to
provide a comprehensive survey on IM from an algorithmic
perspective, and focus on the following three aspects as
illustrated in Figure 1.

• Problem (Section 2). The IM problem is defined on
diffusion models to capture the information diffusion process
among the users in an online social network. We thus review
several classical and well-accepted diffusion models to build
the foundation of the IM problem. Subsequently, we for-
mally define the IM problem and discuss the characteristics
as well as the computational complexity of the problem
under diffusion models.

• Algorithm (Sections 3-6). As IM is NP-hard, existing
works focus on approximate solutions, and a keystone of
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Fig. 1. The survey’s overview.

these algorithmic IM studies is the greedy framework. We
review the greedy framework and propose a taxonomy to
classify existing IM algorithms into the simulation-based, the
proxy-based and the sketch-based approaches, based on their
algorithmic design for achieving different desired objectives
(Section 3). We thoroughly review existing IM algorithms
in each approach using a fine-grained classification respec-
tively (Sections 4-6), and provide a rigorous theoretical
analysis for comparing theoretical bounds and complexities
of the algorithms.

• Application (Sections 7). The context-aware IM problems
are emerging in recent years. Extended from the classical IM
problem, context-aware IM problems consider contextual
features such as topical, temporal and spatial information.
This survey also reviews the context-aware IM algorithms
for two reasons. First, it analyzes how the aforementioned
IM approaches are applied as building blocks by combin-
ing with contextual information. Second, it introduces how
the context-aware features are integrated into the classical
IM problem for supporting novel applications. These are
prerequisites for developing new algorithms to expand the
boundary of the influence maximization research.
Differences from existing surveys. Although there are
existing surveys [2], [11], [40], [96], [101], [113] on social
influence analysis, this survey is distinct in the following
aspects. The authors of [96] focus on diffusion models as
well as the methods to train these models from social graph
structures or user generated data. Guille et al. [40] narrate a
high-level analysis on how existing social influence analysis
methods can benefit a broader range of domains in social
network studies. Although some surveys like [11], [101],
[113] focus on algorithmic methods for IM, they are rather
incomplete as an abundance of innovative methods (e.g.,
sketch-based algorithms) for IM have been developed in
recent years (e.g., [30], [84], [99], [100], [107]). Akhil et al. [2]
report a comprehensive experimental study on a number
of recent IM methods but does not provide any theoretical
analysis. Moreover, its experimental design is controversial
as pointed out by [75]. Compared with the existing surveys,
we focus on presenting a comprehensive review on the
state-of-the-art algorithmic methods for IM. We introduce a
fine-grained classification and a rigorous theoretical analysis
of existing IM algorithms. Moreover, this paper is the first

survey, to the best of our knowledge, on reviewing the
recent efforts on context-aware IM and pinpointing their
relationships to classical IM algorithms.

To summarize, this paper presents an extensive survey
of IM algorithms with the following contributions.

• We develop a fine-grained taxonomy for classifying exist-
ing IM algorithms based on their design objectives.

• We present a rigorous theoretical comparative study of
the existing algorithms, with a special focus on theoretical
bounds and complexity analysis.

• We survey the context-aware IM problems and discuss
how IM algorithms are applied as building blocks in
designing efficient context-aware IM algorithms.

2 THE INFLUENCE MAXIMIZATION PROBLEM

Influence Maximization (IM) is first modeled as an algo-
rithmic problem by Kempe et al. [50] in 2003. This problem
studies a social network represented as a graph G = (V,E),
where V is the set of nodes in G (i.e., users) and E is the set
of (directed/undirected) edges in G (i.e., social links between
users). The goal of the IM problem is to find a k-sized set of
users with the maximum influence in graph G.

The influence of any seed set is defined based on the
information diffusion process among the users. An example
of the information diffusion is viral marketing, where a
company may wish to spread the adoption of a new product
from some initial adopters through the social links between
users. To quantify information diffusion, we formally define
the diffusion model and the influence spread under the model.

Definition 1 (Diffusion Model & Influence Spread). Given
a social graph G = (V,E), a user set S ⊆ V , and a
diffusion model M captures the stochastic process for
S spreading information on G. The influence spread
(aka. the influence function) of S, denoted as σG,M (S), is
the expected number of users influenced by S (e.g., users
who adopt the new product in viral marketing), where
σG,M (·) is a non-negative set function defined on any
subset of users, i.e., σG,M : 2V → R≥0.

Based on the formalization of the influence spread, the
influence maximization problem is defined as follows:

Definition 2 (Influence Maximization (IM) [50]). Given a
social graph G, a diffusion model M and a positive
integer k, IM selects a set S∗ of k users from V as the
seed set to maximize the influence spread σG,M (S∗), i.e.,
σG,M (S∗) = arg maxS⊆V ∧|S|≤k σG,M (S). For the ease of
presentation, we omit the subscript of σG,M (·) when the
context is clear.

Intuitively, the influence function σ(·) would heavily
depend on the diffusion process. Recent years have wit-
nessed a large amount of literature that develops diffusion
models to formulate the diffusion process and compute
the influence spread. We will review some commonly-used
models in Section 2.1. Moreover, we will also illustrate the
computational hardness of IM in Section 2.2.
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2.1 Diffusion Models

Recently, there exists a huge amount of literature on design-
ing diffusion models in the areas of data mining, databases,
networks, and epidemiology. As the focus of this survey is
to review the algorithmic aspects of IM, this section reviews
the models that are commonly used for IM.

We first present a generic diffusion framework of the
reviewed diffusion models. The framework associates each
user u ∈ V with a status of either inactive or active. Then,
based on the social graph G, it considers the following
diffusion process among users. Initially, it views the status
of a set of chosen users, called seed set S ⊆ V , to be active,
while other users in V are inactive. Then, it considers the
diffusion process that the seed users in S can “influence”
their neighbors to be active, the newly activated users can
further activate their neighbors, and so on. This diffusion
process terminates when no new users can be activated. In
particular, the framework models the aforementioned “ac-
tivation” as a stochastic process, the influence spread σ(S)
is then naturally defined as the expected number of users
with active status after the diffusion process terminates. In
this survey, we focus on progressive diffusion models, i.e.,
activated nodes cannot be de-activated in later steps, as
most IM algorithms consider the progressive models. We
limit the discussion about non-progressive diffusion models
and the corresponding IM algorithms to Section 2.1.5.

Different models apply different mechanisms to capture
how a user switches its status from inactive to active, which
is influenced by its neighbors. This section only focuses on
four representative models that are commonly used in the
IM problem, namely Independent Cascade (IC) model, Linear
Threshold (LT) model, Triggering (TR) model, and Time Aware
model. We also briefly discuss typical non-progressive dif-
fusion models.

2.1.1 The Independent Cascade (IC) Model
Independent Cascade (IC) is a classic and well-studied dif-
fusion model [33]. It considers a user v is activated by each
of its incoming neighbors independently by introducing an
influence probability pu,v to each edge e = (u, v). Based on the
influence probabilities and given a seed set S at time step
0, a diffusion instance of the IC model unfolds in discrete
steps. Each active user u in step t will activate each of
its outgoing neighbor v that is inactive in step t − 1 with
probability pu,v . The activation process can be considered
as flipping a coin with head probability pu,v : if the result
is head, then v is activated; otherwise, v stays inactive.
Note that u has only one chance to activate its outgoing
neighbors. After that, u stays active and stops the activation.
The diffusion instance terminates when no more nodes can
be activated. The influence spread of seed set S under the IC
model is the expected number of activated nodes when S is
the initial active node set and the above stochastic activation
process is applied.

Determining influence probabilities. Some early works
rely on heuristic probability assignment. A commonly-used
one is weighted cascade (WC) [50]. It assigns pu,v on edge
e = (u, v) as 1/dinv , where dinv is the in-degree of v.

Recently, some studies propose to learn influence proba-
bilities from data, e.g., propagation actions (e.g. replies, for-

wards, etc.) in the social networks [36], [59], [76], [92]. Saito
et al. [92] are the first to formalize the problem of learning
edge probabilities from past propagation actions as a likeli-
hood maximization problem. Given a graph G = (V,E) and
a set of independent propagation actions, they adopt the Ex-
pectation Maximization (EM) algorithm to iteratively compute
the propagation probabilities for all e ∈ E to maximize the
total likelihood of all actions. Subsequently, Mathioudakis
et al. [76] propose the SPINE algorithm to learn the social
graph structure and the propagation probability simulta-
neously where the optimal parameters maximize the log
likelihood of generating the propagation actions. Goyal et
al. [36] also study the problem of learning edge probabilities
and propose more scalable algorithms. Kutzkov et al. [59]
further consider this problem in data streams. They propose
efficient algorithms to estimate the probabilities with only
one pass over all actions. There are some existing works
on understanding the model learnability. For example, [79]
applies the Probably Approximately Correct (PAC) frame-
work to analyze the diffusion models’ learnability. In [82],
an information-theoretical lower bound for the number of
cascades needed to learn the IC model is established.

2.1.2 The Linear Threshold (LT) Model
Linear Threshold (LT) is also a seminal diffusion model,
which is introduced by Granovetter and Schelling [39], [94]
in 1978. The basic idea of LT is that a user can switch its
status from inactive to active if a “sufficient” number of its
incoming neighbors are active.

Formally, in the LT model, each edge e = (u, v) ∈ E is
associated with a weight bu,v . LetNI(v) be the set of incom-
ing neighbors of user v, and it satisfies that

∑
u∈NI(v) bu,v ≤

1. Moreover, each user v is also associated with a threshold
θv . Considering an instance of the diffusion process, the LT
model first samples the value of θv of each user v uniformly
at random from [0, 1]. Then, it proceeds in discrete steps. In
step 0, it sets the status of users in S as active and others as
inactive. Then, it updates the status of each user iteratively:
In step t, all users that were active in step t−1 remain active,
and any user v that were inactive in step t − 1 switches
to active if the total weight of its active neighbors in NI(v)
is at least θv . The diffusion instance terminates when no
more user is to be activated. Given multiple instances of the
diffusion processes, the influence spread of seed set S under
the LT model, i.e., σ(S), is the expected number of activated
nodes when S is initially activated.

Most IM algorithms use heuristics to assign the weight
bu,v for each edge e = (u, v) ∈ E, e.g., uniformly assigning e
with a probability from the set {0.1, 0.01, 0.001} at random
or using a similar method to the WC model (1/dinv ) [37]. To
the best of our knowledge, there is no data-driven approach
to assign the probabilities for the LT model.

2.1.3 The Triggering (TR) Model
Kempe et al. [50] propose the triggering model (TR) to
generalize the aforementioned IC and LT models. Given any
user v, the TR model defines a distribution that maps a
subset of v’s neighbors to a probability, which represents
the likelihood that the neighbor subset can influence v.
For each instance of the diffusion process, the TR model
independently chooses a random “triggering set” Tv for
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user v according to the aforementioned distribution over
subsets of v’s neighbors. Then, it proceeds in discrete steps.
The diffusion instance is again initialized by a seed set S.
After the initialization step, an inactive node v switches to
the active state in step t if it has a neighbor in its chosen
triggering set Tv that is activated in step t − 1. Similar to
IC and LT, the influence of S under TR is also the expected
number of activated nodes. It has been proved that both IC
and LT are special cases of the TR model [50].

There are more general models than TR that extend
IC and LT. For example, [51] extends the IC model to a
Decreasing Cascade (DC) Model. DC defines the influence
probability from node w to node v given a subset S of
active neighbors of v as pv(w, S). To capture the diminishing
return phenomenon, DC enforces pv(w, S) ≥ pv(w, T ) for
S ⊆ T . Kempe et al. [50] propose a General Threshold (GT)
model that extends IC and LT. GT defines the threshold
function of v to be fv(S) where S is the active neighbors
of v. Whenever fv(S) exceeds the threshold value θv , v
becomes active in the diffusion process. Although the GT
model exhibits inapproximability for IM in the most general
setting, [78] proves the influence function of GT has the
same monotone and submodular properties as those of
IC, LT and TR, when the threshold function is monotone
submodular and the thresholds are chosen uniformly at ran-
dom. Nevertheless, since the most common models adopted
in existing IM algorithmic researches are IC, LT and TR, we
limit the discussions on DC and GT onward.

2.1.4 Time-aware Diffusion Models
IC, LT and TR are time-unaware models where the diffusion
terminates only when no more node could be activated.
However, propagation campaigns are often time-critical and
require to maximize the influence spread under a time con-
straint. To meet such demand, time-aware models are pro-
posed, and the existing studies can be broadly classified into
two categories: 1) the discrete-time models where diffusion
only happens in discrete steps, and 2) the continuous-time
models where the process of one user influencing another
(i.e., the diffusion) is continuous in time.

The discrete-time models [14], [60], [71] extend IC by
modeling the diffusion process from one node to another
as a discrete random variable over different time steps.
Nevertheless, these models are essentially similar to IC and
LT, as the diffusion only happens in discrete steps.

In real-world scenarios, the process of one node influenc-
ing another is inherently continuous in time. To capture such
essence, continuous-time diffusion models are introduced
in [90], [111]. The Continuous-Time (CT) IC model [90]
considers the likelihood of pairwise propagation between
nodes is a continuous distribution of time. Specifically, given
the activation time tu of a node u, the conditional likelihood
of u activating its neighbor v at any time tv > tu is
defined as p(tv|tu;αu,v) where αu,v is the parameter of a
time-aware influence distribution to determine the influence
strength from u to v. Given a predefined stopping time
T > 0, each diffusion instance of CT stops when no more
node is activated before T . A typical choice of the time-
aware influence distribution is the exponential model, i.e.,
p(tv|tu;αu,v) = αu,v · e−αu,v(tv−tu) if tv > tu and 0 other-
wise. The DynaDiffuse model [111] considers the propaga-

tion rates of nodes decrease exponentially over time. Given a
node u activated at time t and an edge (u→ v) with propa-
gation rate r(u, v), the propagation probability from u to v at
time t′ (t′ > t) is 1−er(u,v)·(t′−t). Similarly, DynaDiffuse also
restricts the diffusion time to a predefined threshold T > 0.
One can easily show the equivalence between DynaDiffuse
and CT. There are also some studies on modeling the tempo-
ral dynamics of diffusion process [93], [104]. However, the
focus of these works is to understand the temporal influence
behaviour from observation data and, to the best of our
knowledge, no IM algorithm is proposed based on these
models. Since this survey emphasizes the algorithmic aspect
of IM and CT is the most widely adopted time-aware model
in IM algorithmic research, we focus on comparing different
IM algorithms under the CT model.

2.1.5 Non-Progressive Diffusion Models
There are also several diffusion models that are categorized
as non-progressive models. The major difference between pro-
gressive and non-progressive models is that activated nodes
can be de-activated in non-progressive models. Typical non-
progressive diffusion models are the SIR/SIS model [52] and
the Voter model [21]. Some IM algorithms are also proposed
under the Voter model [27], [66] and the SIR/SIS model [91],
[110]. In the remaining of this paper, we will not further
discuss non-progressive models and the IM algorithms under
such models as the focus of our survey is to review the
algorithmic aspects of IM where the generally recognized
models in this area are LT, IC, TR, and CT.

2.2 Problem Hardness of Influence Maximization

Now, we are ready to discuss the computational hardness
of IM under the above-defined diffusion models, i.e. IC, LT,
TR and CT.
Theorem 1. The influence maximization problem is NP-hard

under the IC, LT, TR and CT models.

Due to space limit, we briefly introduce the proof sketch
of Theorem 1. To prove the NP-hardness of IM under the IC
model, the idea is to reduce from the set cover problem to
IM, whereas the idea for the proof under the LT model is to
reduce from the vertex cover problem. It is then straightfor-
ward to extend the hardness result of IM to the TR and CT
models since IC and LT are special cases of TR and CT. The
detailed proofs can be found in [50].

According to Definition 2, a fundamental operation in
IM is to evaluate the influence σ(S) of a seed set S ⊆ V . To
fully understand the complexity of IM, existing researches
have established the complexity for the influence evaluation
under the IC and LT models.
Theorem 2. [17, Theorem 1] Computing the influence σ(S)

of a seed set S is #P-hard under the LT model.

Theorem 3. [15, Theorem 1] Computing the influence σ(S)
of a seed set S is #P-hard under the IC model.

Theorem 2 can be proved by reducing from the problem of
counting simple paths in a directed graph. Theorem 3 can
be proved by reducing from the counting problem of s − t
connectness in a directed graph [103]. As mentioned earlier,
IC and LT are special cases of TR and CT. Thus, it is easy
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Algorithm 1: GREEDY (k,σ)

Input : k: A Number; σ(·): Influence Function.
Output: S: Seed Set.

1 S ← ∅
2 for i = 1, . . . , k do
3 u∗ ← arg maxu∈V \S(σ(S ∪ {u})− σ(S))
4 S ← S ∪ {u∗}
5 return S

to verify that computing the influence is also #P-hard under
the TR and CT models.

Given the above theorems, we know that there is no
algorithm to obtain its optimal solution in polynomial time
unless P = NP . Moreover, even the evaluation of influence
spread σ(S) is also very complex. Thus, existing research
efforts have focused on devising efficient approximation
algorithms for IM. We will focus on reviewing these algo-
rithms in the following sections.

3 OVERVIEW OF IM ALGORITHMS

Although the IM problem is computationally complex in
general, the optimal solution can be approximated if the
influence function σ(·) satisfies two properties, monotonicity
and submodularity, which are formally defined as follows.

Definition 3. An influence function σ(·) is monotone iff
σ(S) ≤ σ(S′) for any S ⊆ S′ ⊆ V .

Definition 4. An influence function σ(·) is submodular iff
σ(S ∪ {v}) − σ(S) ≥ σ(S′ ∪ {v}) − σ(S′) for any S ⊆
S′ ⊆ V and v ∈ V \ S′.

Intuitively, the monotonicity means that adding more nodes
to a seed set S does not reduce its influence spread,
while the submodularity can be understood as diminishing
marginal gains of the influence spread. Existing researches
have validated the monotonicity and submodularity of the
diffusion models for IM.

Theorem 4. The influence functions under the IC, LT, TR and
CT models are monotone and submodular.

We refer the proof of Theorem 4 to [50] (for the IC, LT
and TR models) and [34] (for the CT model). Theorem 4
reveals a fact that, although the optimal solution of IM is in-
tractable unless P = NP , one can leverage the monotonicity
and submodularity to provide approximate solutions for IM
efficiently with theoretical soundness.

3.1 The Greedy Framework

Most of the existing IM algorithms apply a simple greedy
framework, which is illustrated in Algorithm 1. The algorithm
is initialized with an empty seed set S, and it iteratively
selects a node u into S if u provides the maximum marginal
gain to the influence function σ(·) wrt. S (Line 3). The
algorithm terminates when there are k distinct nodes in S.

The theoretical guarantee of the greedy framework de-
pends on whether σ(·) is a non-negative monotone sub-
modular function. Fortunately, such condition holds under

the classical models as stated in Theorem 4. Given a non-
negative monotone submodular function, Theorem 5 states
the approximation ratio of the greedy framework.
Theorem 5. [81, Theorem 2.2] Let S∗ = arg max|S|≤k σ(S)

be the set maximizing σ(S) among all sets with size
at most k. If the influence function σ(·) is monotone
and submodular and σ(∅) = 0, then for the set Ŝ
returned by GREEDY(k,σ) of Algorithm 1, we have:
σ(Ŝ) ≥

(
1− (1− 1

k )k
)
σ(S∗).

In the literature, the approximation ratio is often simplified
as 1 − 1/e since 1 − 1/e < 1 − (1 − 1

k )k for k > 0 and
limk→∞ 1 − (1 − 1

k )k = 1 − 1/e, where e is the base of
natural logarithm. Moreover, there is an additional term ε in
the approximation ratio for IM algorithms, i.e., (1−1/e−ε).
This is because evaluating σ(·) is #P-hard, as mentioned in
Section 2.2, and thus is often approximated by sampling
methods. The term ε accounts for the sampling error.
Extension. The greedy framework shown in Algorithm 1
can be naturally extended to a scenario where the costs
of selecting nodes are non-uniform. More specifically, each
user u has a cost of c(u) to be selected, and the objective is to
select a seed set that maximizes the influence spread while
keeping the total cost bounded by a budget B, i.e., S∗ =
arg max∑

u∈S c(u)≤B σ(S). In this non-uniform scenario, the
greedy framework can be adapted by simply changing the
node selection criterion to be cost-effective (Line 3 of Algo-
rithm 1), i.e., u∗ ← arg maxu∈V

σ(S∪{u})−σ(S)
c(u) , and adding

more users into the seed set as long as the total cost does
not exceed the given budget B. Although this approach
could provide arbitrary bad solutions, comparing it with the
solution returned by running naı̈ve greedy selection until
the cost has been exhausted (treating the cost for each node
is 1) yields a 1

2 (1− 1
e )−ε approximation ratio [54], [58], [62].

3.2 Taxonomy of Existing IM Algorithms

Although the aforementioned greedy framework has a good
approximation ratio of (1− 1

e−ε), IM is still very challenging
to solve, because evaluating σ(·) is a #P-hard problem even
under simple models as stated in Theorems 2 and 3. The
theoretical hardness has triggered extensive researches on
designing efficient IM algorithms in recent years. We classify
existing IM algorithms into three categories, the simulation
based approach, the proxy based approach and the sketch based
approach, as shown in Figure 2. This taxonomy is based on
how an algorithm overcomes the #P-hardness of evaluating
the influence function σ(·). This section will introduce high-
level ideas of these three categories of IM algorithms as well
as their pros and cons.
Simulation-based approach. The key idea of this approach
is to perform Monte-Carlo (MC) simulation for evaluating
influence spread σ(S) of any seed set S. An example of MC
simulation under IC model is illustrated as follows. It starts
from seed set S and traverses G by removing each edge
e = (u, v) with a probability 1 − pu,v until no user can be
reached, resulting in a sample instance. In such a way, we
can generate multiple sample instances, and the influence
spread σ(S) can be estimated from the sample instances.
Based on the MC simulation, the approach preserves the
native way of evaluating the influence, and focuses on
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Fig. 2. Taxonomy of IM techniques

using meta-heuristic to speed up the combinatorial opti-
mization of selecting the seed set. Existing algorithms of the
simulation-based approach are reviewed in Section 4.

Pros: The simulation based approach has the advantage
of model generality. In other words, it can easily incorporate
any diffusion models mentioned in Section 2.1 with ease by
plugging in the model-specific MC simulation module to
evaluate the influence. Moreover, the approach has a good
theoretical property that it usually returns a solution with a
constant bounded ratio of approximation if the underlying
influence function is monotone and submodular1.

Cons: A major problem of the simulation based approach
is computational efficiency. To overcome the #P-hardness of
evaluating influence function σ(·), this approach has to
generate many sample instances to obtain an estimation of
σ(·) with small error, which incurs significant computational
overheads.
Proxy-based approach. The idea of this approach is to de-
vise proxy models to approximate influence function σ(S)
for overcoming the #P-hardness. Theoretically, evaluating
σ(S) is complex as S can potentially influence other users
via a large number of paths in the graph. Nonetheless, this
approach believes that the complex influence model can be
effectively reduced to proxy models, e.g., PageRank [89] or
the shortest path [56] in practice. Existing algorithms of the
proxy-based approach are reviewed in Section 5.

Pros: The proxy-based approach is practical efficient. For
example, only considering the shortest path [56], the eval-
uation of σ(S) is polynomial instead of #P-hard. Many
algorithms in this approach have shown empirical efficiency
superiority of the proxy-based method (see Section 5).

Cons: Although the proxy-based approach usually im-
proves practical efficiency, it lacks theoretical guarantees. It
has been shown that under certain circumstances, e.g., an
Erdős-Rényi random graph G(V,E) with a sharp threshold
of 1/n, the proxy-based approach is unstable [43] (the op-
timal seed set and the corresponding influence could dras-
tically change with a minimum change in the underlying
graph). Since the proxy-based solutions are often insensitive
to the unstable scenarios, they could be arbitrarily bad.
Sketch-based approach. The designing goal of sketch-based
approach is to devise theoretically efficient solutions (instead
of being only practical efficient) that also preserves a constant
approximation ratio, and thus overcome the drawbacks of
the above two categories of approaches. For example, the

1. The only exception is the Simulated Annealing meta-heuristic
based algorithm in [47].

expected time complexity to get a solution in this cate-
gory [100] is near linear to the size of the input graph with
a constant approximation ratio. The idea of this approach
is to first construct theoretically grounded sketches under
the diffusion model. Then, the approach speeds up the
evaluation based on the constructed sketches to evaluate the
influence function. Existing algorithms of the sketch-based
approach are reviewed in Section 6.

Pros: The most significant advantage of the sketch-based
approach is its theoretical results, i.e., it is the most theoret-
ically efficient algorithm with rigorously bounded solutions
and proven low time complexities.

Cons: The sketches constructed must be aligned with
the underlying diffusion model. Thus, the theoretical re-
sults of the approach are not general to a wider range
of diffusion models compared with the simulation based
approach. In addition, the practical efficiency of the sketch
based approach could be worse than that of the proxy-based
approach since it needs to ensure the approximation ratio
for the worst case scenario.

In summary, we classify three major categories of exist-
ing IM algorithms based on how the approaches improve
the IM algorithmic design from three objectives: model gen-
erality (simulation based), practical efficiency (proxy based)
and theoretical efficiency (sketch based). A theoretical analysis
of existing IM algorithms is summarized in Table 1, where
details of the algorithms can be found in Sections 4, 5 and 6.
In the first column of Table 1, we categorize all compared
algorithms according our taxonomy. From column 3 to
column 6, we indicate whether the compared algorithms
support different diffusion models (“3” for support, “5”
for not support, and “?” for maybe support, but not clearly
stated). In columns 7 and 8, we give the expected and/or the
worst-case complexity of the algorithms respectively. In col-
umn 9, we state the approximation ratios of the algorithms
for IM (“N.A.” for no approximation ratio is guaranteed; for
proxy-based algorithms, the given approximation ratios are
for their proxy models). In the following sections, we will
review each approach category in detail.

4 SIMULATION-BASED APPROACH

This section presents the IM algorithms which fall into the
category of the simulation-based approach. As mentioned
in Section 3, this approach utilizes native Monte Carlo (MC)
simulations for estimating influence function σ(·) so as to
preserve model generality, and integrates the MC simu-
lations into the greedy framework in Algorithm 1. This
section first introduces a basic framework of the simulation-
based approach, and then reviews the existing optimization
techniques for improving the performance.
Basic Framework. The seminal work on the simulation-
based approach is proposed by Kempe et al. in [50] and
it extends the greedy framework. It also iteratively selects
a node u into S if u provides the maximum marginal
gain. Nevertheless, the key difference is that it employs MC
simulations for estimating influence spread σ(S ∪ {u}) for
each user set S ∪ {u} in G. In particular, an instance of MC
simulation, it always starts from S ∪{u} in G, simulates the
activation process wrt. the corresponding diffusion model,
and outputs the number of activated users denoted by
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I(S ∪ {u}). For each S ∪ {u}, the algorithm runs r rounds
of MC simulations and takes the average I(S ∪ {u}) as an
estimation of influence spread σ(S ∪ {u}).

In [50] and many of the follow-up works, the number of
rounds r for MC simulations is not theoretically analyzed.
These works state that the error will be small enough when r
is set to a large number empirically, e.g., r = 10, 000. Chen et
al. [11] analyze the relation between r and the relative error
ε, and thus present a theoretical result for the SIMUGREEDY
algorithm on the IC and LT models, i.e.,
Theorem 6. [11, Theorem 3.7] With probability 1 − 1/n,

the naive GREEDY achieves a (1 − 1/e − ε) approxi-
mation ratio if the number of MC simulations r is set
to Θ(ε−2k2n log(n2k)) on both the IC and LT models.
Thus, the algorithm runs in time O(ε−2k3n2m log n).

With Theorem 6, the complexities on the TR and CT models
can also be easily inferred. The complexity of the naive
GREEDY can actually be tightened according to the analysis
of Lemma 10 in [100], i.e., O(ε−2k3n2m log n/OPT ) where
OPT is the optimal influence spread.

The complexity result shows that SIMUGREEDY is pro-
hibitively expensive against large graphs. This triggers a
number of research efforts to optimize the algorithm, which
fall into two categories, i.e., reducing the number of MC
simulations, and reducing the complexity of MC [38], [47],
[62], [109], [114]. Now, we introduce these two categories of
optimization techniques as follows.
Reducing number of MC simulations. Some methods have
been proposed to estimate an upper bound of influence
spread S ∪ {u} in order to prune the ones with insignif-
icant influences. CELF [62] exploits the submodularity of
influence functions to estimate upper bounds. The intuition
behind CELF is the power law principle: most nodes in
a social network have very small influences and thus can
be easily pruned at subsequent iterations. More formally,
let Si denote the selected seed set after the i-th iteration,
and ∆(u|Si) = σ(Si ∪ {u}) − σ(Si) the marginal influence
of u wrt. Si. According to the submodularity of influence
function, i.e., σ(Sj ∪{u})−σ(Sj) ≤ σ(Si ∪{u})−σ(Si) for
any Si ⊆ Sj , we know that ∆(u|Si) is an upper bound
for any ∆(u|Sj) s.t. Si ⊆ Sj . Based on this, CELF first
computes ∆(u|∅) for each user u ∈ V and selects S1. Then,
∆(u|∅) can be utilized as an upper bound as follows. At
each iteration j = 2, . . . , k, CELF visits users in V \ Sj−1
in a descending order of their upper bounds of ∆(·|Sj),
and computes ∆(u|Sj−1) using MC simulations. Instead
of visiting all users, CELF triggers an early termination
whenever the maximum upper bound of unvisited users
is already smaller than the maximum ∆(u|Sj−1) of visited
users. Then, CELF updates the upper bound of each visited
user u as ∆(u|Sj−1) and proceeds to the next iteration j+1.
CELF does not improve the worst-case time complexity but
the early termination heuristic enables an up to 700 times
improvement in practical performance compared with the
SIMUGREEDY algorithm [62].

CELF++ [38] improves over CELF by further avoid-
ing unnecessary MC simulations. CELF++ computes both
∆(u|Sj) and ∆(u|Sj ∪ {vuj }) for each user u, where vuj is
the user with the maximum marginal influence among all
the users visited before u. In this way, CELF++ avoids

evaluating ∆(·|Sj+1) if Sj+1 = Sj ∪ {vuj } at the j + 1
iteration. However, it has been pointed out in [2] and
[75] that CELF++ does not demonstrate significant speedups
over CELF empirically.

Note that both CELF and CELF++ have to compute
∆(u|∅) (i.e., σ({u})) for every user u ∈ V at the first itera-
tion. This is a rather expensive process as O(ε−2n2m log n)
time is required as indicated in Theorem 6. UBLF [114]
proposes a method to quickly obtain an upper bound of
σ({u}) for all u ∈ V using matrix analysis. Let σ′ denote a
vector where each element is σ(u) for u ∈ V , UBLF derives
an upper bound estimation technique: σ′ ≤

∑n
i=1 PP

i · 1
where PP is the propagation probability matrix associated
with the graph. As PP is a sparse matrix, PP i quickly
converges and becomes insignificant for larger i. Thus, a
quick upper bound estimation for σ′ is obtained by a few
sparse matrix multiplications to avoid the costly initial iter-
ation of CELF/CELF++. Empirically, UBLF reduces more
than 95% of the MC simulations in CELF and achieves a
speedup of 2x–10x [114]. Although UBLF only verifies the
correctness of the upper bound estimation techniques for
the IC and LT models, we conjecture that, with a careful
design of the matrix PP , the approaches may be extended
to more general models.

Reducing MC complexity. The other way to optimize
SIMUGREEDY is to reduce the complexity of individual MC
simulation. Wang et al. [109] propose an orthogonal ap-
proach called Community based Greedy algorithm (CGA)
using divide-and-conquer to reduce the complexity for MC
simulations. The basic idea of CGA is to partition the graph
into communities. Then, it utilizes the influence of each node
within its community to decide which nodes are selected
as seeds. The advantage of CGA is that it only runs MC
simulations on local subgraphs. Moreover, it produces a
(1 − e−

1
1+δρ ) approximate solution for IM [109] where ρ is

the pre-defined threshold determining the tightness of the
extracted community and δ is a parameter representing the
accuracy loss of influence estimation caused by partitioning
the graph.

Summary. To conclude the simulation based approach, we
would like to point out that, although numerous efforts in
this category have been developed to improve the efficiency
of the SIMUGREEDY algorithm, significant computational
overhead is still required when extracting the seeds on
graphs with billions of edges, as reported by existing ex-
perimental results (e.g., the experiments of [2], [100]). The
major reason is that the simulation-based approach treats
the MC simulation as a black box, which is a double-
edged sword: it retains the model generality but prevents
further performance improvements through analyzing and
optimizing the influence evaluation process by utilizing the
properties of diffusion models directly. Thus, more recent
IM techniques have started to explore the proxy-based and
the sketch-based approaches.

Discussion. Among all simulation based algorithms, the
algorithm proposed by Jiang et al. in [47] is an exception as
no approximation ratio is ensured. This is due to the fact
that a Simulated Annealing (SA) meta-heuristic is used to
explore the search space of selecting k seeds out from the
entire node set V . Although there is no theoretical guaran-
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tee, SA can escape from the local optimum compared to the
GREEDY algorithm. The experiments show that SA could
produce a seed set with slightly better quality with less run-
ning time than the other simulation based approaches [47].

5 PROXY-BASED ALGORITHMS

This section reviews existing IM techniques which fall into
the category of the proxy-based approach. The key idea is
to estimate the influence spread of the seed set using proxy
models instead of running heavy MC simulations and thus
to make IM algorithms more scalable on larger graphs. Most
proxy approaches are tailored for a specific diffusion model
(i.e., the IC/LT model) and the influence estimation process
is greatly accelerated by taking advantage of the properties
of the corresponding models. Although the proxy-based
approaches typically do not provide any theoretical guar-
antees, they offer substantial performance improvements
compared to the simulation based approaches. Empirically,
the solutions returned by the proxy based approaches have
competitive quality with those provided by simulation-
based approaches in most cases.

Based on properties of the proxy models, we review the
proxy based algorithms in two branches, i.e., (1) the influence
ranking proxy, and (2) the diffusion model reduction proxy,
which will be described in detail as follows.

5.1 Influence Ranking Proxy
The idea of the influence ranking proxy is quite intuitive. It
ranks all users in graph G according to a metric approximat-
ing their influences, and then simply generates the seed set
from the ranking directly. Thus, the essential challenge here
is to derive a good ranking metric.
Simple Ranking Proxy. There are some simple ranking
proxies that can be easily derived from graph G, such as
using degree, PageRank [89], and Distance Centrality [29]
to select the seeds. However, they may fail to provide fair
solutions for IM due to two drawbacks. First, although, to
some extent, they are all related to the social influences,
the actual influence spread of a seed set under diffusion
models substantially diverges from its degree, PageRank
score, or distance centrality (see the experiments in [16],
[50]). Second, more importantly, none of these ranking
proxies accounts for the influence overlaps between different
seeds because they simply compute the influence spread as
a linear combination of the influences of all individual users
in the seed set. Thus, the proxies will severely overestimate
influence spread σ(S) if the influences of users in S have
significant overlaps.
Influence-aware ranking proxy. There have been several
methods proposed to overcome the drawbacks of the afore-
mentioned simple ranking proxies. They either adopt a sim-
ple discount proxy for influence estimation (DEGDIS [16])
or generalize the PageRank proxy (GROUPPR [73] and
IRIE [48]).

The idea of DEGDIS is based on the degree proxy.
Nevertheless, the difference is that, when user u is selected
into seed set S, the influence scores of u’s neighbors are
discounted by a factor to account for the influence overlaps.
Specifically, the influence of u will be subtracted by 1 if u

is a neighbor of v. The drawback of DEGDIS is that it only
considers the influences between neighbors and ignores all
indirect influence paths. Thus, its solution quality is usually
not competitive with other IM algorithms.

Liu et al. [73] focus on extending PageRank from a
single node to a set of nodes called Group-PageRank. The
Group-PageRank GPR(S) for a set of nodes S is essentially
the sum of the PageRank scores of all nodes in S with a
“discount” for the mutual influences between the nodes
in S. The Group-PageRank GPR(S) is an upper bound
estimation of the influence of S under the IC model. Based
on Group-PageRank, Liu et al. propose GROUPPR for IM.
GROUPPR also follows the greedy framework: it first com-
putes the PageRank score of each node. Then, it iteratively
adds the node with the maximum marginal influence wrt. S
into S. GROUPPR proposes two methods to estimate the
marginal influence of each node: (1) Linear(S,v) recomputes
the Group-PageRank GPR(S ∪ {v}) by power iterations
in O(m); (2) Bound(S,v) utilizes GPR(S) and PR(j) for
j ∈ S ∪ {v} to derive GPR(S ∪ {v}) directly in O(k).
Both methods are much faster than native MC simulations.
Between both methods, Linear is slower but more accurate
and Bound is the opposite. Finally, GROUPPR returns the
seed set S after k iterations.

To generalize the PageRank proxy, Jung et al. propose the
Influence Ranking Influence Estimation algorithm (IRIE) [48]
for IM under the IC model. IRIE derives a system of n linear
equations with n variables to estimate the influence r(u) of
each node u in the graph. The idea behind the linear for-
mulas is intuitive: the influence r(u) of a node u comprises
its influence to itself, i.e, 1, and the sum of the influences
it propagates to all its neighbors, i.e.,

∑
v∈Noutu

puvr(v),
where Nout

u is the set of u’s out-neighbors and puv is the
propagation probability from u to v. Through solving the
system of linear equations, the influence r(u) of each node
u is assigned. IRIE adds the node with the highest influence
into the seed set S and updates the formula for each node
u as follows: r(u) = (1−APS(u))(1 + α

∑
v∈Noutu

puvr(v)),
where α ∈ (0, 1) is the damping factor, and APS(u) is the
probability that u is activated by S. APS(u) can be assigned
by existing algorithms such as PMIA [15] and native Monte
Carlo simulations [50]. IRIE updates and solves the system
of linear equations for k times, and retrieves the seed set S
after k iterations.

Other ranking proxies. There are also some other influ-
ence ranking proxies. Narayanam and Narahari propose the
ShaPley value-based Influential Nodes algorithm (SPIN) for
the LT model in [80]. SPIN models users in G as players
in a coalitional game and captures diffusion process as the
coalition formation in the game. The Shapley value of each
user provides the marginal contributions for the diffusion
and is approximated by a simulation-based approach. Then,
all the users in G are ranked by their Shapley values in a
non-increasing order, and the algorithm iteratively adds the
top-ranked one which is not adjacent to any node in S to S
until k users are chosen. If all nodes are adjacent to at least
one node in S, it just picks the top-ranked one.

Cheng et al. propose the IMRANK [19] algorithm for IM
under the IC model. They first give the definition of self-
consistent ranking: A ranking of nodes r = {vr1 , . . . , vrn}
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is a self-consistent ranking iff ∆r(vri) > ∆r(vrj ) for all
1 ≤ i < j ≤ n, where ∆r(vri) = σ({vr1 , . . . , vri}) −
σ({vr1 , . . . , vri−1

}). IMRANK is an iterative framework to
find a self-consistent ranking from any initial ranking. They
devise a Last-to-First Allocating (LFA) strategy to estimate
the marginal influence ∆r(vri) of each node wrt. ranking
r. Theoretically, it is shown that any initial ranking can
finally converge to a self-consistent ranking after iteratively
performing the computation of marginal influences and
re-sorting the nodes in non-increasing order of marginal
influence. They also show that a good initial ranking, e.g.,
PageRank scores based ranking, tends to converge to a
“better” final ranking where top nodes have a larger influ-
ence. After finding a self-consistent ranking, it returns top-k
nodes in the ranking as the solution for IM.
Summary. The advantage of influence ranking proxies is
that they efficiently estimate the influence spread by trans-
forming it to easier problems, e.g., PageRank. However,
although the computational overhead is largely reduced, the
transformed problems may not be directly related to the IM
problem. Therefore, the influence estimation may diverge
seriously from the actual influence spread under diffusion
models. Moreover, the properties of diffusion models are
ignored in influence ranking proxies. To solve this problem,
some diffusion model reduction proxies are introduced,
which will be presented in the next subsection.

5.2 Diffusion Model Reduction Proxy
Difference from the previous influence ranking proxies,
diffusion model reduction proxy aims to simplify the diffusion
process so as to address the #P-hardness of evaluating the
influence function σ(·). More specifically, there are two main
ideas for diffusion model reduction proxy in general: (1)
reducing the stochastic diffusion models (i.e., IC and LT) to a
deterministic model where the influence spread of any seed
set can be computed exactly, and (2) restricting the influence
range of each user u to a small local subgraphG′u containing
u and ignoring the rest. After devising efficient algorithms
for computing the proxy model, such approaches employ
the greedy framework in Algorithm 1 to provide a solution
for IM. As most of the existing studies in this category focus
on IC or LT, we next review the proposed proxy tailored for
these two models respectively.

5.2.1 IC Model Reduction Proxy
Recall that IC model assigns an influence probability pu,v
to each edge e = (u, v) as mentioned in Section 2.1. Thus,
in the IC model, a user u1 may activate another user u2
through a large number of paths with different probabilities,
which increases the complexity of influence estimation. To
address this challenge, some IC model reduction proxies are
proposed to only consider the significant paths.

The first reduction proxy for IC is the Shortest-Path Model
(SPM) and SP1 Model (SP1M) proposed by Kimura et al.
in [56]. The idea is to only consider the shortest path
from u to v in the activation process. More formally, let
d(u, v) be the distance from u to v, i.e., the number of
edges in the shortest path from u to v, and let d(S, v)
be the minimum distance from any user in S to v, i.e.
d(S, v) = minu∈S d(u, v). Let us consider S be the seed set.

Then, in SPM, S has only one chance to activate v in step
d(S, v). SP1M slightly generalizes SPM by considering S
can activate v in steps d(S, v) and d(S, v)+1. In such a way,
SP1M largely limits the number of influence paths from a
node set S to any node v by pruning all paths with lengths
larger than d(S, v)+1, and thus the influence σ(S) can be ex-
actly and efficiently computed by the Dijkstra shortest-path
algorithm. Since the influence function under SPM/SP1M
is still monotone and submodular, the greedy framework
can also guarantee a (1 − 1/e) approximate solution under
both proxy models. However, since SPM and SP1M only
consider the length of influence paths and ignore their
influence probabilities, it cannot provide good approximate
solutions when the edge probabilities are neither constant
nor small. This is because the influence between two nodes
is small and sensitive (sensitivity means a change in the
influence probability of an edge leads to a large change in
the influence) and cannot be tightly approximated by the
shortest distance.

The MIA/PMIA [15] model is the most well-known re-
duced model for IC. The main idea of the maximum influence
arborescence (MIA) model is to restrict the influence diffusion
of node u to a local tree structure rooted at u. Since the
influence of a node in the tree can be computed efficiently
and exactly, the influence estimation becomes much faster
and the MC simulations are avoided. Specifically, the MIA
model performs the reductions from two aspects: (1) For
any pairs of nodes (u, v), it considers u can only influence
v through the maximum influence paths (MIP); (2) Given
threshold θ, it further ignores all MIPs with the propagation
probabilities less than θ. The propagation probability of a
path is the product of influence probabilities of all edges in
the path. The maximum influence paths MIP (u, v) is the path
with the maximum influence probability among all paths
from u to v. With two reductions, the Dijkstra shortest-path
algorithm can be adapted to construct a maximum influence
in-arborescence MIIA(v, θ) containing all MIPs ended with
v with propagation probabilities at least θ and a maximum
influence out-arborescence MIOA(v, θ) containing all MIPs
started from v with propagation probabilities at least θ
for each node v ∈ V . By using MIIAs and MIOAs, the
incremental influence spread ∆(u|S) of adding any user
u to a seed set S can be computed efficiently. Then, Chen
et al. further extend it to the prefix excluding MIA (PMIA)
model. One issue in the MIA model is that a node u will
block the influence of another seed u′ in MIIA(v, θ) if u
is on the path from u′ to v in the in-arborescence. To get a
more accurate influence estimation while keeping the in-
arborescence structure, PMIA will update the influenced
in-arborescence after adding a node into the seed set so
that existing seeds will not block the influence of future
seeds. As the influence spread in the MIA/PMIA model is
monotone and submodular, the greedy framework can also
provide (1− 1/e)-approximate solutions under these proxy
models. However, the main drawback of MIA/PMIA is that
they will not be scalable if the graph is dense and the edge
propagation probabilities are not small. When the graph is
dense, limiting the influences to MIPs will incur large errors
in influence estimation. For larger propagation probabilities,
if θ is small, the MIIAs and MIOAs will become very large
and the influence estimation will be slow. Otherwise, the
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influence estimation will become inaccurate.
The independent path algorithm [55] (IPA) proposed by

Kim et al. reduces IC in a similar way to MIA. IPA also
prunes all influence paths with the propagation probabilities
less than a given threshold. Nevertheless, IPA does not limit
the influence paths to MIPs and thus can achieve a slightly
better accuracy than PMIA. Assuming the independence of
influence paths, IPA treats each path as an evaluation unit
and utilizes the well-known OpenMP programming envi-
ronment [23]. IPA suffers from the same performance issue
as PMIA, both of which are not scalable when the graph
is dense and the propagation probabilities between nodes
are not small. Thus, to reduce the memory usage, IPA only
maintains the influence paths for a small subset (i.e., 3k) of
nodes and discard all remaining nodes. However, although
partly solving the performance issue, this optimization will
potentially degrade the quality of seeds.

5.2.2 LT Model Reduction Proxy
The LDAG [17] algorithm has a similar basic idea to PMIA
but is tailored for the LT model. Since the influence σ(v)
under the LT model can be computed exactly and efficiently
in directed acyclic graphs (DAGs), LDAG restricts the influ-
ence graph to be a DAG. Specifically, LDAG(v, θ) of node
v is constructed by the Dijkstra shortest-path algorithm and
contains nodes that have influences on v with probabilities
of at least θ. Then, based on the constructed LDAGs, the
influence spread of any node and the marginal influence
of a node w.r.t. the seed set can be computed efficiently.
However, since finding the optimal LDAG for a node itself
is NP-hard, the LDAG algorithm may introduce additional
quality losses as the constructed LDAGs are sub-optimal.
In addition, the LDAG algorithm constructs LDAGs for all
nodes before the influence estimation. The LDAG construc-
tion procedure is both computation and memory intensive
when the size of the graph is large.

Goyal et al. [37] propose the SIMPATH algorithm for IM
under the LT model. SIMPATH is based on a fundamental
result: the influence of a set of nodes under the LT model can
be computed by enumerating all simple paths starting from
every node in the set. Since it is #P-Hard to enumerate all
simple paths, SIMPATH restricts the enumeration to a small
neighborhood by pruning paths with probability smaller
than a threshold θ. The influence σ(u) of a node u is
computed by enumerating all possible simple paths with
probabilities at least θ and summing them up. Then, the
influence spread σ(S) is computed by summing up the
influence of each node u ∈ S in the subgraph induced by
V \ S ∪ {u}. Finally, to further improve the efficiency, the
SIMPATH algorithm makes two optimizations for the greedy
framework. First, to accelerate the influence estimation of
all nodes in the first round, it finds a vertex cover set and
computes the influences of all nodes in the cover. The influ-
ences of the remaining nodes are derived directly. Second,
for all subsequent rounds, it picks the top-l most promising
seed candidates at the start of an iteration and computes
the marginal gain of those candidates in a batch. Different
from LDAG, SIMPATH estimates the influence spread on
the original graph without enumerating all simple paths
in advance. Therefore, SIMPATH often achieves higher time
and space efficiency than LDAG. When the size of the

seed set increases, SIMPATH then needs to enumerate a
larger number of simple paths and LDAG could outperform
SIMPATH under certain cases [75] .

Another proxy algorithm based on enumerating simple
paths is EASYIM [30] for both IC and LT models. It es-
timates the influence of each node by counting influence
paths within length l and also accounts for the overlaps
between different paths for higher accuracy. EASYIM uses
an iterative method assembling IRIE for global influence
estimation and achieves better performance.
Summary. Diffusion model reduction proxies are directly
derived from the diffusion models (i.e., the IC or LT model),
and fully utilize the properties of these models for influence
estimation. In most cases, they can achieve competitive qual-
ity with simulation based approaches. However, they cannot
achieve a balance between accuracy and efficiency when
the number of influence paths and the influence range of
nodes/sets are large. In addition, diffusion model reduction
proxies are often specific for only one model and cannot be
generalized to the other models.

6 SKETCH-BASED ALGORITHMS

This section presents existing IM techniques which fall into
the category of the sketch-based approach. The main focus
of this approach is to improve theoretical efficiency of the
simulation based methods while preserving the approxima-
tion guarantee. Specifically, recall that the bottleneck of the
simulation-based approach is rerunning a large number of
costly MC simulations for influence spread evaluations of
each candidate seed set. To avoid rerunning the MC sim-
ulations, the sketch-based approach pre-computes a num-
ber of sketches based on the specific diffusion model, and
then exploits the sketches for evaluating influence spread.
Based on how the sketches are generated, we classify the
algorithms of this approach into two branches, i.e., forward
influence sketch (FI-SKETCH) and reverse reachable sketch
(RR-SKETCH). The existing algorithms using these sketches
will be reviewed respectively in this section.

6.1 Forward Influence Sketch
The idea of the forward influence sketch (FI-SKETCH) is to
construct a sketch by extracting the subgraph induced by an
instance of the influence process wrt. the specific diffusion
model. Then, it can estimate the influence spread of a seed
set S using these subgraphs accurately with theoretical
guarantee. Taking the IC model on a graph G(V,E) as an
example, a sketch can be constructed by removing each edge
e = (u, v) of G with probability 1 − pu,v and resulting in a
subgraph of G, denoted by Gi. Let us use IGi(S) to denote
the set of users that can be reached by S on Gi. Then, given
θ constructed sketches {G1, G2, . . . , Gθ} and a seed set S,
σ(S) is evaluated as the average number of users reached
by S on these sketches, i.e., σ(S) = 1

θ

∑θ
i=1 IGi(S). The

theoretical result shows that the greedy framework with FI-
SKETCH as influence estimation can achieve a (1− 1/e− ε)
approximate solution for IM with high probability. Next, we
review the algorithms using FI-SKETCH and illustrate their
theoretical properties and efficiency in detail.

NEWGREIC proposed in [16] applies FI-SKETCH under
the IC model. More specifically, at each iteration of the
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greedy framework, NEWGREIC constructs a number of
sketches for evaluating (σ(S ∪{u}−σ(S)) for all u ∈ V \S
simultaneously. Note that the asymptotic complexity to con-
struct a sketch under the IC model is the same as running
a MC simulation. Thus, NEWGREIC significantly boosts
the performance compared to the SIMUGREEDY algorithm
described in Section 4 as the sketches constructed are shared
by O(n) influence function evaluations.

STATICGREEDY [20] takes another step in the direction
of using FI-SKETCH. It constructs θ sketches and uses the
sketches to perform all influence evaluations. The following
lemma shows the number of sketches required by STATIC-
GREEDY to ensure a (1−1/e−ε) approximate solution with
high probability:
Lemma 1. With a probability of 1 − n−1, STATICGREEDY

requires θ = (8 + 2ε) ·n · logn+log (nk)+log 2

ε2 FI-SKETCH so
that a (1− 1/e− ε) approximation ratio is achieved.

We can easily deduce Lemma 1 by tweaking the proof
in Theorem 1 of [100]. Note that θ could be reduced by
using the techniques proposed in [99], but we only present
Lemma 1 as the sketch size in the improved version has
the same asymptotic complexity. As [20] does not provide
a complexity analysis on STATICGREEDY, we show the
complexity of STATICGREEDY in the following theorem.
Theorem 7. The time complexity of STATICGREEDY, when θ

(Lemma 1) sketches are constructed for solving the IM
problem, is O(ε−2 · k · n2 ·m · log

(n
k

)
)

Proof Sketch: STATICGREEDY evaluates O(kn) seed sets
using the constructed sketches to extract the seed set.
Moreover, to compute IGi(S) for any sketch Gi and any
S ⊆ V where i = 1, . . . , θ, it takes O(m) time in the
worst case. Thus, the total complexity for STATICGREEDY
is O(k · n · θ ·m) = O(ε−2 · k · n2 ·m · log

(n
k

)
).

Although STATICGREEDY outperforms the SIMUGREEDY
algorithm, its worst-case time complexity is still pro-
hibitively high. A critical reason is that, as shown in the
above proof sketch, it takes O(m) to perform any influence
evaluation. As a result, various pruning and indexing tech-
niques are proposed to further improve the efficiency, which
are presented as follows.

StaticGreedyDU [20] introduces a pruning technique to
empirically reduce the running time of STATICGREEDY. The
key idea is that, once a seed set Si is obtained at the
end of the i-th iteration of the greedy algorithm, all users
reached by Si on any generated sketches can be pruned, and
any subsequent influence evaluations are computed on the
pruned sketches, which would improve the performance.

Ohsaka et al. propose PRUNEDMC [85] to further im-
prove the efficiency of StaticGreedyDU by using an index
structure on the sketches. For each constructed sketch Gi,
PRUNEDMC builds a directed acyclic graph (DAG) and
each node in the DAG is a strong connected component
on Gi. A hub node is selected for each DAG where the
hub node has the maximum degree in the DAG. An index
structure is built on each sketch by marking the ancestors
and descendants of the hub node on the sketch. To speed up
the influence evaluation for any node v, the trick is that if
v is the ancestor of a hub for a particular sketch there is no
need to traverse the descendants of the hub to know the sets

of users reached by v. Combined this trick with the pruning
technique proposed by StaticGreedyDU, the running time
to compute the marginal influence for a node v wrt. any
candidate seed set can be effectively reduced.

SKIM [22] proposed by Cohen et al. is an interesting
approach to speed up the influence estimation on the con-
structed sketches using bottom-K2 minHash. The key idea
is to perform reverse BFS walks on the sketches and to
update the bottom-K minHash values for a number of can-
didate seed sets at the same time, e.g. evaluating σ(S ∪{v})
for all v ∈ V \ S when S is fixed. SKIM shows significant
performance boosts compared with the simulation based ap-
proaches and some proxy-based approaches, but its worst-
case complexity is still the same with STATICGREEDY as the
time to generate the sketch is the bottleneck.
Summary. Although the algorithms mentioned above are
based on the IC model, we would like to note that the tech-
niques and theoretical analysis can be easily extended to the
LT, TR and CT models. The reason is that these models are
all node-independent models, i.e., the probability of a user to
be activated by its neighbors only depends on its neighbors.
In such a way, one can easily extend the FI-SKETCH based
approach by constructing the sketches as follows: extracting
a subgraph of the entire graph by keeping the incident edges
to any node v with a fixed probability distribution indicated
by the model. For example, in the LT model, a user v keeps
an edge e = (u, v) with probability bu,v in the LT model and
keeps no incident edges with probability (1−

∑
(u,v)∈E bu,v).

To conclude, the FI-SKETCH approach has significantly
improved over the simulation-based approach in terms of
efficiency while preserving approximation guarantee. How-
ever, the worst-case time complexity is still too expensive
to run on graphs with millions of nodes and billions of
edges. But the idea of sharing the sketches among the
influence evaluations introduced by FI-SKETCH algorithms
have opened the gate for developing a more effective type
of sketches, i.e., the reverse reachable sketch (RR-SKETCH),
which is introduced in the next subsection.

6.2 Reverse Reachable Sketch
Borgs et al. [6] are the first to discover that it is not necessary
to estimate the influence using sketches generated by oper-
ating on the entire graph. They develop the reverse reach-
able sketch approach (RR-SKETCH) where the influence of
any seed set S is estimated by selecting random nodes and
seeing the portion of the randomly selected nodes which
can be reached by S. To facilitate our presentation, we first
introduce the concepts of the Reverse Reachable (RR) set and
the Random RR set.
Definition 5. Let G′ denote a FI-SKETCH constructed on G.

The Reverse Reachable (RR) set, i.e., RRG′(v) for node
v contains all the nodes in G′ that can reach v. A random
RR set, i.e., RR(v), is generated on an instance of G′

sampled from G where v is randomly picked from V .

Intuitively, the random RR set generated from a random
node v contains the nodes who can influence v. By building
multiple random RR sets on different random nodes, if a
node u has a great impact on other nodes, u will have a high

2. Note that this K is different from the size of the seed set k
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Algorithm 2: RR-SKETCH (G, k, θ) [100]

Input : G = (V,E): A social graph k: A number;
θ: Number of RR Sets.

Output: S: Seed Set.
1 R ← ∅, S ← ∅
2 Generate θ random RR sets and insert them into R
3 for i = 1, . . . , k do
4 Pick node vi that covers the most RR sets in R
5 Add vi into S
6 Remove from R all RR sets that are covered by vi
7 return S

probability to appear in these random RR sets. Similarly,
if a seed set S∗ covers the maximal number of the RR
sets, S∗ is likely to be the optimal seed set. Based on this
idea, Algorithm 2 describes the basic framework of the RR-
SKETCH approach. RR-SKETCH first generates θ random RR
sets (Line 2) and use the standard greedy algorithm on the
maximum coverage problem [81] to select a seed set S∗ of k
nodes to cover the maximum number of RR sets (Lines 3-5).

The number of generated random RR sets strikes a
balance between efficiency and the solution quality. Borgs
et al. [6] propose a threshold-based approach called RIS:
they keep generating random RR sets until the total number
of edges examined during the generation process reaches a
pre-defined threshold τ . They show that when τ is set to
O(ε−3 · k · (n + m) · log2 n), a (1 − 1/e − ε)-approximate
solution is returned with probability 1 − 1/n−1. They
later improve their analysis and reduce the complexity to
O(ε−2 · k · (n+m) · log n).

To make the RR-SKETCH approach practically efficient,
Tang et al. propose TIM [100], which improves over RIS
by a better analysis on the number of RR sets required to
ensure the same theoretical bound. In particular, it requires
O(ε−2 ·n ·(log n+log

(n
k

)
)/OPT ) RR sets where OPT is the

influence of the optimal seed set. As OPT is an unknown
value, [100] proposes a series of bootstrap estimation tech-
niques on OPT and the expected time complexity of TIM
is O(ε−2 · (n + m) · log n). By improving the parameter
estimation procedure, they also propose the TIM+ algorithm
in [100]. TIM+ has the same worst-case complexity as TIM
but shows better empirical performance. Tang et al. further
propose IMM [99] to improve over TIM/TIM+. IMM uses
a martingale analysis and a better bootstrap estimation
technique on OPT , which is more efficient than TIM/TIM+.

It is worth noting that the RR-SKETCH approaches, i.e.,
RIS, TIM, TIM+, and IMM, may have a large memory
consumption. There are two reasons for this issue: (1) a
large number of samples have to be generated to ensure
the theoretical bounds when ε is small; (2) all RR sets have
to be maintained in the memory to run the greedy algorithm
for the seed set selection.

To reduce the memory consumption, Wang et al. [107]
propose a lazy sampling technique (BKRIS). First, it utilizes
a heuristic method to estimate a lower bound on OPT .
Then, a sufficiently large sample size θ is derived from the
lower bound on OPT . Given θ RR sets required, BKRIS
adopts the bottom-K minHash technique (similar to [22])
and obtains the seed set without fully materializing all θ

sketches unless necessary. It shows that the lazy sampling
technique speeds up IMM by two orders of magnitude em-
pirically [107]. The theoretical analysis in [107] shows that
BKRIS achieves a (1−1/e−ε−ε′)-approximation when the
bk value for bottom-K minHash is O(k2ε′−2 log n2+logn k)
where ε is the error of estimating the influence function by
RR-SKETCH and ε′ is the error of estimating each node’s
coverage by bottom-K minHash. In the experiments, bk is
set from 4 to 64. This could violate the theoretical guarantee
but demonstrate good empirical results.

An orthogonal “stop-and-stare” optimization SSA pro-
posed in [84] also try to improve over IMM. SSA iteratively
doubles the number of sketches and extracts the seeds based
on the current generated sketches. Whenever the seed set Si
obtained at iteration i has an estimated influence close to
the estimation of Si−1 obtained at iteration i − 1, it stops
and returns the seed set. An improved version of SSA called
D-SSA is proposed in [84]. It claims that SSA and D-SSA
ensure (1−1/e− ε) approximation ratio, but as pointed out
in [46], there exist gaps in the analysis of SSA and D-SSA.
Although SSA can be fixed to retain the approximation ratio,
the theoretical guarantee of D-SSA is difficult to be retained
without revising the algorithm substantially [46]. Neverthe-
less, motivated by SSA and D-SSA, there exist opportunities
to further improve the efficiency of IMM while still offering
approximation guarantees of the solution [46].

It has been shown that the RR-SKETCH based approach
works under the IC, LT and TR models with theoretical
guarantees [100]. To extend it to the CT model, Tang et
al. propose a shortest-path-like reverse sampling technique
in [99]. To sample a RR set under the CT model, the Dijkstra
algorithm is invoked to traverse the graph with a random
sampled node v as the starting point, following the incom-
ing edges of v only. At each time we encounter an edge e, we
sample the length from the influence duration distribution
indicated by the CT model. The reverse sampling stops
whenever the front element of the Dijsktra distance priority
queue is larger than the stopping time T specified by the CT
model. It can be shown that the Dijsktra equipped reverse
sampling technique has the same asymptotic complexity as
IMM. Moreover, this technique could also be applied to RIS,
TIM, TIM+, and SSA to support the CT model.
Summary. To conclude, the RR-SKETCH based algorithms
are faster than the FI-SKETCH based algorithms in general.
The main reason is that each FI-SKETCH is constructed by
examining the entire graph whereas constructing a RR-
SKETCH only visits the nodes which can activate the ran-
domly sampled node. This results in a major difference in
the complexities between two categories of approaches.

7 CONTEXT-AWARE INFLUENCE MAXIMIZATION

The context-aware IM studies are emerging in recent years.
Extending from the classical IM problem, context-aware
IM studies further consider contextual features, such as
topic, time and location, in order to “customize” the IM
solution to their specific applications. This section reviews
IM algorithms under a variety of contexts respectively. Our
focus is two-fold: first, we analyze how the existing context-
aware IM studies exploit the IM techniques introduced in
the previous sections, e.g., diffusion models, IM algorithms,
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etc. A summarization of this analysis is illustrated in Ta-
ble 2 where the details will be explained in the following
subsections. Second, we introduce how the context-aware
features are integrated into the classical IM problem for
novel applications.

7.1 Topic-Aware Influence Maximization

Topic-aware influence maximization (TAIM) extends the
generic IM problem by taking the topics of the item being
propagated into consideration. To formalize the intuition,
TAIM introduces topic to represent both item characteristics
and users’ interests, and considers the influence σ(S) de-
pends on not only the seed set S but also the topics. Then,
given topics as a query, it aims at finding the optimal seed
set that maximizes the topic-aware influence. We classify
the existing TAIM studies into two categories. The first
category is IM for topic-relevant targets, which considers the
nodes (i.e., users) is topic-aware, and wants to maximize the
influence on a subset of users (called targets) relevant to the
query topics. The second category is IM for topic-dependent
diffusion, which formalizes that the edges (i.e., user-to-user
influence strength) are topic-aware, and wants to maximize
the influence under a new topic-dependent diffusion model.
IM for Topic Relevant Targets. Some studies on TAIM [41],
[69], [83] focus on maximizing the influence over the users
who are relevant to the query topics, i.e., the topic-relevant
targets. Formally, these studies introduce a concept of benefit
to differentiate the users. Then, they compute the influence
σ(S) as the expected summation of benefits of the activated
users, which is also known as targeted influence. Based
on this, they introduce techniques to find the seed set
that maximizes the targeted influence under their benefit
computation models.

Li et. al [69] propose to compute a user’s benefit by
considering how a user matches query topics. More specif-
ically, they associate each user with a profile that consists
of the users preferences on different topics. An example
profile of a user is {〈music, 0.7〉, 〈book, 0.3〉}, which depicts
the probabilities that the user likes the topics are 0.7 and
0.3 respectively. Then, given a query topic, say music, the
benefit of the user is 0.7 as only topic music is matched with
the query. Given this benefit model, Li et. al [69] address
targeted IM problem under the traditional IC model. In gen-
eral, they adopt the RR-SKETCH framework [6], [100], which
is classified by our taxonomy (see Section 6.2). However, the
original uniform sampling strategy in RR-SKETCH would
not work when considering the benefits. Thus, they intro-
duce a weighted sampling technique to find an unbiased
estimator for the targeted influence. Moreover, as conduct-
ing online sampling cannot meet the real-time processing
requirement, they further devise disk-based index structures
to push the sampling procedure from online to offline. The
idea is to build a sufficient number of RR sets for each topic
(e.g., music and book) offline. Then, given an online query, it
selects RR sets from the query topics and merges the RR sets
to compute the result. Li et. al also introduce an incremental
index structure to further reduce the I/O cost.

Nguyen et. al [83] generalize the problem by considering
any pre-defined benefit function over users. Similar to [69],
they also adopt the RR-SKETCH framework [6], [100]. Under

the framework, they propose an algorithm with a sampling
strategy applicable for general benefit functions, and an
early termination rule that avoids generating too many
samples. Moreover, this work also studies the cost-aware
settings where each user is activated using certain costs.

The personalized IM problem introduced in [41] can be
regarded as a special case of the targeted IM. The problem
aims to find the seed set that maximizes its influence on
one given target user, which can be interpreted that only
this user is topic-relevant while the others are not. The
work in [41] studies this problem under the IC model, and
proposes two algorithms. The first is called efficient local
greedy algorithm, which can be classified into simulation-
based algorithm, with some pruning rules tailored for the
local structure of the target user. Obviously, this algorithm
cannot satisfy the online query requirement. The second is
an online local cascade algorithm, which is a proxy-based
approach that only maintains shortest paths from each user
to the target one. However, compared with [69], [83], the
influence spread cannot be theoretically guaranteed.

IM for Topic-Dependent Diffusion. Inspired by topic-
aware influence analysis [4], [97], recent studies [3], [10],
[13], [28], [68] focus on IM for a topic-dependent diffusion
model. The idea of this new model is to consider each edge
e = (u, v) between two users u and v is topic dependent.
This is motivated by the fact that v may be activated by
u in some topics (e.g., sports) while staying inactive in
other ones (e.g., politics). The commonly used topic-
aware IC model introduces a topic variable z with values
{1, 2, . . . , Z}, and associates any edge e = (u, v) with Z
propagation probabilities {pzu,v}. It models a query as a
probabilistic distribution over topics −→γ = {γ1, γ2, . . . , γZ}.
Given the query, it computes the propagation probability
pu,v of edge e as the dot product pu,v =

∑Z
z=1 γzp

z
u,v , which

can then be used in the standard IC model for computing
the influence spread.

The essential challenge here is the enormous number
of potential queries, each of which corresponds to a topic
distribution and results in a different probabilistic graph. A
naive solution is to compute pu,v for each edge given the
query and then employ the aforementioned IM algorithms
over the induced graph. Obviously, this solution would be
very expensive, and thus it calls for efficient approaches to
support online topic-aware IM queries.

Aslay et. al [3] are the first to study this problem.
Their idea is based on an observation that two queries that
are similar w.r.t. topic distributions will also have similar
influence spread. Technically, they devise an index-based
approach INFLEX with pre-computation and similarity search
schemes. It first judiciously samples a set of topic distri-
butions Γ = {−→γ1, . . . ,−→γm}, and pre-computes the seed set
under each distribution in Γ by any IM algorithm. At query
time, given an online query−→γq , it finds a sufficient set of pre-
computed distributions similar to −→γq from Γ and combines
the materialized seed sets by using a rank aggregation tech-
nique. To this end, INFLEX devises maximum-likelihood
Dirichlet estimation for sampling Γ, Bregman-ball tree for
fast similarity search, and Kendall-τ distance-based schemes
for seed set aggregation. Chen et. al [13] adopt a similar
framework and develop optimization techniques, which
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TABLE 2
Summarization of Context-aware Influence Maximization Algorithms

Context-aware IM Diffusion Model IM Technique Approximation Bound

Topic

Li et. al [69] IC Reverse Reachable Sketch 1− 1/e− ε
Nguyen et. al [83] IC Reverse Reachable Sketch 1− 1/e− ε

Guo et. al [41] IC Model Reduction Proxy -
Aslay et. al [3] IC (topic) Influence Ranking Proxy -
Chen et. al [13] IC (topic) Model Reduction Proxy -
Chen et.al [10] MIA (topic) Model Reduction Proxy ε(1− 1/e) wrt. MIA

Li et. al [68] IC (topic) Reverse Reachable Sketch (1− ε)/(1 + ε)

Location

Li et. al [63] MIA Model Reduction Proxy ε(1− 1/e) wrt. MIA
Wang et. al [105], [106] MIA Model Reduction Proxy (1− 1/e) wrt. MIA

Song et. al [95] IC Reverse Reachable Sketch 1− 1/e− ε
Zhou et. al [115] IC Influence Ranking Proxy -

Time

Chen et. al [14] IC-M Model Reduction Proxy 1− 1
e wrt. MIA

Liu et. al [71], [72], Lee et. al [60] LAIC/CT-IC Model Reduction Proxy 1− 1
e wrt. MIA

Rodriguez et. al [34] CT Continuous Time Markov Chain 1− 1/e
Du et. al [26], Rodriguez et. al [35] CT Forward Influence Sketch 1− 1/e− ε

Xie et. al [111] DynaDiffuse Continuous Time Markov Chain -
Tang et. al [99] CT Reverse Reachable Sketch 1− 1/e− ε

Ohsaka et. al [87] TV-IC/TV-LT Reverse Reachable Sketch 1− 1/e− ε

Dynamic Chen et. al [18] IC Influence Ranking Proxy -
Ohsaka et. al [86] IC Reverse Reachable Sketch 1− 1/e− ε

Competitive

Budak et. al [8] IC (competitive) Simulation 1− 1/e− ε
He et. al [45] LT (competitive) Model Reduction Proxy -

Zhu et. al [116] IC (competitive) Simulation 1− 1/e− ε
Lu et. al [74] IC (comparative) Reverse Reachable Sketch α · (1− 1/e− ε)∗.
Ou et. al [88] LT (comparative) Influence Ranking Proxy -

*α denotes the ratio of the lower bound to the upper bound for the estimated influence under Com-IC in [74]

are suitable for some special graphs with properties like
topically-separable and sub-additive.

Chen et. al [10] improve the previous works [3], [13]
by providing theoretical guarantee on the influence spread.
They adopt the MIA/PMIA model [15] and develop al-
gorithms having a bounded approximation ratio under
MIA/PMIA. Specifically, they introduce a best-effort frame-
work that estimates an upper bound of the influence for
each user and then preferentially computes the exact in-
fluence for the users with higher upper bounds so as to
prune the insignificant users. Moreover, they also devise a
topic-sample-based algorithm that pre-computes seed sets
for some offline-sampled topic distributions. However, un-
like [3], [13], the algorithm [10] uses the samples to better
estimate upper and lower bounds for pruning instead of
directly answering the query, and also achieves theoretical
guarantees. Experimental result shows that the work [10]
achieves superiority on influence spread while having com-
parable performance on efficiency with [3], [13].

7.2 Time-Aware Influence Maximization

Classical IM algorithms assume that each diffusion instance
stops only when no more node is to be influenced. This
assumption is practically unreasonable as the diffusion pro-
cess may take a long time to stop. For example, it may take
O(n) steps in discrete time diffusion models and, in the
continuous time models, the process could have an arbitrary
time length. Time-aware influence maximization (TimeIM)
is thus proposed to impose a time constraint on the diffusion
process. First, discrete time-aware diffusion models [14], [60],
[71], [72] treat the discrete diffusion step as the time measure
and restrict the maximal step of the diffusion process. Chen
et al. [14] propose the IC-M model where, for each influence
edge (u → v), u contacts v with a meeting probability
m(u, v). Note that u has multiple chances to contact v but
u has only one chance to activate v with a probability of
p(u, v) if the meeting succeeds for the first time. IM under

IC-M finds the optimal seed set which activates the most
number of nodes in expectation over random processes of at
most τ steps. Liu et al. [71], [72] and Lee et al. [60] propose
the LAIC and CT-IC independently in parallel and both
models are essentially identical. Given a node u activated
in step t and an influence edge (u → v), LAIC/CT-IC
considers that u activates v in step t+ δt with a probability
of p(u, v) · platu (δt) where platu (·) is a time delay distribution.
Similar to [14], IM under LAIC/CT-IC naturally has a time
constraint of τ . As IC-M and LAIC/CT-IC are natural exten-
sions of IC, the IM algorithms under these models are MIA-
based solutions where the influence process is simplified to
a tree-based diffusion process. As we have discussed, MIA-
based solutions uses proxy model techniques and do not
have any theoretical guarantees under the original model.

The Continuous-Time Independent Cascade Model (CT)
is first proposed in [90]. Since the influence function under
CT is still monotone and submodular, [34] uses the greedy
framework with the lazy forward optimization for IM under
CT. As the CT model can be described as a continuous
time Markov chain (CTMC) [34], exactly estimating the
influence spread under CT is initially solved as an inference
problem for graphical models, which is also #P-hard. Then,
[26], [35] introduce a FI-SKETCH based method adapting
from SKIM [22] to efficiently evaluate the influence function
with a provable guarantee. [99] further introduces a RR-
SKETCH based IMM algorithm for IM under CT, which is
the first near linear time algorithm with a provable guaran-
tee. [111] proposes the DynaDiffuse model where the edge
influence probabilities decay over time. It proposes a CELF-
optimized greedy method for seed set selection. But because
it cannot provide an error bound for using stochastic model
checking on the CTMC Parallel Composition to evaluate
the influence function, the proposed method does not have
theoretical guarantees. [87] proposes the Time-Varying IC
(TV-IC) model to generalize existing time-aware models,
e.g., CT and IC-M. Given a node u activated at time tu and
an edge (u→ v), TV-IC considers the conditional likelihood
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that the influence reaches v at time t and v is activated at
time t depend on t− tu. [87] also proposes the Time-Varying
LT (TV-LT) model which is the first continuous time model
extending from LT. Due the submodularity of TV-IC and TV-
LT, it proposes a RR-SKETCH based method for IM under
both models with a provable guarantee.

We note that TimeIM is a “less researched” area among
IM studies and there are still many topics to explore. First,
time-aware diffusion models extending from LT/TR are
still largely unexplored and [87] is the only work on this
topic. Another example is to consider the utilities of users
vary with the time periods when they are influenced. It is
intuitive that users influenced immediately after the initial
seed deployment are more valuable for campaigns in social
networks [53].

7.3 Location-Aware Influence Maximization

With the prevalence of location-based social networks (e.g.,
Twitter, Foursquare, etc.), recent practice of location-aware
word-of-mouth marketing has triggered the research inter-
est in local-aware influence maximization (LAIM). The basic
idea of LAIM is to maximize the influence of the location-
relevant users, instead of any users in the generic IM settings.
To solve this problem, different approaches are proposed
to combine the generic IM algorithms with spatial index
schemes [42], [63], [95], [105], [106], [115].

Li et. al [63] are the first to study LAIM, with a focus
on region queries: given a geographical region R, it aims
to find a k-sized seed set S that maximizes the influence
over R, i.e., activating the maximum number of users in
R. This work adopts the standard IC model and utilizes
the MIA/PMIA model [15] for computing influence spread.
It devises a best-first search framework that preferentially
accesses the users with large upper bounds and prune un-
promising ones with insignificant influence over R. To this
end, it focuses on developing bound estimation techniques
for effective pruning. It employs a classic spatial index
QuadTree to fast locate the users having influence to the “in-
fluencees” in R. It also develops a hint-based algorithm that
pre-computes seed set for each leaf region in QuadTree, and
combines these seed sets as hints of the regions intersecting
with R for effective upper- and lower-bound estimation.
It evaluates the techniques on real location-based social
networks, and reports real-time efficiency in milliseconds
for various region sizes.

Wang et. al [105], [106] employ a pruning-based frame-
work similar to [63], but focus on distance-aware query, which
maximizes the influence spread weighted by users’ distance
to a query location. Wang et. al [105], [106] also adopt
the IC model and the MIA/PMIA proxy [15]. For bound
estimation, they judiciously select a set of anchor locations
and maintain the influence spread of each user given every
anchor location as a query. At query time, they can utilize
the anchor locations for bound estimation using triangular
inequality. This anchor based technique can also fuse with
the region-based bound estimation in [63]. Besides this,
it also studies marginal influence bound estimation and
approximate result estimation for further speedup. Song
et. al [95] also study the distance-aware query. Different
from [105], [106], they adopt the RR-SKETCH approach. This

work generates a pool of weighted reverse reachable (WRR)
trees and develops a sampling-based approximate algorithm
by adapting from the RR-SKETCH approach. Theoretically, it
returns a (1−1/e−ε)-approximate solution. A proxy-based
algorithm is further proposed and it focuses on nodes close
to the query location to further improve efficiency. There
also exists a study [115] focusing on designing distance-
aware weighting model.

Guo et. al [42] introduces an IM problem over trajectory
databases: the problem finds k trajectories to be attached
with a given advertisement and maximizes the expected
influence among a large group of audience. They pro-
pose a cluster-based algorithm that partitions the trajectory
database into clusters and accesses the clusters in an order
such that promising trajectories will be found earlier. Never-
theless, this work is essentially different from the IM studies
summarized before, as it does not consider the influence
propagation and cannot apply any diffusion models.

7.4 Dynamic Influence Maximization
The IM algorithms discussed so far are inherently static:
given a social graph G = (V,E), they assume that G
and the propagation probability pe for any e ∈ E are
fixed. However, real-world social networks keep evolving,
e.g., new friendship formed, which continuously affects the
influence graph. In the remaining of this subsection, we
will introduce major research efforts for dynamic IM, which
incrementally process the changes of the social graph.

Given a graph G and the evolution of G during time
interval [t, t+h], Aggarwal et al. [1] propose efficient heuris-
tics to find a seed set S at time t such that its influence at
time t + h is maximized. Zhuang et al. [117] assume that
the changes in the graph can only be detected by periodically
probing a small number of nodes. Based on this assumption,
they design efficient algorithms for two problems at each
time t: (1) constructing a subgraph Ĝt by probing a set of
nodes such that the influence diffusion on the underlying
graph Gt at time t can be the best observed; (2) finding a
seed set S (using DEGDIS [16]) on the observed subgraph
Ĝt to maximize the influence of S on the underlying graph
Gt. Note that, the models used in [1] and [117] are simple
proxies and do not align with existing diffusion models like
IC/LT nor their extensions.

Subsequently, there are several researches [18], [31] mod-
eling the dynamics in the social network as a sequence
of snapshot graphs G1, . . . , GT . The dynamic IM in this
context is to continuously extract the seed set for each
snapshot under an diffusion model, e.g., IC. Chen et al. [18]
propose an upper bound interchange proxy (UBI). UBI
adopts UBLF [114] and SP1M [56] for efficient influence
estimation. Then, it tracks the seed set for IM against the
up-to-date snapshot graph as follows: (1) use an offline
algorithm to retrieve the initial seed set wrt. G1; (2) update
the estimated influence spread of each node against a new
snapshot; (3) interchange a node into the seed set if it brings
a gain of γ (usually 1%) to the total influence spread of
the seed set. UBI is 1/2-approximate only if the influence
estimation is accurate and any possible interchange is per-
formed as long as it brings any gain. Therefore, UBI has
no theoretical guarantee in practice because of inaccurate
influence estimation and the threshold for interchange.
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Ohsaka et al. [86] first propose a fully dynamic scheme
for IM under IC in evolving graphs. Instead of consider-
ing snapshot graphs at discrete time steps, their method
can provide the seed set for IM in real-time against any
node/edge updates. It first constructs an index on RR-
SKETCH according to the initial graph. Then, two basic
operations, i.e., EXPAND and SHRINK, are proposed to add
and delete nodes from sketches by re-sampling. When re-
ceiving any change in node/edge, it will update the affected
sketches by performing either EXPAND or SHRINK. The core
idea of sketch maintenance is to guarantee the probability
of sampling any node and edge is always uniformly at
random. After the sketch maintenance, it will recompute
the sample size θ and generate new sketches or delete
existing ones if necessary. Finally, the seed set selection is
to perform a maximum k-coverage on dynamically main-
tained sketches, which is the same as Phase 2 of static RR-
SKETCH based methods like TIM. Although the algorithm is
specifically designed for the IC model, the idea may also be
extended to other models like LT and TR.

There are some other researches accounting for different
concepts of “dynamics”. For example, Lei et al. [61] and
Tong et al. [102] are concerned with the incompleteness and
uncertainty of the diffusion process. Lei et al. [61] consider
the propagation probabilities are unknown in advance and
can only be acquired after trials. They propose a method to
learn these probabilities at the same time as the diffusion
process and adopt ExploreExploit strategies for IM in this
setting. Tong et al. [102] consider the propagation proba-
bilities are random variables conforming to certain distribu-
tions and propose a simple greedy adaptive seeding strategy
to find an effective solution with a provable performance
guarantee. Wang et al. [108] study the IM problem over
a social action stream. They define the influence between
users in the sliding window model and propose the Stream
Influence Maximization (SIM) query to continuously track a
seed set maximizing the influence wrt. the current window.

7.5 Competitive Influence Maximization
In this subsection, we review the existing research efforts
on competitive IM, which consider the scenarios where
several competitors spread their influences in the same
social network simultaneously and their diffusions interfere
with each other. The competitive IM aims to find a strategy
for the competitors in a social network such that one’s own
influence is maximized while his opponents’ influences are
minimized. In the remaining of this subsection, we further
categorize existing techniques for competitive IM into three
types and review them separately.
Known opponent strategies: Bharathi et al. [5] and Carnes
et al. [9] are among the first to formulate the competitive IM
with known opponent strategies. They consider the follow-
ing problem: if there are n players in the diffusion game and
the n-th player wants to find the optimal seed set given the
choices of the seed sets of the first (n−1) players. The prob-
lem is difficult since if a node is influenced by a player, the
node cannot be further influenced by other players. Then,
they prove that the greedy strategy achieves the same 1−1/e
approximation guarantee. Borodin et al. [7] propose several
extensions of the LT model in the competitive setting. How-
ever, they show the proposed models are non-submodular

and it is NP-hard to achieve an approximation that is better
than a square root of the optimal solution under these
models, where the greedy approach cannot work any more.
Subsequently, several techniques are proposed for a variant
of competitive IM called influence blocking maximization
(IBM). Given a diffusion A of “misinformation” with the
seed set SA, the objective of IBM is to initiate a counter
diffusion B with the seed set SB of size k such that the
influence of A is minimized. Budak et al. [8] and He et
al. [45] propose greedy solutions for this problem in the
IC and LT models respectively. Zhu et al. [116] propose a
generalized competitive IC model. They consider a node
can serve as the seed for multiple diffusions. The greedy
framework is adopted to retrieve a 1− 1/e− ε approximate
solution for this problem due to the submodularity of the
influence function under their model.

Unknown opponent strategies: In real-world propagation
campaigns, it is not practical to assume the opponents’
strategies are known beforehand. Therefore, more practical
models where each player does not have knowledge about
others’ strategies are proposed for competitive IM. In [70],
Lin et al. model the competitive IM problem as a multi-
round multi-party game. Li et al. [64] consider another
model for competitive IM. Given a graph G and a diffusion
model, the strategy space Φ = {φ1, . . . , φz} consists of
all IM algorithms that may be adopted by players. The
objective is to find a Nash equilibrium strategy for each
player such that his own influence σ(Si) is maximized.
We note that standard IM algorithms are used as building
blocks to solve the aforementioned problems.

Comparative IM: The diffusion model for comparative IM
considers two different kinds of relationships between two
diffusions A and B: (1) Competition: If a node adopts the
influence of A, it has a lower probability to adopt B, (2)
Complementary: If a node adopts the influence of A, it has
a higher probability to adopt B. Lu et al. [74] first propose
the Comparative Independent Cascade (Com-IC) model ex-
tending the IC model to describe the diffusion of multiple
influences with comparative or competitive relationships.
Then, they propose the SELFINFMAX problem to maximize
the own influence of a diffusion and the COMPINFMAX
problem to maximize the incremental influence of a diffu-
sion contributing to another diffusion. They show that both
problems are NP-hard and propose RR-SKETCH approaches
extending TIM [100] to solve the problems. Ou et al. [88]
also consider the comparative IM problem independently.
They propose the Interactive Linear Threshold (ILT) model
extending the LT model for multiple diffusions . They pro-
pose a heuristic strategy TOPBOSS for the second-mover to
defeat the first-mover with knowing the first-mover’s seeds
selection in the comparative environment.

8 RESEARCH CHALLENGES AND DIRECTIONS

Determining the stability of IM algorithms: He and Kempe
[43] show that there is a poor stability of IM algorithms
when the input influence probabilities are adversarially
noisy. This means a slight change in the diffusion model
may change the optimal seed set drastically. Although some
efforts have been made to design algorithms for finding
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the seed set for robust IM [12], [44], [77], they assume
the influence graph structure is fixed. However, the graph
structure changes constantly in reality. It is a challenging
task to find how the graph structure affects the solution of
IM and how to identify a robust seed set given a limited
number of graph changes.
Breaking the boundary of submodularity: The submod-
ularity of the influence function plays a vital role for de-
signing efficient and theoretical bounded IM solutions. The
submodularity of requirement of the influence function is
too strict in certain scenarios. For example, the opinion-
aware IM [30], [32], [67] adopts non-submodular influence
functions. The non-submodularity occurs as any node can
switch between positive and negative opinions which are
spread across the influence graph. Under such circum-
stances, the greedy framework is no longer effective. To
provide a better solution than some simple heuristics, a pos-
sible future direction is to model the influence function with
more general functions, e.g., weakly submodular functions.
The weakly submodular functions [24] are more general
to model real applications compared to the predominate
monotone submodular functions in the IM community. In
addition, the theoretical properties of weakly submodular
functions guarantee that the extended IM problem can be
approximated effectively.
Considering the group norm: Existing IM diffusion models
focus on the influence occurred between two nodes with an
edge connecting them. In real world, people are not only
influenced by acquaintances or friends but are also guided
by group norms. One example is the conformity behavior
where people often conform within a group, typically of
similar age, culture, or educational status. [65], [98] pro-
pose a pioneer work of the conformity-aware IM problem.
However, the conformity-aware diffusion model defined in
[65], [98] considers extracting the conformity characteristics
from the graph structure only and thus ignores user profiles
from which social groups can be inferred. One possible
future direction is to incorporate the user profiles into the
conformity IM problem. Moreover, there are different types
of conformity: compliance, identification and internalization
[49]. These conformity types affect the ways in which people
are influenced and it remains a challenging problem on how
they can be integrated into IM problems.

9 CONCLUSION

In this paper, we conduct an extensive survey on the IM
problem from an algorithmic perspective. We propose a
fined-grained taxonomy for classifying existing IM tech-
niques based on their algorithmic designs. We also provide
a rigorous theoretical comparative study of existing IM
algorithms. Furthermore, we survey the context-aware IM
problems and analyze how the IM techniques are used
to solve the context-aware IM. We also point out future
research challenges. Our survey will give researchers new
to IM an understanding of the recent development of IM
algorithms and a good starting point to work in this field.
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