
Distribution-Aware Crowdsourced
Entity Collection

Ju Fan , Zhewei Wei, Dongxiang Zhang, Jingru Yang, and Xiaoyong Du

Abstract—The problem of crowdsourced entity collection solicits people (a.k.a. workers) to complete missing data in a database and

has witnessed many applications in knowledge base completion and enterprise data collection. Although previous studies have

attempted to address the “open world” challenge of crowdsourced entity collection, they do not pay much attention to the “distribution”

of the collected entities. Evidently, in many real applications, users may have distribution requirements on the collected entities, e.g.,

even spatial distribution when collecting points-of-interest. In this paper, we study a new research problem, distribution-aware

crowdsourced entity collection (CROWDDEC): Given an expected distribution w.r.t. an attribute (e.g., region or year), it aims to collect a

set of entities via crowdsourcing and minimize the difference of the entity distribution from the expected distribution. Due to the

openness of crowdsourcing, the CROWDDEC problem calls for effective crowdsourcing quality control. We propose an adaptive worker

selection approach to address this problem. The approach estimates underlying entity distribution of workers on-the-fly based on the

collected entities. Then, it adaptively selects the best set of workers that minimizes the difference from the expected distribution. Once

workers submit their answers, it adjusts the estimation of workers’ underlying distributions for subsequent adaptive worker selections.

We prove the hardness of the problem, and develop effective estimation techniques as well as efficient worker selection algorithms to

support this approach. We deployed the proposed approach on Amazon Mechanical Turk and the experimental results on two real

datasets show that the approach achieves superiority on both effectiveness and efficiency.

Index Terms—Crowdsourcing, entity collection, sampling, distribution-aware

Ç

1 INTRODUCTION

CROWDSOURCING exploits human intelligence to solve
problems that are inherently difficult to machines, and

has attracted growing interest recently. Many solutions
have been proposed to support various operations on
crowdsourced data, which can be broadly classified into
two categories. The first one is crowdsourced data evalua-
tion, which asks the crowd to evaluate data according to
some criteria, including filter [1], [2], join [3], [4], sort/top-
k [5], [6], etc. The second category is crowdsourced data col-
lection [7], [8], [9], [10], which solicits the crowd to complete
missing data in a database, where the missing data can be
either specific attributes (e.g., homepage of a researcher) or
entire entities (e.g., new researchers).

This paper focuses on the aforementioned second cate-
gory of crowdsourced operations. In particular, we study
the problem of crowdsourced entity collection that seeks to

acquire missing entities (i.e., tuples) from the crowd to com-
plete a database. As a running example, suppose that a mar-
ket research analyst wants to study restaurants in
New York City (NYC). The analyst can pose an entity collec-
tion query to publish crowdsourcing tasks of collecting res-
taurants in the city from the crowd. Crowdsourced entity
collection has many applications, including knowledge base
completion, structured data collection, etc.

A fundamental challenge of crowdsourced entity collec-
tion is the “open world” nature of crowdsourcing which may
return unbounded amount of answers [7]. Recently, some
approaches have been proposed to address the challenge.
Trushkowsky et al. focused on estimating the coverage of the
current entity set collected from the crowd [7]. Chung et al.
have extended the estimation techniques to support aggregate
queries, such as SUM, AVG, MAX/MIN, etc. [8]. Rekatsinas
et al. extended the data model to a structured domain with
hierarchical structure, and aimed to maximize collection cov-
erage under a budget [9]. Park and Widom developed a gen-
eral framework CrowdFill that shows a partially filled table
and asks the crowd to contribute new entities, fill empty cells,
and up-vote/down-vote existing entities [10]. However, the
studies do not pay much attention to the underlying distribu-
tion of the collected entities, which is often indispensable in
the process of data collection.

Evidently, in many real scenarios, users may have distribu-
tion requirements on the entities collected from the crowd. One
application is crowdsourced point-of-interest (POI) collec-
tion [11], which asks the crowd to submit locations with addi-
tional information, such as road-side parkings. Naturally,
users often want the collected POIs (e.g., road-side parkings)

� J. Fan, J. Yang, and X. Du are with the Key Lab of Data Engineering and
Knowledge Engineering and the School of Information, Renmin University
of China, Beijing 100872, China.
E-mail: {fanj, jingru, duyong}@ruc.edu.cn.

� Z. Wei is with the School of Information, Renmin University of China and
the Beijing Key Laboratory of Big Data Management and Analysis
Methods, Beijing 100872, China. E-mail: zhewei@ruc.edu.cn.

� D. Zhang is with the School of Computer Science and Engineering, Uni-
versity of Electronic Science and Technology of China, Sichuan 610051,
China. E-mail: zhangdo@uestc.edu.cn.

Manuscript received 22 May 2016; revised 4 Aug. 2016; accepted 30 Aug.
2016. Date of publication 20 Sept. 2016; date of current version 31 May 2019.
Recommended for acceptance by L. Chen, G. Li, and S. Amer-Yahia.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2016.2611509

1312 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 7, JULY 2019

1041-4347� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4729-9903
https://orcid.org/0000-0003-4729-9903
https://orcid.org/0000-0003-4729-9903
https://orcid.org/0000-0003-4729-9903
https://orcid.org/0000-0003-4729-9903
mailto:
mailto:
mailto:

to be evenly distributed in an area, instead of following a
skew spatial distribution (e.g., only containing POIs near
some popular regions). Distribution requirement is also com-
mon in market research. For example, suppose that a real
estate expert wants to curate a list of representative houses
via crowdsourcing. To make the research more comprehen-
sive, the expert may want to include various house types,
such as number of bedrooms, and would like to specify an
expected distribution of the types based on her experience of
the market. Moreover, distribution requirement is also desir-
able in other data collection tasks. For example, a university
who wants to find faculty candidates from the job market is
likely to have an expected distribution requirement on spe-
cialization of the applicants, such as machine learning,
database, etc., based on its development directions.

Motivated by this requirement, we study a new research
problem, distribution-aware crowdsourced entity collection
(CROWDDEC), in this paper. Given a user-specific distribution
requirement, a CROWDDEC query aims to find the best crowd-
sourcing strategy that makes the collected data to satisfy the
distribution as much as possible, i.e., minimizing difference of
the collected entity distribution from the expected distribution.

This CROWDDEC query is quite challenging to answer
due to the openness of crowdsourcing, i.e., the entities are
collected by an unknown group of people (i.e., workers).
First, each individual worker may have its own bias of data
collection, leading to diverse distributions across different
workers. For instance, a worker only collects POIs in a par-
ticular spot, while another one randomly provides POIs in
an area. Second, it is known that workers may have
unevenly contributions: some workers, referred as streakers
in [7], may provide significantly more entities than other
workers. Therefore, the distribution of the collected entities
will become unpredictable if no effective strategy is utilized
to control the crowdsourcing process.

To tackle the difficulties in answering CROWDDEC, we
introduce an adaptive crowdsourcing approach. The
approach on-the-fly estimates the underlying entity distribu-
tion of each worker based on the observed entities the worker
has submitted. Then, it selects an optimal set of workers such
that entities to be provided by these workers would minimize
the difference from the user-expected distribution. Moreover,
once a worker submits her answers, it adjusts its estimation of
the underlying distributions of workers to improve the subse-
quent worker selection. In such a way, the approach continu-
ously estimates workers behaviors and adaptively selects
workers, so as to approximate the collected entities to the
expected distribution. To support this approach, we first for-
malize the “difference” of entity distribution from the
expected distribution using Kullback-Leibler (KL) divergence
and formulate the CROWDDEC problem. Then, we introduce a
probabilistic framework and effective statistical methods to
estimate the underlying entity distribution of a worker, based
on theworker’s “history”, i.e., the entities already collected by
the worker. Next, by using the estimates, we select an optimal
set of workers to minimize the KL divergence. We have
proved the optimalworker selection problem isNP-complete,
and developed a best-effort algorithm to find the exact solu-
tion and an approximate local search algorithm for instant
worker selection.We conducted experiments on a real crowd-
sourcing platform, i.e., AmazonMechanical Turk (AMT), and

the experimental results show the performance superiority of
our proposed techniques (Section 5).

To summarize, we make the following contributions.

(1) To the best of our knowledge, this is the first paper to
study the problem of distribution-aware crowd-
sourced entity collection. We formalize the problem
and introduce an adaptive crowdsourcing approach
to solve it (see Section 2).

(2) We devise a probabilistic framework and effective statis-
tical methods for estimating the underlying distribution
of entities provided a worker based on the observed
entities already provided by the worker (see Section 3).

(3) We have proved that the problem of optimal worker
selection is NP-complete and developed a best-effort
algorithm to find the exact solution and an approxi-
mate local search algorithm for instant worker selec-
tion (see Section 4).

2 OVERVIEW OF CROWDDEC

In this section, we present an overview of CROWDDEC. We
define the distribution-aware entity collection query in Sec-
tion 2.1, introduce a crowdsourcing model in Section 2.2,
and propose an adaptive worker selection framework to ful-
fill CROWDDEC in Section 2.3.

2.1 Distribution-Aware Entity Collection

Consider entities in a specific data domain (e.g., movie), and
an attribute A of the entities (e.g., year of the movie) with a
value domain, V ¼ fa1; a2; . . . ang. We assume that V is
already known by design, which is common in many practi-
cal applications. We will take the problem with unknown
attribute domains in future work.

This paper studies the problem of collecting a set of enti-
ties, denoted by S, in the data domain. In particular, we
would like to measure the distribution of the collected enti-
ties in S w.r.t. attribute A, which is defined as the ratios of
entities having the attribute values:

Definition 1 (Entity Distribution). Entity distribution of an
entity set S w.r.t. attribute A is a set of ratios defined on

domainV, FS
A ¼ ffS

1 ;f
S
2 ; . . .f

S
ng. The ith ratio fS

i is defined as

fS
i ¼

P
e2S 1½e:A ¼ ai�
jSj ; (1)

where 1½event� is an indicator function equal to 1 if the event

occurs and 0 otherwise, and
Pn

i¼1 f
S
i ¼ 1.

As mentioned in Section 1, users often have distribution
requirements on the collected entities w.r.t. attribute A.
Therefore, we propose to study the distribution-aware entity
collection query. In such a query, one is given an expected dis-
tribution w.r.t. attribute A, denoted byCA ¼ fc1;c2; . . .cng
and the number k of entities to be collected. The answer of
this query is a set S of entities with size k (jSj ¼ k) such that

the entity distribution FS
A is as close to CA as possible. For

ease of presentation, we use FS and C to represent FS
A and

CA respectively if the context is clear.

Definition 2 (Distribution-Aware Entity Collection).
Given an expected distribution C ¼ fc1;c2; . . .cng and the

FAN ET AL.: DISTRIBUTION-AWARE CROWDSOURCED ENTITY COLLECTION 1313

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

number k of entities to be collected, a distribution-aware entity col-
lection query collects a set of entities S with size jSj ¼ k that min-

imizes the difference DðC;FSÞ of entity distribution FS from

the expected distributionC, i.e., S� ¼ argS;jSj¼k minD ðC;FSÞ.
We use the well-known Kullback-Leibler (KL) diver-

gence [12] to measure the above difference. Formally, the
KL divergence of FS from C, denoted by DKLðCjjFSÞ, is a
measure of the information gained when one revises one’s

beliefs from FS toC, i.e.,

DKLðCjjFSÞ ¼
Xn
i¼1

ci � log
ci

fS
i

: (2)

Example 1. Table 1 provides some entities in the Restaurant
domain and an attribute Region with {South, North,
Center} as its value domain V. Let us consider a set S1 of
entities fe1; e6; e7; e11; e12; e13g: its entity distribution w.r.t

Region is f16 ; 13 ; 12g as there are one restaurant in South, two

in North and three in Center. Given an expected distribu-

tion C ¼ f13 ; 13 ; 13g, the KL divergence DKLðCjjFS1Þ of FS1

from C is 0.27. Based on this, we consider a distribution-
aware entity collection query withC and a number 6. The
answer of this query is a set S� of entities such that jS�j ¼ 6

and the differenceDKLðCjjFS�Þ is minimized.1

2.2 Crowd Model for Crowdsourced Entity Collection

We employ crowdsourcing for entity collection. We publish
human intelligence tasks (HITs) on existing crowdsourcing
platforms, such as Amazon Mechanical Turk2 (AMT) to
solicit a set of workers, denoted by W ¼ fw1; w2; . . . ; wmg,
where each HIT asks a worker to submit “one more” entity
with a value of attribute A from domain V. An example of
such HIT would be asking the worker to provide “a restau-
rant in NYC with attribute Region”.

The crowdsourcing process works iteratively: at each
time point t, some workers in W request for HITs which
will be assigned by our worker selection framework (see
Section 2.3). After they submit their entities, we pay them
and proceed to the next time point tþ 1 till k entities have
been collected. In such a way, we finally obtain a collection
of entity sets, S1; S2; . . . ; Sm from the workers, where Sj is
the entities submitted by worker wj. Then, we consolidate
the entities from the workers to generate an integrated set
S. Note that this paper assumes that data integration issues
involved in generating S, e.g., entity resolution and attribute

consolidation, can be perfectly addressed manually or by
existing techniques [13], which is orthogonal to this paper.

Example 2. Fig. 1a provides an example of crowdsourcing
process with four workers, where each row is entities sub-
mitted by a worker and each column is a time point. Each
labelled cell represents a submitted entity where the label
is its attribute value (S, N and C represent South, North
and Center respectively), while a blank cell means no
entity is submitted. Considering to collect 10 entities, we
terminate the crowdsourcing process at time point t5 and
obtain an integrated entity set S.

Based on the experiments on real datasets (Section 5.2),
we have observed that crowdsourcing has its own charac-
teristics for entity collection, which is discussed as follows.

1) Diverse Bias: As workers have different backgrounds,
each of them may have her own bias of entities she knows,
leading to quite diverse entity distributions across different
workers. For example, worker w1 in Fig. 1a may have bias
on restaurants in South and North, while w2 know better for
those in Center. In our experiments, we measure KL diver-
gence for each pair of workers, and observe that most of the
pairs have quite large divergence values.

2) Uneven Contribution: It is known that crowdsourcing
workers usually have unevenly contributions [7], [8]: some
workers, referred as streakers in [7], may provide signifi-
cantly more entities than the other workers. In our example
shown in Fig. 1a, worker w1 is likely to be a streaker as she
contributes more than the other ones. In our real dataset of
collecting movie entities, one worker submits 1,250 entities,
while most of the workers only provide tens of entities (see
Section 5.2 for more details).

The above observations imply that contributions from
workers may be rather irregular, thus making it very chal-
lenging to model their behaviors. To address the challenge,
we introduce a probabilistic model to model worker’s
behavior for entity collection. The basic idea of this model is

TABLE 1
An Example of Restaurant Entities

ID Region ID Region ID Region

e1 South e6 North e11 Center
e2 South e7 North e12 Center
e3 South e8 North e13 Center
e4 South e9 North e14 Center
e5 South e10 North e15 Center

Fig. 1. The crowd model for crowdsourced entity collection (where S, N,
C, and # represent South, North, Center, and no answer).

1. Note that there may be more than one sets of collected entities that
minimize the distribution difference, and any one of them can be
regarded as the answer of the query in this paper.

2. https://www.mturk.com/

1314 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 7, JULY 2019

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

https://www.mturk.com/

to consider the generation of entity set Sj from wj as a sam-
pling process from an unknown entity distribution. Our
model has a property of incorporating both diverse bias and
uneven contribution into consideration.

Formally, let Pwj denote worker wj’s underlying probabil-
ity distribution at a time point t. In particular, Pwj is defined

as fpj1; pj2; . . . ; pjn; pj#g, where pji is the probability that wj pro-

vides an entity with attribute value ai, p
j
is the probability

that wj provides no entity and
P

i p
j
i þ pj# ¼ 1. Based on

this, our model considers that entity set Sj is generated by
sampling entities from distribution Pwj in the following
way. At any time point t, we throw a dice with jVj þ 1 faces,
fa1; a2; . . . ; an;#g, where the probabilities of the result are
Pwj . If the result of dice throwing is ai, wj provides an entity
e with attribute value ai, and otherwise (i.e., the result is #),
wj does not provide any entity.

Example 3. Fig. 1b provides the underlying entity distribu-
tions of the four workers in Fig. 1a. We can see that the
model can formalize both diverse bias and uneven contri-
bution of workers: On the one hand, the distributions of
the workers are obviously quite different from each other.
On the other hand, workers have various probability pw#
that models “unwillingness” of contribution. For exam-

ple, p1# of the streaker w1 is much smaller than those of

the other workers, which means w1 is more likely to be
zealous to provide more entities.

To facilitate our presentation, all the frequently used
notations are listed in Table 2.

2.3 An Adaptive Worker Selection Framework

This section presents an adaptive worker selection frame-
work to support distribution-aware crowdsourced entity
collection. The framework mainly addresses two challenges.
First, the underlying distribution Pwj of worker wj is actu-
ally unknown, resulting in a challenge of accurate Pwj esti-
mation. Second, as the diversity of Pwj across workers is
significant, it calls for an effective approach to finding a sub-
set of W such that the “aggregated” distribution provided
by these workers is as close to the expectedC as possible.

Algorithm 1 shows the pseudo-code of the framework,
which takes as input an expected distribution C coupled
with a number k and outputs an entity set S. Initially, it con-
structs an empty entity set S and worker set W , and then
starts to select workers periodically in time.3

Algorithm 1. CROWDDEC-FRAMEWORK (C; k)

Input:C: expected distribution; k: a number
Output: S: a set of collected entities
1 Initialize entity set S ;, worker setW ;;
2 for each time point t do
3 ~W DETECTACTIVES (t);
4 for each wj 2 ~W do
5 if wj =2W then Sj QUALIFICATION (wj);
6 P̂wj ESTIMATE (wj; Sj);
7 W W [~W ;
8 W � SELECTWORKERS (~W; fP̂wjg;C; S);
9 for each action from worker wj do
10 if wj =2W � then continue;
11 if wj:action ¼ req then Assign wj an HIT;
12 else if wj:action ¼ ans then
13 Insert entity e from wj into Sj;
14 INTEGRATEENTITY (S; e);
15 if jSj ¼ k then return S;

At each time point t, it first identifies the current active

workers ~W who are ready to work on the HITs (line 3). Like
our previous work in [14], we may use different methods to
this end. For example, if the span from the last time point
when a worker requests for HITs to the current time point is
smaller than a threshold (e.g., 15 minutes), we consider the
worker is still active and can be assigned with HITs. For
each active worker wj, the framework checks if wj is a new
worker who has not answered our HITs yet (i.e., wj =2W). If
so, it assigns wj qualification HITs for collecting some initial
entities Sj (line 5). Intuitively, a qualification HIT asks wj to
fill attribute values of a pre-defined entity list. The purpose
of the qualification is two-fold. First, as we know the
ground-truth attribute values of the entities in the list, if wj

provides too many wrong answers, we block this “low-
quality” worker. Second, the qualification HIT can address
the “cold-start” problem: it helps us to collect an initial set
of entities from wj to facilitate the following estimation.

Next, the framework estimates wj’s underlying probabi-
listic model Pwj from the “historical” entities Sj submitted
by wj (line 6). Then, it selects a subset W � of active workers
such that the difference fromC is minimized after collecting
entities from W � (line 8). Based on W �, it selectively assigns
HITs to workers at time point t as follows. For each request
from a worker wj, the framework “blocks” the request4 if
wj =2W �. If wj is selected (wj 2W �), our framework assigns
HITs and collects the entities from wj.

Finally, it integrates the entities into S by using existing
data integration techniques [13] (line 14) and examines if
the number of collected entities reaches k (line 15). If enough
entities have been collected, it terminates. Otherwise, it pro-
ceeds to the next time point for further collection.

From the above algorithm, we can see that the proposed
framework is adaptive since it continuously estimates work-
ers’ probabilistic models and selects workers based on the
current estimation. This allows us to on-the-fly utilize the
most appropriate set of workers by finding better workers
and eliminating worse ones. Note that the implementation
of Algorithm 1 on the crowdsourcing platform AMT can

TABLE 2
Frequently Used Notations

e, A, V entity, attribute, attribute value domain

FS
A

distribution of entity set S w.r.t. A

CA an expected entity distribution w.r.t. A

DKLðCjjFSÞ KL divergence of FS fromC.

wj, Sj crowdsourcing worker, entity set of worker
Pwj wj’s probabilistic model of entity collection

3. We can define various granularity for time points, such as sec-
onds, minutes, hours, etc. See more details of time point settings in our
experiments.

4. For “blocking”, we can actually provide user-friendly messages,
e.g., “We currently do not have questions. Please try later...”

FAN ET AL.: DISTRIBUTION-AWARE CROWDSOURCED ENTITY COLLECTION 1315

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

utilize the “external question” mechanism that manages the
HITs and assignment in our own web server (refer to [14]
for more details of the mechanism).

Example 4. We use the example in Fig. 1 to illustrate the
framework. Given an expected entity distribution

C ¼ f13 ; 13 ; 13g and a number 12, the framework selects

workers periodically as follows. At any time, say t6, it first
identifies active workers fw1; w2; w4g. If any worker wj is
a new worker the framework uses qualification to initial-

ize entity set Sj. Then, it estimates P̂w1 , P̂w2 and P̂w4 based
on the sets S1, S2 and S4. Suppose that the current estima-
tion is accurate to capture the underlying distribution in
Fig. 1b. Then, it may only select workers w2 and w4 while
blocking w1, as the relative ratio of restaurants in Center

needs to be increased. Finally, if 12 entities have been col-
lected, the framework terminates and returns the inte-
grated entity set S.

This paper focuses on developing techniques to address
two challenging problems in the framework. First, Section 3
introduces effective approaches to estimating worker wj’s
underlying probabilistic model Pwj (i.e., function ESTIMATE

in line 6). Second, Section 4 discusses optimal worker set
selection to minimize the difference from expected distribu-
tionC (i.e., function SELECTWORKERS in line 8).

3 WORKER PROBABILISTIC MODEL ESTIMATION

This section presents an estimation problem for computing
probabilistic model Pwj of a worker wj. The basic idea of the
estimation is to utilize wj’s historical entities, i.e., the
observed entity set Sj from wj. Note that historical entity set
Sj also includes # as a special entity which means no
answer from wj is provided. We consider that the observed
Sj is also generated from the underlying model Pwj , and
thus we can infer Pwj from this observation. This estimation
problem can be formally defined as follows.

Definition 3 (Worker Probabilistic Model Estimation).
Given a worker wj and her historical entity set Sj, it aims to

estimate wj’s underlying probabilistic model P̂wj ¼ fp̂j1; p̂j2;
. . . ; p̂jn; p̂

j
#g, where p̂ji (or p̂j#) is the estimated probability of

sampling an entity e with attribute value ai (or no answer)
from wj given observation of wj’s historical entity set Sj, i.e.,

p̂ji ¼ PrfaijSjg.
Take worker w1 in Fig. 1 as an example. The correspond-

ing S1 is the the first row of entities provided by w1 in
Fig. 1a. For instance, at time point t5, S1 ¼ fS;#;N;S;Sg.
Then, the problem aims to estimate P̂w1 of w1 in Fig. 1b
based on S1. This section introduces estimation techniques
to address the problem. We discuss an empirical probability
method in Section 3.1, a Good-Turing estimation in Section
3.2, and a hybrid method in Section 3.3.

3.1 Empirical Probability Estimation

A simple method for estimating P̂wj is to use the empirical
probability, or relative frequency in Sj. For example, at time
point t5 in Fig. 1a, as worker w1 has provided three entities of
South, one of North, zero of Center and one of #, the esti-

mated probabilistic model P̂w1 ¼ f35 ; 15 ; 0; 15g. Similarly, we

have P̂w2 ¼ f15 ; 15 ; 0; 35g, P̂w3 ¼ f15 ; 0; 15 ; 35g and P̂w4 ¼ f0; 15 ; 15 ; 35g
at time point t5. However, empirical probability estimation is
usually not accurate, as a sample Sj with limited size may not
capture the underlying distribution. Moreover, it may also
lead to the “sparsity” problem that assigns “zero” to many
attribute values that are not observable in Sj, which actually
deviates the true underlying probabilistic distribution.

To overcome the above drawbacks, a commonly used
approach is smoothing that considers the fact that Sj does
not represent the “whole-world” of entities from wj. In
our work, we adopt the well-known Laplace smooth-
ing [15], i.e.,

p̂ji ¼
P

e2Sj 1½e:A ¼ ai� þ a

jSjj þ a � ðjVj þ 1Þ ; (3)

where a � 0 is a pseudocount that is used for smoothing. If
a ¼ 1, Equation (3) is also called add-one smoothing. Take w2

as an example again: given a ¼ 1, the estimated worker

model at t5 after smoothing is P̂w2 ¼ f29 ; 29 ; 19 ; 49g.

3.2 Good-Turing Estimation

Good-Turing estimation is also commonly used for estimating
probabilistic distribution [16], [17], [18]. The basic idea of
this technique is to utilize the “frequency of frequencies” in
observed set Sj, i.e., the number of distinct attribute values
having the same occurrence in Sj. As shown in Fig. 2, there
are two distinct values, e.g., N and #, that occurs 2 times.
Subsequently, we obtain the “frequency of frequencies” in
the top left corner, which can help us estimate the underly-
ing probabilistic distribution.

More formally, let fSjðaiÞ denote the frequency of attri-
bute value ai in Sj

5, i.e., the number of entities in Sj having
attribute value ai. For ease of presentation, we use fðaiÞ to
represent fSjðaiÞ if the context is clear. Let N denote the size

of Sj (N ¼ jSjj) and Nr denote the number of attribute val-
ues with frequency fðaiÞ ¼ r. Then, given the observation

fðaiÞ ¼ r, the Good-Turing method estimates probability p̂ji
as the conditional expectation of p̂ji for those attribute values
which occur r times in Sj, i.e.,

p̂ji ¼ E½pji jfðaiÞ ¼ r� ¼
X
i

pji � Prfpji jfðaiÞ ¼ rg; (4)

Fig. 2. Illustration of Good-Turing estimation.

5. For ease of presentation, we consider# as a special case of ai.

1316 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 7, JULY 2019

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

Now, we show the estimate in Equation (4) can be
derived by using aforementioned Nr as follows.

Lemma 1. Given the observation fðaiÞ ¼ r, a Good-Turing

estimate p̂ji can be derived as

p̂ji ¼
rþ 1

N þ 1
� ENþ1½Nrþ1�

EN ½Nr� ; (5)

where EN ½Nr� is the expectation of the number of distinct attri-
bute values which occur exact r times in entity set Sj of worker
wj with sizeN .

Proof. By applying the Bayesian formula, we can transform
Equation (4) as follows.

p̂ji ¼
X
i

pji � Prfpji jfðaiÞ ¼ rg

¼
X
i

pji �
PrffðaiÞ ¼ rjpjig � PrfpjigP
i0 Prffðai0 Þ ¼ rjpj

i0 g � Prfpji0 g
;

where Prfpjig is a prior of attribute values. In our work,

we assume uniform priors, i.e., Prfpjig ¼ 1=ðjVj þ 1Þ.
PrffðaiÞ ¼ rjpjig is the probability that ai occurs r

times in Sj given its underlying probability pji . Based on
our sampling model mentioned in Section 2.2, it can be

computed as PrffðaiÞ ¼ rjpjig ¼ Cr
N � ðpjiÞr � ð1� pjiÞN�r,

under the assumption of independent sampling. Thus,

the estimate p̂ji can be further derived as

p̂ji ¼
X
i

pji �
Cr

N � ðpjiÞr � ð1� pjiÞN�rP
i0 C

r
N � ðpji0 Þr � ð1� pj

i0 ÞN�r

¼ rþ 1

N þ 1
�
P

i C
rþ1
Nþ1 � ðpjiÞrþ1 � ð1� pjiÞN�rP

i0 C
r
N � ðpji0 Þr � ð1� pj

i0 ÞN�r

¼ rþ 1

N þ 1
� ENþ1½Nrþ1�

EN ½Nr� :

Hence, we prove the lemma. tu
Now, we show the Good-Turing estimation satisfies the

probabilistic distribution property, i.e.,

Theorem 1. The Good-Turing estimation in Equation (5) satis-
fies the property

P
i p̂

j
i ¼ 1.

Proof. As the number of the ai’s that occurs exactly r times
isNr, we have

X
i

p̂ji ¼
XN
r¼0

EN ½Nr� � rþ 1

N þ 1
� ENþ1½Nrþ1�

EN ½Nr�

¼
PN

r¼0 ðrþ 1Þ � ENþ1½Nrþ1�
N þ 1

:

Obviously, we have
PN

r¼0 ðrþ 1Þ � ENþ1½Nrþ1� ¼ N þ 1.
Thus, we prove the theorem. tu
The non-trivial part in Equation (5) is EN ½Nr�, which is

the expected number of the attribute values which occur
exact r times in Sj with size N . For example, given r ¼ 1,
EN ½N1� is the expected number of singletons in Sj with
jSjj ¼ N . The expectation is difficult to compute unless we

know pji , which is actually what we want to estimate. To
address this issue, we adopt an existing method [17] to com-

pute the Good-Turing estimates p̂ji as

p̂ji ¼
rþ 1

N
�Nrþ1
Nr

: (6)

Obviously, Nr could be zero in Equation (6), and thus
smoothing techniques also need to be applied. We use the
smoothing technique introduced in [17] to use
N 0r ¼ maxfNr; 1g, and thus the estimation becomes

p̂ji ¼ ððrþ 1Þ �N 0rþ1Þ=ðN 0 �N 0rÞ; (7)

where N 0r ¼ maxfNr; 1g and N 0 is a term used for normali-
zation andN 0 ¼Pr:Nr > 0 Nr � ðrþ 1Þ �N 0rþ1=N 0r.
Example 5. Fig. 2 shows an example to illustrate Good-

Turing estimation. Given the observation of S1 at time
point t7, it first generates the “frequency of frequencies” as
shown in the top left corner, i.e., fN0 ¼ 1; N2 ¼ 2; N3 ¼ 1g.
Then, it computes the estimates by using Equation (7) and
obtains f0:5; 0:1875; 0:125; 0:1875g, comparedwith the esti-
mates computed by the empirical estimation method,
f0:36; 0:27; 0:1; 0:27g.

3.3 A Hybrid Estimation Strategy

As discussed in the previous work [17], [18], Good-Turing
estimation performs well for attribute values with low fre-
quencies, i.e., small values of r, while it may produce unsat-
isfactory results for larger r. This can be explained by the
fact that Nrþ1 tends to be zero for large values of r, and thus
it becomes inappropriate to approximate the expectation
ENþ1½Nrþ1� in Equation (5).

To address the above problem, we introduce a hybrid
estimation method that combines Good-Turing and empiri-
cal estimation. The basic idea is to utilize Good-Turing for
low values of r and empirical method for high values of r.
Formally, by comparing r and Nrþ1, the hybrid method pro-

duces the estimate p̂ji as

p̂ji ¼
r=ðN 0Þ r > Nrþ1;
ððrþ 1Þ �N 0rþ1Þ=ðN 0 �N 0rÞ; 0 � r � Nrþ1:

�
(8)

where N 0 is introduced for normalization, i.e., N 0 ¼P
r�Nrþ1 Nr � ðrþ 1Þ �N 0rþ1=N 0r þ

P
r>Nrþ1 Nr � r. In practice,

we also interpolate a uniform frequency 1=ð1þ jVjÞ for
smoothing. A recent theoretical study [18] has shown that
the hybrid estimator is uniformly optimal for estimating
every distribution in terms of KL-divergence. We also dem-
onstrate its effectiveness via experiments in Section 5.

4 OPTIMAL WORKER SELECTION

This section presents an approach to optimal worker
selection for minimizing divergence from the expected
distribution in the query. We first formalize this problem
in Section 4.1, prove its hardness in Section 4.2, and
develop a best-effort algorithm for finding exact solution
in Section 4.3 as well as an approximate solution in
Section 4.4.

FAN ET AL.: DISTRIBUTION-AWARE CROWDSOURCED ENTITY COLLECTION 1317

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

4.1 Formalization of Optimal Worker Selection

Intuitively, optimal worker selection aims to “approximate” the
expected distributionCA at the best by incorporating entities
of some judiciously selected workers. We slightly abuse the
notations to also use W to denote the set of current active
workers if the context is clear. Let W 0 be a subset of W and

FW 0
A be distribution of entities to be collected byW 0. The opti-

mal worker selection problem is defined as follows.

Definition 4 (Optimal Worker Selection). Given an
expected distribution CA and current active worker set W , it
finds a set of workers W � 	W that minimizes KL divergence

fromCA, i.e.,W
� ¼ argW 0	W minDKLðCAjjFW 0

A Þ.
Computation of Distribution FW 0

A . The key in Definition 4 is

to compute distribution FW 0
A of the entities to be provided

by the workers in W 0. Based on our worker model, this dis-
tribution mainly depends on how the entities are sampled
from an aggregated probabalistic model of these workers. The
basic idea is illustrated in Fig. 3, which consists of the fol-
lowing two steps.

Step 1 - Aggregating Worker Models. We first compute an
aggregated probabalistic model PW 0 by combining the esti-

mated P̂wj of each individual worker wj in W 0. Intuitively,
each probability in PW 0 corresponds to the event of sam-
pling an entity from W 0 with attribute value ai (or #). This
process can be considered as throwing multiple dices, each
of which corresponds to a worker wj in W 0 and has jVj þ 1
faces as fa1; a2; . . . ; an;#g. After throwing, we count the
result of how many dices with faces a1, a2; . . . ;# respec-

tively. Then, we compute PW 0 by normalizing the obtained
numbers. As we already capture the “uneven contribution”

in P̂wj , we can simply use 1=jW 0j for the normalization, i.e.,

pW
0

i ¼
P

wj2W 0 p̂
j
i � 1
jW 0 j:

Step 2 - Rescaling to Entity Distribution. Notice that the
aggregated model PW 0 is not equivalent to entity distribu-

tion FW 0
A , as the former contains probability pW

0
of sampling

no entity which obviously has no effect on FW 0
A . Thus, we

need to “rescale” PW 0 to obtain FW 0
A by only considering the

cases in whichW 0 provides entities, i.e.,

fW 0
i ¼

pW
0

iPn
l¼1 p

W 0
l

¼
P

wj2W 0 p̂
j
iP

wj2W 0
Pn

l¼1 p̂
j
i

: (9)

Example 6. Consider the example shown in Fig. 3 with
three workers W 0 ¼ fw1; w3; w4g. To compute FW 0

A , we

first combine P̂w1 , P̂w3 and P̂w4 to generate an aggregated

model PW 0 , then rescale the probabilities by applying
Equation (9), and finally obtain the entity distribution

FW 0
A ¼ f 716 ; 4

16 ;
5
16g.

Transforming Optimization Objective. Next, we transform
the original optimization objective DKLðCAjjFW 0

A Þ into a
more compact objective. Based on the definition of KL
divergence in Equation (2), we have

DKLðCAjjFW 0
A Þ ¼

Xn
i¼1

ci logci �
Xn
i¼1

ci logf
W 0
i : (10)

As
Pn

i¼1 ci logci is a constant w.r.t. worker set W 0, mini-

mization of DKLðCAjjFW 0
A Þ can be transformed into maximiz-

ing
Pn

i¼1 ci logf
W 0
i . For ease of presentation, we call it

impact of W 0 and use IðW 0Þ to denote
Pn

i¼1 ci logf
W 0
i . Thus,

the problem of optimal worker selection is now transformed
to selecting a worker setW � 	W that maximizes the impact,

i.e.,W � ¼ argW 0 max IðW 0Þ ¼ argW 0 max
Pn

i¼1 ci logf
W 0
i .

Discussion. Our method can be extended to the case that
distribution FS

A of the existing collected entity set S deviates
the expected distribution CA. In this case, the objective of

optimal worker selection is not minimizing DKLðCAjjFW 0
A Þ

any more. Instead, it aims to “adjust”FS
A to approximateCA

by incorporating entities from worker set W 0 into S, which

can be formalized as W � ¼ argW 0 minDKLðCAjjFW 0
A
FS

AÞ,
where FW 0

A
FS
A is distribution of combining existing enti-

ties in S and those to be collected from W 0. In the remainder
of this section, for ease of presentation, we only consider the

case that minimizesDKLðCAjjFW 0
A ÞwithoutFS

A.

4.2 Hardness of Optimal Worker Selection

We show that the optimal worker selection problem in Defi-
nition 4 is a NP-complete problem, and thus we cannot
hope for a polynomial time algorithm.

Theorem 2. The worker selection problem is NP-Complete.

We reduce the Subset Sum problem to our problem. The
input of the Subset Sum problem is a set S of integers and a
target integer t, and the goal is to determine if there is any
subset of S that sums up to t. To construct the reduction, we
consider the Fixed Size Subset Sum (FSSS) problem, which
essentially fixes the size of the subset.

Definition 5 (Fixed Size Subset Sum). Given a set S of n
natural numbers S ¼ fs1; . . . ; sng, and a target number t, is
there a subset S0 of S such that jS0j ¼ k and

P
si2S0 si ¼ t?

It is easy to see that if we can solve the FSSS problem
in polynomial time for arbitrary k, then we can run the
algorithm for k ¼ 1; . . . ; n and solve the Subset Sum prob-
lem in polynomial time. We now show that if there is a
polynomial time algorithm for the worker selection prob-
lem, then we can solve the FSSS problem in polynomial
time for arbitrary k, thus proving the NP-completeness of
the FSSS problem.

Fig. 3. Example of worker model aggregation.

1318 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 7, JULY 2019

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

Given an instance of the FSSS problem, we construct an
instance of the worker selection problem as follows. Let
s ¼Pn

j¼1 sj. The attribute domain V consists of two values,

a1 and a2. We construct a set W of nþ 1 workers as follows.
For the first n workers, we define the estimated distribution
of worker wj to be

p̂j1 ¼
sj

2ðkþ 1Þs ; p̂
j
2 ¼ 1� sj

2ðkþ 1Þs
� �

;

for j ¼ 1; . . . ; n. Note that under this construction, the proba-
bility of sampling “no entities” fromworkerwj at each step is

p̂j# ¼ 0. We define Pn ¼
Pn

j¼1 p̂
j
1 to be the summation of the

estimated probabilities of the first entity over all workers.

Note that Pn ¼
Pn

j¼1
sj

2ðkþ1Þs ¼ 1
2ðkþ1Þ, which is a minor proba-

bility. We further construct an extra worker wnþ1 with uni-

form estimated distribution p̂nþ11 ¼ 1
2 ; p̂

nþ1
2 ¼ 1

2

� �
.

Moreover, the expected distribution is defined to be

c1 ¼
1
2þ t

2ðkþ1Þs
ðkþ 1Þ ; c2 ¼ 1�

1
2þ t

2ðkþ1Þs
ðkþ 1Þ

()
:

To get some intuitions of this construction, we observe
that the probability mass for the first entity of the first n
workers is dominated by that of the ðnþ 1Þth worker. So if

there is a subset W � such that

P
wj2W� p̂

j
1

jW�j ¼ c1, then the

ðnþ 1Þth worker must reside in W �. This will ensure that
jW �j cannot deviates from kþ 1, and thus the rest k workers
make up the optimal worker set. In particular, we have the
following Lemma that states the algorithm that solves the
worker selection problem can also solve the FSSS problem.

Lemma 2. Suppose the worker selection problem finds a subset
W � of W that maximizes the impact. Then, the original FSSS

problem has a solution if and only if

P
wj2W� p̂

j
1

jW�j ¼ c1.

Proof. Recall that the worker selection problem finds a sub-
set W 0 of W that maximizes the impact IðW 0Þ of worker
setW 0:

c1log

P
wj2W 0 p̂

j
1

jW 0j þ c2 log

P
wj2W 0 p̂

j
2

jW 0j : (11)

Since c1 þ c2 ¼ 1 and p̂j1 þ p̂j2 ¼ 1 for j ¼ 1 . . . ; nþ 1, the
impact IðW 0Þ equals to

c1 log

P
wj2W 0 p̂

j
1

jW 0j þ ð1� c1Þ log 1�
P

wj2W 0 p̂
j
1

jW 0j

 !
: (12)

Consider the function fðxÞ ¼ c1 logxþ ð1� c1Þ log
ð1� xÞ. Jensen’s inequality suggests that fðxÞ takes maxi-
mum if and only if x ¼ c1. It follows that the impact

IðW 0Þ takes maximum if and only if

P
wj2W 0 p̂

j
1

jW 0 j ¼ c1.

Now suppose there is a subsetW � 2W that satisfies

P
wj2W� p̂

j
1

jW �j ¼ c1: (13)

The first observation is that the ðnþ 1Þth worker wnþ1
must be selected to W �. For a proof, notice that if wnþ1 is

not in W �, then

P
wj2W� p̂

j
1

jW�j is bounded by the maximum p̂j1
for j ¼ 1; . . . ; n , which is in term bounded by the sum-

mation
Pn

i¼1 p̂
j
1 ¼ 1

2ðkþ1Þ. Since c1 > 1
2ðkþ1Þ, this is contra-

dicting to Equation (13).
The second observation is that W � contains exactly

ðkþ 1Þ workers. For a proof, we assume jW �j 6¼ kþ 1. If
jW �j � k, we have

P
wj2W� p̂

j
1

jW �j � p̂nþ11

k
� 1

2k
:

Notice that

c1 ¼
1
2þ t

2ðkþ1Þs
ðkþ 1Þ �

1
2þ s

2ks

ðkþ 1Þ
� 1

2ðkþ 1Þ þ
1

2kðkþ 1Þ <
1

2k
;

which is contradicting to Equation (13). On the other
hand, if jW �j � kþ 2, then

P
wj2W� p̂

j
1

jW �j �
Pn

i¼1 p̂
j
1 þ p̂nþ11

kþ 2
¼

1
2ðkþ1Þ þ 1

2

ðkþ 2Þ <
1

2ðkþ 1Þ :

Notice that

c1 ¼
1
2þ t

2ðkþ1Þs
ðkþ 1Þ >

1

2ðkþ 1Þ :

This also implies a contradiction to Equation (13).
Summarizing the two observations, we have

wnþ1 2W � and jW �j ¼ kþ 1. Combining with Equa-

tion (13), it follows that
P

wj2W� p̂
j
1 ¼ c1ðkþ 1Þ, which

implies that

X
wj2W�;j6¼nþ1

p̂j1 ¼ c1ðkþ 1Þ � p̂nþ11 ¼ t

2ðkþ 1Þs :

Plugging p̂j1 ¼ sj
2ðkþ1Þs, we haveP
wj2W�;j6¼nþ1 sj
2ðkþ 1Þs ¼ t

2ðkþ 1Þs ;

that is, X
wj2W�;j 6¼nþ1

sj ¼ t:

In other words, if we select the subset S� 2 S such that
S� ¼ fsj jwj 2W � n fwnþ1gg, then S� forms a feasible
solution of the FSSS problem.

On the other hand, if there is a subset S� 2 S such thatP
sj2S� sj ¼ t, then by picking W � ¼ fwj j sj 2 S�[

fwnþ1gg, we construct a worker subset with

P
wj2W� p̂

j
1

jW�j
¼ c1. This worker subset will maximize the impact func-
tion IðW 0Þ.

FAN ET AL.: DISTRIBUTION-AWARE CROWDSOURCED ENTITY COLLECTION 1319

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

This proves that the original FSSS problem has a solu-

tion if and only if

P
wj2W� p̂

j
1

jW�j ¼ c1. tu

4.3 A Best-Effort Algorithm for Worker Selection

This section presents a best-effort algorithm to compute
exact solution for optimal worker selection. The basic
idea is to estimate the upper bound of any worker set and
preferentially compute impact for the worker sets with
larger upper bounds, so as to prune insignificant worker
sets.

Algorithm 2 provides the pseudo-code. The algorithm
initializes a max-heap H for supporting preferential access
to worker sets, which considers that each worker set W � in
heapH has one of the following two states:

1) bounded: upper bound of impact ofW � is estimated;
2) computed: exact impact ofW � is computed.
It first inserts an empty worker set intoH, and then itera-

tively accesses elements in H. In each iteration, it pops the
top element hW �; IðW �Þ; statei from heapH.
1) If the state is bounded, it expands W � to W 0 by

including every worker w in W �W �. In particular,
for each expanded worker set W 0, it estimates bound

IðW 0Þ, which is the upper bound of any superset of

W 0. Then, it inserts W 0 with IðW 0Þ as well as state
bounded into H. After that, it computes the exact
impact for W � and inserts it back to H with state
computed ifW � is not empty (lines 6-12).

2) If the state is computed, it can safely ensure that
impact IðW �Þ of W � is larger than upper bounds of
any other worker sets. Then, the algorithm examines

whether W � can reduce the KL divergence of FS

from C by comparing IðW �Þ and Pn
i¼1 ci logf

S
i . If

the former is larger, it returns W � as the selected
worker set. Otherwise, it gives up W � and waits for
the next time point (lines 14-15).

Upper Bound Estimation. Obviously, the success of Algo-
rithm 2 relies on the performance of bound estimation.

Algorithm 2. BestEffortSelect (W; fP̂wjg;C; S)

Input:W : workers; fP̂wjg: estimated worker models;
C: expected distribution; S: collected entities

Output:W �: a selected worker set
1 Initialize a max-heapH;
2 Insert h;;�1; boundedi intoH;
3 whileH 6¼ ; do
4 hW �; IðW �Þ; statei H:popðÞ;
5 if state ¼ bounded then
6 for each w 2W �W � do
7 W 0 W � [fwg;
8 IðW 0Þ ESTIMATEUB (W 0; fP̂wjg;C);
9 Insert hW 0; IðW 0Þ; boundedi intoH;
10 ifW � 6¼ ; then
11 IðW �Þ CALCIMPACT (W �; fP̂wjg;C);
12 Insert hW �; IðW �Þ; computedi intoH;
13 else if state ¼ computed then
14 if IðW �Þ > Pn

i¼1 ci logf
S
i then returnW �;

15 else return ;;

Lemma 3. The impact of any worker setW is bounded by

IðWÞ � log

P
wj2W mjP
wj2W nj

; (14)

where mj ¼
Pn

i¼1 ci � p̂ji and nj ¼
Pn

i¼1 p̂
j
i .

Proof.According to the definition of IðWÞ and Equation (9),
we have

IðWÞ ¼
Xn
i¼1

ci log

P
wj2W p̂jiP

wj2W
Pn

l¼1 p̂
j
i

:

Then, as
P

i ci ¼ 1, we can apply the Jensen’s inequality
to the above equation, i.e.,

IðW Þ � log

P
wj2W

Pn
i¼1 ci � p̂jiP

wj2W
Pn

l¼1 p̂
j
i

� log

P
wj2W mjP
wj2W nj

:

Hence, we prove the lemma. tu
Lemma 3 allows us to estimate the upper bound of any

candidate worker set W � as follows. For each active worker

wj, we precompute its mj ¼
Pn

i¼1 ci � p̂ji and nj ¼
Pn

i¼1 p̂
j
i .

Then, we sort mj for all wj’s in descending order and use mðlÞ

to denote the one in the lth position of the sorted list. Simi-

larly, we sort all nj’s in ascending order and use nðlÞ to denote

the one in the lth position. Recall that IðW �Þ is used to
denote the upper bound of any super set of W �. Then, we

have the following estimate of IðW �Þ.

IðW �Þ ¼ max
L¼0:::ðjW j�jW�jÞ

log

P
wj2W� mj þ

PL
l¼0 m

ðlÞP
wj2W� nj þ

PL
l¼0 nðlÞ

: (15)

Lemma 4. Given active worker set W , IðW �Þ in Equation (15)
is an upper bound for any super set ofW �.

Note that we can also apply some incremental computa-
tion and pruning techniques to compute Equation (15). We
omit the details due to the space constraint.

4.4 A Local Search Algorithm for Worker Selection

Due to the hardness of the problem (see Theorem 2), to
achieve better performance than the exact algorithm, we
also develop a local search based algorithm to approximately
solve the optimal worker selection problem.

Initially, we arbitrarily select a subset W � from W . Then,
we define three operations based on local search scheme:

1) add: add a new worker p 2 ðW nW �Þ toW �;
2) remove: remove a worker fromW �, if jW �j > 1;
3) swap: swap a worker in W � with another one in

ðW nW �Þ.
We repeatedly perform one of the three operations to

improve the impact, and the search process terminates
when no new operation can produce a better result. One
technical issue is that the improvement of each operation
may be small, leading to too many operations which

1320 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 7, JULY 2019

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

prevent the algorithm from finishing in polynomial time. To
avoid this, we perform one of the three operations when the
impact is improved by a factor of 1þ ", where " is an arbi-
trary small constant.

Algorithm 3 shows the pseudo-code. It starts from an
empty worker set W � ¼ ;, and examines the improvement
on impact of each add/remove/swap operation. Specifi-
cally, if the impact I after an operation is improved by a fac-
tor of 1þ ", i.e., I > IðW �Þ=ð1þ "Þ, it performs the
operation and then examines the possibility of subsequent
operations. The algorithm terminates when none of the
three operations can improve the impact by a factor of 1þ ".
Let Imax be the maximum possible impact over all possible
subsets, and then the number of operations is bounded by
log 1þ"Imax, which is polynomial in the input size.

Algorithm 3. LOCALSEARCHSELECT (W; fP̂wjg;C; S)

Input:W : workers; fP̂wjg: estimated worker models;
C: expected distribution; S: collected entities

Output:W �: a selected worker set
1 Initialize a worker setW � ¼ ;, IðW �Þ ¼ 0;
2 while true do
3 for each w 2W �W � do
4 I CALCIMPACT (W � [fwg; fP̂wjg;C);
5 if I > IðW �Þ=ð1þ "Þ then
6 W � W � [fwg, IðW �Þ I ;
7 break;
8 if having insertion then continue;
9 for each w 2W � do
10 I CALCIMPACT (W � n fwg; fP̂wjg;C);
11 if I > IðW �Þ=ð1þ "Þ then
12 W � W � n fwg, IðW �Þ I ;
13 break;
14 if having deletion then continue;
15 for each w 2W �W � ^ w0 2W � do
16 I CALCIMPACT

(W � [fwg n fw0g; fP̂wjg;C);
17 if I > IðW �Þ=ð1þ "Þ then
18 W � W � [fwg n fw0g;
19 break;
20 if having swap then continue;
21 if IðW �Þ > Pn

i¼1 ci logf
S
i then returnW �;

22 else return ;;

5 EXPERIMENTS

This section evaluates the performance of our approach.
First, we report some observations on worker behaviors for
entity collection. Then, we evaluate the methods for estimat-
ing the probabilistic model of each worker. Finally, we com-
pare different strategies for worker selection.

5.1 Experiment Setup

Datasets. We conduct experiments on the well-known
crowdsourcing platform Amazon Mechanical Turk (AMT)
and evaluate the approaches on two real datasets collected
from the workers on AMT. 1) The movie dataset contains a
set of movie entities: each worker is asked to submit movies
she knows, together with an attribute decade indicating the
time a movie first publishes. The domain of this attribute
contains 7 distinct values, ranging from 1950s to 2010s.

2) The car dataset contains a set of car entities from the
workers, together with an attribute body style which has
15 distinct values, such as sedans, suvs, etc.

Specifically, these two datasets are collected from the
workers in the following way. We publish a set of human
intelligent tasks (HITs) on AMT, where each HIT asks a
worker to submit 10 entities together with their attribute
values (e.g., 10 cars with their body style). To ensure that all
approaches are compared on the same set of workers, we
ask workers to submit as many entities as they can. In par-
ticular, each record in a dataset consists of entity name,
attribute value, worker ID and submission time. For exam-
ple, a record in the movie dataset is { Black Swan, 2010s,
A13FVM2C914A3H, 2016-04-15 19:54:22 }. Then, based on these
records, we can run different approaches for worker selec-
tion and compare their performance. Table 3 shows statis-
tics of the datasets and answers collected from AMT.

Compared Approaches. We implement our approach and
compare with baseline approaches. Note that we compare
both worker model estimation and online worker selection.

For worker model estimation, we compare five methods:
1) Empirical applies the empirical estimator with smooth-
ing. 2) GoodTuring exploits the Good-Turing estimator.
3) JelinekMercer utilizes the Jelinek-Mercer technique
in [19]. 4) AbsoluteDisc uses the absolute discounting tech-
nique in [20]. 5) Hybrid is our hybrid approach combining
empirical and Good-Turing estimators.

For adaptive worker selection, we implement the best-
effort and the local-search algorithms proposed in Section 4,
and compare with alternative worker selection methods.
1) NoSelect does not perform worker selection, that is, it
accepts all the active workers and includes their entities.
2) RandomSelect applies a random selection strategy that
randomly picks a subset of active workers. Note that we
run RandomSelect multiple times and use the average as
its result. 3) BestEffort utilizes our best effort algorithm
that selects a subset of workers having minimum KL diver-
gence from the expected distribution in the query.
4) LocalSearch employs the local search algorithm that
approximately solves the worker selection problem.

Evaluation Metrics. We evaluate approaches on both effec-
tiveness and efficiency. Effectiveness is measured by the
actual KL divergence of the collected entities from the
expected distribution in a query, while efficiency is mea-
sured by the elapsed time of worker selection.

Experiment Settings. To evaluate performance on effec-
tiveness, we sort records in a dataset in ascending order of
the submission time and access the records one by one.
Then, given a query, we apply a worker selection approach
to run the framework in Algorithm 1. In particular, we
set the granularity of the “time point” in Algorithm 1 as
5 hours. Finally, when enough entities are collected, we
measure the KL divergence of the collected entities from
the expected distribution. On the other hand, to evaluate

TABLE 3
Statistics of Datasets

Datasets attribute A jVj # of workers # of answers

movie decade 7 74 5,000
car body style 15 91 1,975

FAN ET AL.: DISTRIBUTION-AWARE CROWDSOURCED ENTITY COLLECTION 1321

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

performance on efficiency, we implement all the programs
in JAVA and run all the experiments on a Mac machine
with an Intel Core i5 2.8 GHz processor and 8 GB memory.

5.2 Observations of Crowdsourced Entity
Collection

We first investigate worker behaviors on crowdsourced
entity collection by analyzing the collected answers on each
dataset. Table 4 shows the uneven contribution of crowd-
sourcing workers. For example, on the movie dataset, 68
percent of workers provide less than 30 entities, while a few
“streakers” provide more than 90 entities. In particular, the
most zealous worker contributes 1,250 entities, which are
much more than that of the other workers.

Next, we examine diverse bias of crowdsourcing workers,
by using all entities of a worker to compute entity distribu-
tion of the worker. We first consider each pair of workers
and compute KL divergence between distributions of their
entities.6 Fig. 4a shows the percentage of worker pairs in
various ranges of KL divergence (e.g., ½0; 1Þ, ½1; 2Þ, ...). It is
obvious to see that most of the worker pairs have large val-
ues of KL divergence, e.g., more than 80 percent of worker
pairs on the movie dataset and more than 95 percent on the
car dataset having KL divergence larger than 1. This vali-
dates our claim in Section 2 that different workers have
quite diverse biases on the entities they know.

Moreover, we also examine the deviation of each individ-
ual worker’s entity distribution from an expected distribu-
tion. On each dataset, given an expected query distribution,
we compute the KL divergence according to Equation (2)
for each worker, and then plot percentages of workers in
various ranges of KL divergence in Fig. 4b. As seen in the
figure, almost 50 percent of workers on the movie dataset
and more than 80 percent of workers on the car dataset
have KL divergence larger than 1 from the query. This
experimental result shows that it is not effective to only rely
on individual workers for entity collection. Thus, to achieve
better performance, we need to select a set of workers and
aggregate their entities, which validates the necessity of the
worker selection problem introduced in this paper.

5.3 Evaluation on Worker Model Estimation

We evaluate the approaches to estimating worker probabi-
listic model in this section. For each worker, we select some
percentage (e.g., 20 percent) of her entities as a “sample set”
that feeds an estimator to estimate P̂w. Then, we measure
the KL divergence of the estimated distribution from the

actual distribution of the worker, i.e.,DKLðPwjjP̂wÞ. Next, we
average values of KL divergence of all workers as estimation
error to measure the performance of an estimator.

We first examine the empirical estimator mentioned in
Section 3.1. In particular, we vary the smoothing parameter
a in Equation (3) as 0.01, 0.1, 1, 10 and 100, and report the
result in Fig. 5. As seen in the figure, with the increase of
smoothing parameter a, the estimation error first decreases
and then increases. This is mainly attributed to the follow-
ing reasons. The Laplace smoothing can improve the perfor-
mance of probability estimation, because it adds a
pseudocount a to empirical relative frequencies. This pseudo-
count can on the one hand estimate probabilities for the
attribute values not seen in the sample, and on the other
hand smooth relative frequencies of those frequently occur
in the sample. However, when a is too large, e.g., a ¼ 10 or
100 in Fig. 5, this pseudocount will “dominate” relative fre-
quencies, which fails to capture relative frequencies and
thus brings damages to the estimation. In our experiment,
we observe that a ¼ 0:1 performs well in most of cases.
Thus, we set a ¼ 0:1 as a default smoothing parameter for
the empirical estimator in the remainder of this section.

Next, we compare different approaches for worker
model estimation. Note that parameters of approaches (e.g.,
discounting parameter in AbsoluteDisc) are tuned using
held-out estimation [21]. The experimental result is reported
in Fig. 6. We have the following observations.

First, on the movie dataset, GoodTuring performs bet-
ter than Empirical for small sample ratios. For example,
GoodTuring can achieve about 7 percent improvement on
estimation error when sample ratio is 0.1. However, when
the sample ratio is large, e.g, 0.3 or 0.4, GoodTuring produ-
ces worse estimates. This is because GoodTuring is usually
good for estimating attribute values with low frequencies in
the sample [18]. Specifically, when sample ratio is small,
many attribute values only have low frequencies or even do
not occur in the sample. In this case, Empirical only adds
a uniform pseudocount a for smoothing, while GoodTur-

ing considers “frequency of frequencies” by applying
Equation (5) which can better capture the underlying proba-
bility distribution than a uniform pseudocount. However,
when sample ratio is large, many attribute values occur

TABLE 4
Uneven Contributions Across Workers

answers / worker ½0; 30Þ ½30; 60Þ ½60; 90Þ � 90

workers
movie 50 10 5 9
car 76 6 5 4

Fig. 4. Diverse entity distributions across workers.

Fig. 5. Effect of smoothing in empirical estimation.

6. As KL divergence is not asymmetric, we compute KL divergence
on both sides, and then use the average.

1322 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 7, JULY 2019

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

frequently in the sample. According to Equation (6), we can
see that GoodTuring may not perform well in this case,
because Nrþ1 is very likely to be zero. In addition, on the
car dataset, GoodTuring performs worse than Empiri-

cal. This is because the dataset is relatively sparse, i.e.,
only having 1,975 entities for 91 workers (the movie dataset
has 5,000 entities for 74 workers), and thus may increase the
error of estimating EN ½Nr� in GoodTuring.

Second, the Hybrid estimator combining GoodTuring

and Empirical achieves the lowest estimation error. For
example, when sample ratio is 0.1, it achieves 17 percent
improvement to Empirical and 14 percent improvement to
GoodTuring on the movie and car datasets respectively. It
also performs better than JelinekMercer and Absolute-

Disc, which are “common practical estimators” [18]. This
result validates the practice that GoodTuring is often used in
conjunction with Empirical [18]: for attribute values with
low or zero frequencies, GoodTuring can capture the under-
lying probability distribution, while for those with high fre-
quencies, Empirical can avoid the zeroNrþ1 problem.

5.4 Evaluation on Adaptive Worker Selection

This section compares different approaches to worker selec-
tion on both effectiveness and efficiency.

Evaluation on Effectiveness. On each dataset, we run the
framework in Algorithm 1 and apply different approaches
for function SELECTWORKERS. We vary the number of collec-
tion k from 100 to 500, and report the KL divergence of the
collected entities from the query.

Fig. 7 shows the experimental result. First, approach
NoSelect produces the largest KL divergence from the
query on both datasets. This validates our claim in the Intro-
duction that distribution of entities will become unpredict-
able if no effective strategy is utilized to control the
collection process. Second, the random strategy RandomSe-

lect only has limited improvement compared with NoSe-

lect, and sometimes it may not be stable, e.g., producing
worse result on the movie dataset when collecting 500 enti-
ties. This result justifies the motivation of our framework

that is aware of current entity distribution and selects work-
ers to reduce the KL divergence as much as possible. Third,
our proposed exact solution BestEffort achieves the best
performance in all the cases. For example, it achieves about
50 percent improvement on both datasets, which can signifi-
cantly reduce the KL divergence of the collected entities
from the query. The improvement is mainly attributed to
our worker selection objective that minimizes the estimated
KL divergence (or maximizes the impact) of a worker set.
Moreover, coupled with the effective worker model estima-
tor, BestEffort can finally output a proper set of entities
that best approximates the expected distribution. Fourth,
our approximate solution LocalSearch, although per-
forming worse than the the exact solution BestEffort,
also achieves good performance and outperforms the base-
lines, NoSelect and RandomSelect, with a large margin.

Evaluation on Efficiency. Next, we evaluate the efficiency
of the proposed worker selection algorithms in Section 4. To
this end,we build a simulation environmentwith two param-
eters, number of workers (i.e., m) and size of attribute value
domain V (i.e., n). Considering a specified settings of m and
n, we generate m workers by randomly assigning entity dis-
tributions of size n to them. Then, given an expected distribu-
tion, we run different worker selection algorithms and report
the time. By default, we set m ¼ 20 and n ¼ 20. We compare
three alternative algorithms: 1)Enumeration is a brute-force
algorithm that enumerates all possible sets of workers, com-
putes KL divergence for each of them, and selects the one
with the minimum divergence; 2) BestEffort is our best-
effort algorithm (Algorithm 2); 3) LocalSearch is the
approximate algorithm (Algorithm 3).

We first consider the effect of number m of workers by
varying the value of m. Fig. 8 shows the experimental
results. As seen in Fig. 8a, Enumeration is inefficient and
it cannot select workers for the number of workers larger
than 20 (we wait for 30 minutes and still cannot get the
result of Enumeration). This result is not surprising due to
the hardness of the worker selection problem as stated in
Theorem 2. Our exact solution BestEffort is efficient and
can select workers in hundreds of milliseconds. For exam-
ple, when the number of workers is 60, it can produce the
result within about 500 milliseconds. This is mainly due to
our best effort framework and upper-bound estimation
techniques, which can preferentially compute exact impact
for the worker sets with larger upper bounds, so as to prune
the insignificant worker sets. Our approximate solution
LocalSearch achieves the best efficiency, and it can select
workers within 10 ms, which is faster than BestEffort by
one order of magnitude. Moreover, as seen in Fig. 8b,
LocalSearch also has good approximate performance.

Fig. 7. Effectiveness of worker selection methods.

Fig. 8. Evaluation of worker selection methods in simulation.Fig. 6. Evaluation on worker model estimation.

FAN ET AL.: DISTRIBUTION-AWARE CROWDSOURCED ENTITY COLLECTION 1323

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

This result shows that LocalSearch is also good enough
to be used for worker selection, if we have real-time require-
ments on worker selection.

We also evaluate the efficiency against the size of attri-
bute value domain V (i.e., n), and find that n only slightly
affects the efficiency. This is because n only affects the func-
tions of computing impact or KL divergence, which is not
the bottleneck of the computation. Due to the space con-
straint, we omit this result in this paper.

Summarization. Finally, we summarize the main conclu-
sions of our experiments as follows. 1) Our experimental
result supports our claim about worker behaviors on
crowdsourced entity collection, i.e., the two properties,
diverse bias and uneven contribution. 2) Our hybrid estimation
method that combines Empirical and GoodTuring

achieves the best performance on estimating worker mod-
els. 3) Our exact best-effort algorithm BestEffort can sig-
nificantly reduce the KL divergence of the collected entities
from the expected distribution in query and is much more
efficient on time than the brute-force algorithm. 4) Our
approximate algorithm LocalSearch selects workers
within 10 ms and thus can fulfill real-time worker selection
requirements. Also, it has good approximation performance
and overall effectiveness in our experiments.

6 RELATED WORK

The studies most related to our work are the recently pro-
posed crowdsourced entity collection [7], [8], [9], [10]. Park
and Widom developed a general framework CrowdFill that
shows a partially filled table and asks the crowd to contribute
new entities, fill empty cells, and up-vote/down-vote exist-
ing entities [10]. However, CrowdFill neither pays attention
to estimating worker behaviors on entity collection, nor con-
siders statistical properties of the collected entities. Trush-
kowsky et al. introduced the first work to study worker
behaviors on collecting entities [7] and utilized statistical
approaches for reasoning completeness of the collected data.
Chung et al. extended the estimation techniques to support
aggregate queries, such as SUM, AVG, MAX/MIN, etc., by
analyzing both coverage of the collected entities and the corre-
lation between attributes and entities [8]. Rekatsinas et al.
extended the underlying data model to a structured domain
with hierarchical structure (e.g., restaurant with location and
cuisine), and aimed to maximize collection coverage under a
monetary budget. The key difference of our work from these
previous studies is three-fold. First, the problem settings are
different: we focus on the underlying distribution of the col-
lected entities, which is often indispensable in data collection
but ignored by previous studies. Second, the estimation tasks
are different: the existing approaches focused on estimating
overall statistics of the entire entity set collected from the
crowd, such as the coverage and aggregate results. In contrast,
we aim at estimating the underlying probability distribution
of each individual worker. The previous estimation techniques
cannot be adapted to solve our more fine-grained problem.
Third, the optimization problems are different: as far as we
know, we are the first to study the problem of selecting work-
ers tominimize the difference from expected distributions.

Recently, many studies in the database community have
aimed to leverage crowdsourcing to build database systems,
such as CrowdDB [22], Qurk [23], Deco [24] and CDAS [2],

[25], and have developed various operators, such as filter [1],
[2], join [3], [4], [26], sort/top-k [5], [6], graph search [27], [28],
and counting [29]. To achieve effective crowdsourcing perfor-
mance, existing studies investigated quality control strategies
in crowdsourcing. Most of the strategies applied a redun-
dancy-based approachwhich assigns a crowdsourcing task to
multiple workers and aggregates worker answers by using
weightedmajority voting. Some approaches [1], [2] leveraged
a small amount of crowdsourcing tasks with ground truth to
estimate workers reliability as aggregation weight, while
other approaches [30], [31] simultaneously estimated worker
weights and predicted aggregated results using an Expecta-
tion-Maximization (EM) strategy. However, most of crowd-
sourcing-powered operators as well as quality control
techniques only consider crowdsourced data evaluation,
which asks the crowd to evaluate the existing data according
to some criteria, such as filtering useless data, and joining
data from various sources. In contrast, this paper focuses on
studying crowdsourced entity collection which asks the
crowd to collect data instead of evaluating existing data. The
key difference and themain challenge of crowdsourced entity
collection is the “openworld” nature of crowdsourcingwhich
may returns unbounded amount of answers. To address this
challenge, we have devised novel estimation and quality con-
trol techniques for adaptiveworker selection.

Crowdsourcing has many successful applications in dif-
ferent areas. Solyent [32] is a word processor that employs
the Find-Fix-Verify interaction method. gMission is a gen-
eral platform for supporting spatial crowdsourcing [33]
Adrenaline [34] is a crowd-powered camera that supports
real-time crowdsourcing by using an interaction method
called rapid refinement. Our work also has large potentials
to be utilized in the so-called data curation applications [35],
such as knowledge base completion [36], domain-aware
entity (e.g., points-of-interest in twitter) collection.

Probability estimation discussed in Section 3 is exten-
sively studied in the area of statistical learning. Good-
Turing is a well-known approach to this end [16], [17], [18].
Gale et al. [16] discussed the derivation of Good-Turing esti-
mates and applied this method to the smoothing problem in
natural language processing. The studies [17], [18] theoreti-
cally proved the effectiveness of Good-Turing and sug-
gested to combine Good-Turing and empirical estimates. In
this paper, we utilize the Good-Turing method to a new
problem, i.e., estimating entity distribution of workers, and
conduct extensive experiments to compare it with other esti-
mation techniques. Recently, some recommendation stud-
ies [37], [38], [39] also considered to model and estimate
user behaviors (e.g., reputation). Compared with these stud-
ies, our work focuses to estimate worker behaviors on entity
collection, which are not well studied in the existing works.

7 CONCLUSION

In this paper, we studied the problem of distribution-aware
crowdsourced entity collection that controls the crowd-
sourcing process to collect entities following an expected
distribution from the crowd. We introduced an adaptive
worker selection framework to estimate worker’s distribu-
tion based on her historical entity set and select a subset of
workers that minimizes the KL divergence from the
expected distribution. We devised effective statistical

1324 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 7, JULY 2019

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

estimation approaches to estimating worker’s distribution
with low estimation error. We proved that the problem of
worker selection is NP-complete and developed a best-
effort algorithm to find exact solution and an approximate
local search algorithm for instant worker selection. We
deployed the proposed approach on AMT and the experi-
mental results on two real datasets show that the approach
achieves superiority on both effectiveness and efficiency.

ACKNOWLEDGEMENTS

This work was partly supported by the National Natural
Science Foundation of China (NSFC) under Grant No.
61602488, No. 61632016, No. 61502503, and No. 61602087,
the 973 Program of China (Project No. 2012CB316205), the
Start-up Research Grant of Renmin University of China
(Project No. 16XNLF02), and CCF-Tencent (Project No.
CCF-Tencent RAGR20160108).

REFERENCES

[1] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A.
Ramesh, and J. Widom, “CrowdScreen: Algorithms for filtering
data with humans,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2012, pp. 361–372. [Online]. Available: http://doi.acm.org/
10.1145/2213836.2213878

[2] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang, “CDAS: A
crowdsourcing data analytics system,” Proc. VLDB Endowment,
vol. 5, no. 10, pp. 1040–1051, 2012. [Online]. Available: http://
vldb.org/pvldb/vol5/p1040_xuanliu_vldb2012.pdf

[3] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller,
“Human-powered sorts and joins,” Proc. VLDB Endowment, vol. 5,
no. 1, pp. 13–24, 2011. [Online]. Available: http://www.vldb.org/
pvldb/vol5/p013_adammarcus_vldb2012.pdf

[4] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “Crowder: Crowd-
sourcing entity resolution,” Proc. VLDB Endowment, vol. 5, no. 11,
pp. 1483–1494, 2012. [Online]. Available: http://vldb.org/pvldb/
vol5/p1483_jiannanwang_vldb2012.pdf

[5] S. Guo, A. G. Parameswaran, and H. Garcia-Molina, “So who
won?: dynamic max discovery with the crowd,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2012, pp. 385–396. [Online].
Available: http://doi.acm.org/10.1145/2213836.2213880

[6] S. B. Davidson, S. Khanna, T. Milo, and S. Roy, “Using the crowd
for top-k and group-by queries,” in Proc. 16th Int. Conf. Database
Theory, 2013, pp. 225–236. [Online]. Available: http://doi.acm.
org/10.1145/2448496.2448524

[7] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar,
“Crowdsourced enumeration queries,” in Proc. IEEE Int. Conf.
Data Eng., 2013, pp. 673–684. [Online]. Available: http://dx.doi.
org/10.1109/ICDE.2013.6544865

[8] Y. Chung, M. L. Mortensen, C. Binnig, and T. Kraska,
“Estimating the impact of unknown unknowns on aggregate
query results,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2016, pp. 861–876. [Online]. Available: http://doi.acm.org/
10.1145/2882903.2882909

[9] T. Rekatsinas, A. Deshpande, and A. G. Parameswaran,
“Crowdgather: Entity extraction over structured domains,” CoRR,
vol. abs/1502.06823, 2015. [Online]. Available: http://arxiv.org/
abs/1502.06823

[10] H. Park and J. Widom, “Crowdfill: Collecting structured data
from the crowd,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2014, pp. 577–588. [Online]. Available: http://doi.acm.org/
10.1145/2588555.2610503

[11] S. Kajimura, Y. Baba, H. Kajino, and H. Kashima, “Quality control
for crowdsourced POI collection,” in Proc. 19th Pacific-Asia Conf.
PAKDD, 2015, pp. 255–267. [Online]. Available: http://dx.doi.
org/10.1007/978–3-319-18032-8_20

[12] S. Kullback and R. A. Leibler, “On information and sufficiency,”
Ann. Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

[13] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Trans. Knowl. Data Eng., vol. 19,
no. 1, pp. 1–16, Jan. 2007. [Online]. Available: http://dx.doi.org/
10.1109/TKDE.2007.250581

[14] J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng, “iCrowd: An adaptive
crowdsourcing framework,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2015, pp. 1015–1030. [Online]. Available: http://
doi.acm.org/10.1145/2723372.2750550

[15] C. D. Manning, P. Raghavan, and H. Sch€utze, Introduction to Infor-
mation Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[16] W. A. Gale and G. Sampson, “Good-turing frequency estimation
without tears,” J. Quantitative Linguistics, vol. 2, no. 3, pp. 217–
237, 1995. [Online]. Available: http://dx.doi.org/10.1080/
09296179508590051

[17] A. Orlitsky, N. P. Santhanam, and J. Zhang, “Always good turing:
Asymptotically optimal probability estimation,” in Proc. 44th
Annu. IEEE Symp. Found. Comput. Sci., 2003, pp. 179–188. [Online].
Available: http://dx.doi.org/10.1109/SFCS.2003.1238192

[18] A. Orlitsky and A. T. Suresh, “Competitive distribution estima-
tion: Why is good-turing good,” in Proc. Advances Neural Inf. Proc.
Syst., 2015, pp. 2143–2151. [Online]. Available: http://papers.
nips.cc/paper/5762-competitive-distribution-estimation-wh%y-
is-good-turing-good

[19] F. Jelinek and R. L. Mercer, “Probability distribution estimation
from sparse data,” IBM Technical Disclosure Bulletin, IBM, New
York, NY, USA, Tech. Rep. IPCOM000065267D, 1985.

[20] H. Ney, U. Essen, and R. Kneser, “On structuring probabilistic
dependences in stochastic language modelling,” Comput. Speech
Language, vol. 8, no. 1, pp. 1–38, 1994. [Online]. Available: http://
dx.doi.org/10.1006/csla.1994.1001

[21] S. F. Chen and J. Goodman, “An empirical study of smoothing
techniques for language modeling,” Comput. Speech Language,
vol. 13, no. 4, pp. 359–393, 1999. [Online]. Available: http://dx.
doi.org/10.1006/csla.1999.0128

[22] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,
“CrowdDB: Answering queries with crowdsourcing,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2011, pp. 61–72. [Online].
Available: http://doi.acm.org/10.1145/1989323.1989331

[23] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller,
“Demonstration of qurk: A query processor for humanoperators,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011, pp. 1315–1318.
[Online]. Available: http://doi.acm.org/10.1145/1989323.1989486

[24] H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina, N. Poly-
zotis, and J. Widom, “Deco: A system for declarative
crowdsourcing,” Proc. VLDB Endowment, vol. 5, no. 12, pp. 1990–
1993, 2012. [Online]. Available: http://vldb.org/pvldb/vol5/
p1990_hyunjungpark_vldb2012.pdf

[25] J. Fan, M. Zhang, S. Kok, M. Lu, and B. C. Ooi, “CrowdOp: Query
optimization for declarative crowdsourcing systems,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 8, pp. 2078–2092, Aug. 2015. [Online].
Available: http://dx.doi.org/10.1109/TKDE.2015.2407353

[26] J. Fan, M. Lu, B. C. Ooi, W. Tan, and M. Zhang, “A hybrid
machine-crowdsourcing system for matching web tables,” in Proc.
IEEE 30th Int. Conf. Data Eng., 2014, pp. 976–987. [Online]. Avail-
able: http://dx.doi.org/10.1109/ICDE.2014.6816716

[27] A. G. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzotis,
and J. Widom, “Human-assisted graph search: It’s okay to ask
questions,” Proc. VLDB Endowment, vol. 4, no. 5, pp. 267–278,
2011. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1952377&CFID=12591584&CFTOKEN=151%73685

[28] X. Huang, H. Cheng, R. Li, L. Qin, and J. X. Yu, “Top-k structural
diversity search in large networks,” VLDB J., vol. 24, no. 3,
pp. 319–343, 2015. [Online]. Available: http://dx.doi.org/
10.1007/s00778–015-0379-0

[29] A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh,
“Counting with the crowd,” Proc. VLDB Endowment, vol. 6, no. 2,
pp. 109–120, 2012. [Online]. Available: http://www.vldb.org/
pvldb/vol6/p109-marcus.pdf

[30] V. S. Sheng, F. J. Provost, and P. G. Ipeirotis, “Get another label?
improving data quality and data mining using multiple, noisy
labelers,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2008, pp. 614–622. [Online]. Available: http://doi.
acm.org/10.1145/1401890.1401965

[31] D. R. Karger, S. Oh, and D. Shah, “Iterative learning for reliable
crowdsourcing systems,” in Proc. Advances Neural Inf. Proc. Syst.,
2011, pp. 1953–1961. [Online]. Available: http://papers.nips.cc/
paper/4396-iterative-learning-for-reliable-crowds%ourcing-
systems

[32] M. S. Bernstein, et al., “Soylent: A word processor with a crowd
inside,” in Proc. 23nd Annu. ACM Symp. User Interface Softw. Tech-
nol., 2010, pp. 313–322. [Online]. Available: http://doi.acm.org/
10.1145/1866029.1866078

FAN ET AL.: DISTRIBUTION-AWARE CROWDSOURCED ENTITY COLLECTION 1325

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/2213836.2213878
http://doi.acm.org/10.1145/2213836.2213878
http://vldb.org/pvldb/vol5/p1040_xuanliu_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1040_xuanliu_vldb2012.pdf
http://www.vldb.org/pvldb/vol5/p013_adammarcus_vldb2012.pdf
http://www.vldb.org/pvldb/vol5/p013_adammarcus_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1483_jiannanwang_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1483_jiannanwang_vldb2012.pdf
http://doi.acm.org/10.1145/2213836.2213880
http://doi.acm.org/10.1145/2448496.2448524
http://doi.acm.org/10.1145/2448496.2448524
http://dx.doi.org/10.1109/ICDE.2013.6544865
http://dx.doi.org/10.1109/ICDE.2013.6544865
http://doi.acm.org/10.1145/2882903.2882909
http://doi.acm.org/10.1145/2882903.2882909
http://arxiv.org/abs/1502.06823
http://arxiv.org/abs/1502.06823
http://doi.acm.org/10.1145/2588555.2610503
http://doi.acm.org/10.1145/2588555.2610503
http://dx.doi.org/10.1007/978--3-319-18032-8_20
http://dx.doi.org/10.1007/978--3-319-18032-8_20
http://dx.doi.org/10.1109/TKDE.2007.250581
http://dx.doi.org/10.1109/TKDE.2007.250581
http://doi.acm.org/10.1145/2723372.2750550
http://doi.acm.org/10.1145/2723372.2750550
http://dx.doi.org/10.1080/09296179508590051
http://dx.doi.org/10.1080/09296179508590051
http://dx.doi.org/10.1109/SFCS.2003.1238192
http://papers.nips.cc/paper/5762-competitive-distribution-estimation-wh%y-is-good-turing-good
http://papers.nips.cc/paper/5762-competitive-distribution-estimation-wh%y-is-good-turing-good
http://papers.nips.cc/paper/5762-competitive-distribution-estimation-wh%y-is-good-turing-good
http://papers.nips.cc/paper/5762-competitive-distribution-estimation-wh%y-is-good-turing-good
http://dx.doi.org/10.1006/csla.1994.1001
http://dx.doi.org/10.1006/csla.1994.1001
http://dx.doi.org/10.1006/csla.1999.0128
http://dx.doi.org/10.1006/csla.1999.0128
http://doi.acm.org/10.1145/1989323.1989331
http://doi.acm.org/10.1145/1989323.1989486
http://vldb.org/pvldb/vol5/p1990_hyunjungpark_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1990_hyunjungpark_vldb2012.pdf
http://dx.doi.org/10.1109/TKDE.2015.2407353
http://dx.doi.org/10.1109/ICDE.2014.6816716
http://portal.acm.org/citation.cfm?id=1952377&CFID=12591584&CFTOKEN=151%73685
http://portal.acm.org/citation.cfm?id=1952377&CFID=12591584&CFTOKEN=151%73685
http://portal.acm.org/citation.cfm?id=1952377&CFID=12591584&CFTOKEN=151%73685
http://dx.doi.org/10.1007/s00778--015-0379-0
http://dx.doi.org/10.1007/s00778--015-0379-0
http://www.vldb.org/pvldb/vol6/p109-marcus.pdf
http://www.vldb.org/pvldb/vol6/p109-marcus.pdf
http://doi.acm.org/10.1145/1401890.1401965
http://doi.acm.org/10.1145/1401890.1401965
http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowds%ourcing-systems
http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowds%ourcing-systems
http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowds%ourcing-systems
http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowds%ourcing-systems
http://doi.acm.org/10.1145/1866029.1866078
http://doi.acm.org/10.1145/1866029.1866078

[33] Z. Chen, et al., “gmission: A general spatial crowdsourcing
platform,” Proc. VLDB Endowment, vol. 7, no. 13, pp. 1629–1632,
2014. [Online]. Available: http://www.vldb.org/pvldb/vol7/
p1629-chen.pdf

[34] M. S. Bernstein, J. Brandt, R. C. Miller, and D. R. Karger, “Crowds
in two seconds: enabling realtime crowd-powered interfaces,” in
Proc. 24nd Annu. ACM Symp. User Interface Softw. Technol., 2011,
pp. 33–42. [Online]. Available: http://doi.acm.org/10.1145/
2047196.2047201

[35] R. J. Miller, “Big data curation,” in Proc. Int. Conf. Manage. Data,
2014, Art. no. 4. [Online]. Available: http://comad.in/
comad2014/Proceedings/Keynote2.pdf

[36] S. K. Kondreddi, P. Triantafillou, and G. Weikum, “Combining
information extraction and human computing for crowdsourced
knowledge acquisition,” in Proc. IEEE 30th Int. Conf. Data Eng.,
2014, pp. 988–999. [Online]. Available: http://dx.doi.org/
10.1109/ICDE.2014.6816717

[37] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and
possible extensions,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 6,
pp. 734–749, Jun. 2005. [Online]. Available: http://dx.doi.org/
10.1109/TKDE.2005.99

[38] B. Li, R. Li, I. King, M. R. Lyu, and J. X. Yu, “A topic-biased user
reputation model in rating systems,” Knowl. Inf. Syst., vol. 44,
no. 3, pp. 581–607, 2015. [Online]. Available: http://dx.doi.org/
10.1007/s10115–014-0780-9

[39] W. Pan, S. Xia, Z. Liu, X. Peng, and Z. Ming, “Mixed factorization
for collaborative recommendation with heterogeneous explicit
feedbacks,” Inf. Sci., vol. 332, pp. 84–93, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.ins.2015.10.044

Ju Fan received the BEng degree in computer
science from the Beijing University of Technol-
ogy, China, in 2007, and the PhD degree in com-
puter science from Tsinghua University, China, in
2012. He worked as a research fellow in the
School of Computing, National University of Sin-
gapore, from 2012 to 2015. He is currently an
associate professor with the Renmin University
of China. His research interests include crowd-
sourcing data management, big data analytics,
and database usability.

Zhewei Wei received the BSc degree in mathe-
matics from Peking University, China, in 2007,
and the PhD degree in computer science and
engineering from The Hong Kong University of
Science and Technology, Hong Kong, in 2012.
He worked as a postdoc in the Centre for Massive
Data Algorithmics, Aarhus University, Denmark,
from 2012 to 2014. He is currently an associate
professor with the Renmin University of China.
His research interests include massive data algo-
rithms and database management.

Dongxiang Zhang received the BSc degree
from Fudan University, China, in 2006, and the
PhD degree from the National University of Sin-
gapore, in 2012. He is a professor in the School
of Computer Science and Engineering, University
of Electronic Science and Technology of China.
He worked as a research fellow with the NeXT
center, Singapore, from 2012 to 2014 and was
promoted as a senior research fellow, in 2015.
His research interests include spatial databases,
cloud computing, and big data analytics.

Jingru Yang received the BS degree from Bei-
jing Forestry University, Beijing, China, in 2016.
She is currently working toward the PhD degree
in the School of Information and the Key Lab of
Data Engineering and Knowledge Engineering,
Renmin University of China. Her current research
interests include crowdsourced data collection
and data visualization.

Xiaoyong Du received the BS degree from
Hangzhou University, China, in 1983, the ME
degree from the Renmin University of China, in
1988, and the PhD degree from the Nagoya Insti-
tute of Technology, Japan, in 1997. He is cur-
rently a professor in the School of Information,
Renmin University of China. He has authored or
coauthored more than 100 papers. His current
research interests include databases and intelli-
gent information retrieval.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1326 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 7, JULY 2019

Authorized licensed use limited to: Renmin University. Downloaded on June 01,2021 at 07:06:56 UTC from IEEE Xplore. Restrictions apply.

http://www.vldb.org/pvldb/vol7/p1629-chen.pdf
http://www.vldb.org/pvldb/vol7/p1629-chen.pdf
http://doi.acm.org/10.1145/2047196.2047201
http://doi.acm.org/10.1145/2047196.2047201
http://comad.in/comad2014/Proceedings/Keynote2.pdf
http://comad.in/comad2014/Proceedings/Keynote2.pdf
http://dx.doi.org/10.1109/ICDE.2014.6816717
http://dx.doi.org/10.1109/ICDE.2014.6816717
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1007/s10115--014-0780-9
http://dx.doi.org/10.1007/s10115--014-0780-9
http://dx.doi.org/10.1016/j.ins.2015.10.044

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

