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Many real applications in real-time news stream advertising call for efficient processing of long queries
against short text. In such applications, dynamic news feeds are regarded as queries to match against an
advertisement (ad) database for retrieving the k most relevant ads. The existing approaches to keyword
retrieval cannot work well in this search scenario when queries are triggered at a very high frequency.
To address the problem, we introduce new techniques to significantly improve search performance. First,
we devise a two-level partitioning for tight upper bound estimation and a lazy evaluation scheme to delay
full evaluation of unpromising candidates, which can bring three to four times performance boosting in a
database with 7 million ads. Second, we propose a novel rank-aware block-oriented inverted index to further
improve performance. In this index scheme, each entry in an inverted list is assigned a rank according to
its importance in the ad. Then, we introduce a block-at-a-time search strategy based on the index scheme to
support a much tighter upper bound estimation and a very early termination. We have conducted experiments
with real datasets, and the results show that the rank-aware method can further improve performance by
an order of magnitude.
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1. INTRODUCTION

Keyword retrieval against a huge document corpus has been intensively studied in the
past decades and has witnessed great success in commercial search engines. Most of
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the research efforts focused on devising effective ranking strategies and efficient query
processing algorithms for Web document retrieval. As Twitter became a prevalent social
media platform, keyword query against a huge database of short text also emerged as
an interesting research topic. Another variant of information retrieval was proposed
to use the whole document as a query, which is known as query by document (QBD)
and has useful applications in news and blog recommendation. In the following, we
summarize the aforementioned research efforts into three categories according to the
characteristics of query and document:

—Short query against long text, which refers to traditional keyword query against
a huge Web document corpus and has been widely applied in commercial search
engines. A fruitful number of ranking models, indexes, and search algorithms have
been proposed in this classic information retrieval problem.

—Short query against short text, which emerged due to the prominence of social media
platforms like Twitter. The number of tweets sent per day has reached 500 million,1
and it requires new indexing and searching mechanisms to support real-time data
stream search with high volume and velocity. Related literature includes Busch et al.
[2012] and Asadi and Lin [2013].

—Long query against long text, or QBD [Yang et al. 2009]. This uses the whole document
as a query to find similar articles for recommendation and has served as a standard
way of doing “more like this” search.

For ease of presentation, we denote the aforementioned first two categories as query
by keyword (QBK) and the last category as QBD. In this article, we study efficient
processing of the remaining setup (long query against short text), which finds useful
applications in real-time news stream advertising. Two prominent examples of this
setup include the following:

—Social advertising: In social network platforms, advertisements (or “ad” for brevity)
are embedded in the news feed and disseminated to users. To enhance the ad delivery
effect, we can actually consider the news feed as a dynamic query that provides
additional clues for better recommendation [Li et al. 2016]. For example, when a
friend posts on Facebook some dining photos in a restaurant, relevant coupons can
be promoted; when a friend updates a new status in the hospital, displaying gift
delivery ads is a considerate action. Such motivation was also supported by a recent
work from Twitter [Li et al. 2015b], in which the contents in the tweet stream were
taken into account to enhance the click-through prediction rate of advertising.

—News reader advertising: News reader apps such as Flipboard2 and Feedly3 pro-
vide topic-aware news aggregation and subscription services. Embedding ads in the
stream of recommended articles is also an important revenue source for the compa-
nies. Since news is normally categorized by topics and subscribed to by users with
matching interests, it is meaningful to take into account topical similarity as one
important factor for ad recommendation.

In these applications, when a user triggers a pull request for a news update, a window
of the latest unread messages or articles will be returned. The textual information in
the window can be viewed as an aggregated “virtual document” and used as a query
for ad recommendation. In other words, we can use the virtual document as a query to
quickly search a group of relevant ads by a popular semantic similarity measure. These
ads may be further reranked by a more complex scoring function such as that proposed

1https://about.twitter.com/company.
2https://flipboard.com/.
3https://feedly.com.
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in Lv et al. [2011] and Lv and Fuxman [2015]. In this article, our focus is the first stage
of efficient document-as-a-query processing to retrieve top-k semantically relevant ads
in real time. In particular, we project the contents of the virtual documents and all of
the ads into the same latent topic space. Consequently, given a query topical vector
derived from the virtual document, the objective is to instantly find k most similar
vectors from the ad database.

Despite the interestingness and usefulness, the problem is challenging because
the frequency of pull requests could be extremely high. For instance, Facebook has
1.01 billion daily active users on average,4 and each time an active user logs in, an
ad matching operation may be triggered. Thus, a highly efficient top-k ad matching
solution is in urgent demand. To solve the problem, we first examine whether existing
methods proposed for top-k keyword query can be applied and then propose our ap-
proach. We build a simulated publish/subscribe environment similar to that of Zhang
et al. [2014a] with various real datasets. In particular, we use the Twitter and News
datasets to generate news feeds for the subscribers in the social network and news
reader apps. The performance of existing methods for top-k keyword query, however, is
not promising enough, as the query is long and involves up to dozens of inverted lists.
Thus, the process of partial score aggregation becomes more expensive.

To bridge the performance gap, we exploit four distinctive properties of the new
search paradigm to help design new indexing and searching algorithms:

—P1: The queries are derived from a window of messages in a news stream and
projected into a latent topical space with hundreds of dimensions.

—P2: The ads are considered as short text and relevant to very few topics in the latent
topical space.

—P3: The number of ads is at most million scale, which means that all data can fit
in memory. For instance, until March 2016, there were 3 million businesses actively
advertised on Facebook.5

—P4: In comparison to the frequency of crafting a new Web document or posting a
new tweet, launching a new social advertising campaign requires more prudence [Li
et al. 2015]. This means that the update frequency of the ad index could be orders of
magnitude smaller than that in conventional keyword search environments.

In this article, we adopt the classic TA algorithm [Fagin et al. 2003] and propose a
two-level partitioning strategy for inverted index organization such that ads with an
identical number of relevant topics are stored in the same block. This can significantly
improve the upper bound estimation without aggregating the maximum scores from all
of the inverted lists. Moreover, we propose a lazy evaluation scheme to delay calculating
the full scores of unpromising ads by registering them in a buffer. The promising
candidates will be evaluated earlier to achieve a higher threshold to facilitate pruning.
Then we can skip most of the candidates in the buffer without paying an evaluation
cost. These two optimizations eventually bring three to four times performance boosting
in an ad database with 7 million items but still require more than 100ms to process a
query.

To support more efficient top-k ad retrieval, we propose a novel rank-aware block-
oriented inverted index. Each entry in an inverted list is assigned a rank based on
its importance in its associated ad. Elements with the same rank are organized in a
block and sorted in descending order of their weights. Such rank-aware organization
allows us to devise an even tighter upper bound estimation. We also propose a block-
at-a-time search strategy that evaluates the blocks from high rank to low rank, and

4http://newsroom.fb.com/company-info/.
5https://www.facebook.com/business/news/3-million-advertisers.
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Fig. 1. Framework of context-aware ad matching.

ties are broken by the associated query weight. Experimental results show that the
rank-aware methodology works extremely well and further improves performance by
an order of magnitude.

The contributions of this article include the following:

(1) We study a new search paradigm that issues long queries against a short text
corpus, which finds useful applications in context-aware advertising.

(2) We exploit the distinctive properties in the new search problem, which motivate us
to adopt TA-based methods and propose a two-level partitioning and lazy evaluation
scheme to support fast ad matching.

(3) To further improve the efficiency, we propose a novel rank-aware block-oriented
inverted index, which allows us to devise a much tighter upper bound estimation
and provides a very early termination in a block-at-a-time search strategy.

(4) We build a simulated experimental environment with real datasets and conduct ex-
tensive evaluations. Experimental results show that the rank-aware block-oriented
method achieves dominating performance among all evaluation scenarios.

The remainder of the article is organized as follows. In Section 2, we state the problem
definition. We review the related literature in Section 3. We propose our optimizations
on TA-based methods in Section 4. Our novel rank-aware indexing and block-at-a-time
searching strategies are proposed in Section 5. Extensive experiments are conducted
and evaluated in Section 6. Finally, Section 7 concludes the article.

2. PROBLEM STATEMENT

In this article, we investigate the problem of long query processing against a short text
corpus to support context-aware ad promotion. Figure 1 illustrates the framework of

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 28, Publication date: May 2017.
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top-k context-aware ad matching. News reader apps or social network platforms are
service providers. When a registered user logs in or refreshes his or her news feed, a
pull request is sent and the latest unread articles in the news app or friends’ activities
in the social network are returned. To unify the presentation, we use a sliding window
to store a fixed number of most recent unread posts to be disseminated to the query
user. By default, we set this number to 20, the same as Twitter’s API setting.6

When a pull request is triggered, the textual contents in the window serve as a
dynamic context for ad recommendation. To measure the relevance between a window
of posts and an ad to recommend, we adopt latent Dirichlet allocation (LDA) [Blei
et al. 2003] to project both of them into the same latent topical space and use cosine
similarity to measure the distance between two topic vectors. A very important reason
for choosing topic modeling is that an ad query may contain thousands or even more
numbers of terms. For example, a news article may contain hundreds or even thou-
sands of distinct terms, and a window query consists of 20 news articles. It is quite
straightforward to predict that the performance of a tf-idf–based vector model can-
not work efficiently in this retrieval framework due to the excessive number of query
terms. In this scenario, we can use a topic model to map the keywords into latent topics
to limit the number of query terms (or relevant latent topics). However, applying the
LDA model for information retrieval has been experimentally studied in Wei and Croft
[2006] and Yi and Allan [2009], and the results in both works verified the effectiveness
of topic models. Last but not least, LDA is also widely used to capture users’ topics
of interest for recommendation [Michelson and Macskassy 2010; Ramage et al. 2010].
Therefore, we follow Weng et al. [2011] to define the distance measure between a query
q (a topic model derived from a window of posts) and an ad a (a topic model derived
from the associated text) as

φ(q, a) =
∑

t∈T Wq(t) · Wa(t)
‖Wq‖ · ‖Wa‖ =

∑
t∈T

(
Wq(t)
‖Wq‖

)(
Wa(t)
‖Wa‖

)
, (1)

where T is the topic space, and Wq and Wa are topic vectors for q and a, respectively.
In the equation, term Wq(t)

‖Wq‖ is the query term weight and is determined only when q

arrives. Wa(t)
‖Wa‖ can be viewed as term weight for topic t and stored in the index in an

offline manner. Then the context-aware ad recommendation finds a result set of k ads
with the highest φ(q, a).

It is also worth noting that our adoption of the latent topic model with cosine sim-
ilarity was driven by the conclusions of the experimental work in Pennacchiotti and
Gurumurthy [2011]. To facilitate the automatic discovery of user interests, it compares
(1) LDA to raw tf-idf vectors of user profiles and (2) the cosine similarity with KL
divergence. Results show that topic models provide good representations of user-level
interests, and surprisingly the cosine similarity gains 11% improvement over KL diver-
gence, suggesting that cosine similarity is a better measure for comparing topic vectors.
In addition, the computation cost for online LDA has been improved significantly in
recent years. For instance, according to results reported in Liu et al. [2015], PBEM and
PIEM can process 820,000,000 documents in the PubMed dataset using no more than
16 minutes on a single PC. It prevents the component of online LDA from becoming
the performance bottleneck for instant ad recommendation.

Let us now examine the framework in Figure 1 again. Various service providers,
such as Flipboard and Facebook, allow users to subscribe to the latest update from
their subscribed news channels or friends in the social network. There is also an ad

6https://dev.twitter.com/rest/reference/get/statuses/mentions_timeline.
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Table I. Notations Frequently Used in This Article

T Latent topic space
|T | Number of latent topics
Wq Topic vector for q
Wa Topic vector for a
|Tq| Number of nonzero values (relevant topics) in Wq

|Ta| Number of nonzero values (relevant topics) in Wa

φ(q, a) Similarity between two topic vectors q and a
δk k-th score in top-k heap for pruning

maxt Maximum score in inverted list of topic t
qi i-th query topic
wi Weight for query topic qi

qwi i-th highest topic weight in a query
θ Maximum sum of weights in an ad candidate, i.e., θ = ∑

t Wa(t) for all Wa

θ̄i i-th highest maximum score for the unseen ads in all query lists
θt θt = maxi θ̄i

Table II. Comparison of Different Textual Retrieval Problems According to Query and Doc Length

Query Setup Application Database Scale State-of-the-Art Solution
Short query against long text Web document search Billion to trillion Doc id–oriented block
Short query against short text Microblog search Billion to trillion Partition and evaluation
Long query against long text Similar document retrieval Million to billion Dimension reduction
Long query against short text Context-aware advertising Million To be explored

database in which the ads have been projected into topic vectors. These vectors are
stored on disk and loaded into memory for fast matching in the system initialization
stage. Each time a user sends a pull request, the unread posts in the sliding window
form a query to find relevant ads for promotion. For efficiency issues, this procedure
normally contains two stages, as is done by most commercial search engines. In the first
stage, a relatively simple ranking function such as the one presented in Equation (1) is
used to quickly retrieve a bunch of relevant ads. In the second stage, the candidate ads
are further reranked by a more complex scoring function [Lv et al. 2011; Lv and Fuxman
2015]. For example, Lv et al. [2011] proposed using four aspects: relevance, novelty,
connection clarity, and transition smoothness for news recommendation. In this article,
we focus on the first stage; this component can be implemented as a complement to
an existing ad recommendation engine (either in a centralized or distributed manner)
to quickly provide a set of semantically relevant ads. The notations frequently used in
the following sections are listed in Table I for quick reference.

A toy example. Suppose that a social network company has a collection of ads to
promote. In the offline stage, each ad is projected into a |T |-dimensional topic vector
using LDA, in the form of [w1, ww, . . . , w|T |]. In the online stage, each time a user
triggers a pull request, a window of unread posts are retrieved and projected into the
same latent space, resulting in another topic vector used as a query to retrieve the
top-k most similar ads from the ad database. Since the effectiveness of such a retrieval
strategy has been evaluated in a large-scale experimental setup with 1.3 billion tweets
and 4,050,230 users in Pennacchiotti and Gurumurthy [2011], our primary objective
in this article is to devise an efficient index and retrieval strategy to support real-time
context-aware ad recommendation.

3. RELATED WORK

In this section, we conduct a comprehensive literature review on textual information
retrieval and summarize the distinguishing features in Table II. The previous work

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 28, Publication date: May 2017.



Processing Long Queries Against Short Text 28:7

can be broadly classified into two categories: QBK for short queries and QBD for long
queries. In the following, we first present an overview on existing indexing and early
termination strategies for QBK. Then we review the related work on QBD. Our goal is
to explore efficient solutions to this retrieval setup: long query against short text.

3.1. Doc ID Sorted Indexing for QBK

Given a set of query keywords, the objective of QBK is to quickly identify the k most
relevant documents (or microblogs post) based on certain ranking criteria such as
BM25 [Robertson et al. 1994] or the anguage model [Manning et al. 2008]. When using
a doc id sorted inverted index, there exist two fundamental cornerstones for top-k
keyword search: term at a time (TAAT) [Buckley and Lewit 1985; Turtle and Flood
1995] and document at a time (DAAT) [Broder et al. 2003; Turtle and Flood 1995]:

—In TAAT index traversal, the inverted lists relevant to a query are accessed under a
certain criterion. The documents in each list are retrieved, and their partial scores
are aggregated in an accumulator. Various early termination techniques [Buckley
and Lewit 1985; Turtle and Flood 1995] were then employed to save computational
cost.

—In DAAT index traversal, a document is completely evaluated in an accumulator
before advancing to the next one. Thus, it does not need to maintain an accumulator
for score aggregation and is more effective in terms of memory consumption. The
pruning lies in aggressively skipping documents whose upper bound is smaller than
the score of the k-th result seen thus far, denoted by δk. Algorithms belonging to
this category include the WAND algorithm [Broder et al. 2003] and the max score
algorithm [Turtle and Flood 1995]. An evaluation work [Fontoura et al. 2011] shows
that DAAT is more scalable.

The subsequent improvement over the fundamental TAAT and DAAT traversals falls
into two categories: (1) seeking a better trade-off between effectiveness and computa-
tional cost (readers can refer to Moffat and Zobel [1994], Persin [1994], Anh et al. [2001],
and Anh and Moffat [2005] for more details) and (2) adopting block-oriented organiza-
tion in an inverted index to facilitate better pruning [Ding and Suel 2011; Chakrabarti
et al. 2011; Rossi et al. 2013; Dimopoulos et al. 2013a, 2013b]. The idea of the second cat-
egory is that the blocks provide an upper bound estimation in a finer granularity. With
more blocks skipped in query processing, we can save both decompression and score
computation costs. Ding and Suel [2011] partitioned the inverted lists, sorted by doc
id, into blocks with fixed size. Each block has 64 entries and maintains the maximum
score of all entries within it. Thereafter, they extended the WAND [Broder et al. 2003]
algorithm and proposed the block-max WAND (BMW) algorithm, which leverages the
local maximum score to skip more elements. The BMW-t algorithm proposed in Rossi
et al. [2013] improves the BMW by building an additional small index containing only
documents with high scores. These documents are used to initialize a good score for sub-
sequent pruning. In addition to the fixed-size block partitioning, there is another line of
work [Dimopoulos et al. 2013a, 2013b] adopting interval partitioning in the doc id space.
The physical blocks in the same interval may contain different numbers of documents.
Since the blocks are aligned, such partitioning is more friendly for block aggregation
and evaluation, and the performance is shown to be better than BMW and its variants.

To support real-time microblog search, Twitter developed EarlyBird [Busch et al.
2012; Asadi and Lin 2013], which also employs a doc id–oriented partitioning scheme
to organize the inverted lists such that new tweets can be directly appended to the
end of the lists. Its keyword query processing extends the WAND algorithm with
Bloom filters for efficient evaluation. Since Bloom filters only support approximate
membership tests, the retrieval methods cannot return exact top-k results.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 28, Publication date: May 2017.
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3.2. Impact-Sorted Indexing for QBK

Inverted lists sorted by impact have also been investigated for top-k disjunctive query
processing in both information retrieval [Anh and Moffat 2006; Strohman and Croft
2007] and database communities [Fagin et al. 2003; Bast et al. 2006; Ilyas et al. 2008;
Zhang et al. 2014b].

In the classic work of Fagin et al. [2003], it is pointed out that the costs of random
access cR and sequential (or sorted) access cS are two important factors when deciding
an optimal search strategy. When cR is very high, no random access (NRA) or a com-
bined algorithm (CA) is preferred [Fagin et al. 2003]. This explains why information
retrieval communities resort to NRA. The random access for keyword search in a Web
document corpus is expensive. It has to incur high disk lookup costs to retrieve a can-
didate document and evaluate its relevance score with regard to all query keywords.
Anh and Moffat [2006] proposed splitting the posting lists into segments such that seg-
ments with higher scores are placed in the front part of the lists and accessed earlier.
The query processing first aggregates the partial scores in an accumulator and stops
inserting new candidates when the upper bound of unseen documents is smaller than
the k-th best score ever found, denoted by δk. Then in the refine stage, it estimates the
upper bound of non–top-k candidates and prunes those with an upper bound smaller
than δk. The final step is to determine the order of top-k candidates. Strohman and
Croft [2007] improved on the work of Anh and Moffat [2006] by studying how to reduce
the size of the accumulator array so as to reduce the number of score computations.

In the context of top-k ad retrieval, the index is memory resident and the database is
million scale. Thus, the cost of random access cR is actually quite small. This motivates
us to study the effect of applying the TA algorithm, which has been proved to be instance
optimal when the random access cost is small [Fagin et al. 2003]. Given a query with
m relevant latent topics, we first construct m lists sorted in descending order of their
impact scores. Then we iterate the following two steps until the algorithm terminates:

(1) Perform sorted access in parallel to each of the sorted lists. For each ad accessed,
perform a random memory access to locate the original topic vector7 and compute
the full score of the ad using the ranking function φ in Equation (1). If the score is
one of the k highest that we have seen so far, remember the ad and its score.

(2) For each list Lt, let θt be the score of the last document seen under sorted access.
Define the threshold value Bk to be the aggregated score of θt by the ranking
function. As soon as δk is at least equal to Bk, the algorithm terminates.

Bast et al. [2006] proposed a hybrid strategy on random access and sequential access.
They consider top-k query processing as a scheduling optimization problem. With the
guide of the proposed cost models, their objective is to determine an optimal access
strategy, including the access order of sequential access on different lists and the
decision of random access order on the candidates. The method is effective for a disk-
based environment. When the index is memory resident, the cost of a single random
access is quite small. The additional cost of scheduling in Bast et al. [2006] will drag
down performance.

In this article, our proposed rank-aware block-oriented index can be considered as
an alternative type of impact-sorted index. Our novelty lies in using the relative rank
as the sorting indicator, which to the best of our knowledge has not yet been proposed.
Based on the new sorting criterion, we further propose a tailored query processing
algorithm that works efficiently in the new search context.

7The raw topic vectors for the ads are stored in memory and sorted by ad id.
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3.3. Query-By-Document

The concept of QBD was proposed with the applications of annotating documents with
blogs [Yang et al. 2009] or retrieving similar documents [Weng et al. 2011]. Since the
query itself is a document with hundreds of keywords, it is cumbersome to directly
apply techniques proposed for QBK because the computational cost to merge hundreds
of inverted lists is prohibitive. A commonly accepted solution for QBD is dimension
reduction. In Yang et al. [2009], the focus is how to extract key phrases [Bedathur
et al. 2010; Gao and Michel 2012] from the query document and transfer the query
from a document to a small number of key phrases. Then the problem turns into con-
ventional QBK and can be solved by existing techniques. In Weng et al. [2011], it is
proposed to use an additional level of topic vector generated by LDA [Blei et al. 2003]
to embody the major semantics of a document. Approximate k-NN search techniques in
high-dimensional space, such as locality-sensitive hashing (LSH) [Gionis et al. 1999],
can then be leveraged to find similar documents from the generated topic vectors.
Other advanced search and ranking problems include keyword queries against rela-
tional data [Fan et al. 2011], graph [Huang et al. 2015; Li et al. 2014], spatial-textual
data [Fan et al. 2012; Zhang et al. 2010], medical records [Li et al. 2015a], and encrypted
outsourced data [Fu et al. 2016a, 2016b, 2016c; Xia et al. 2016].

In this article, we study efficient processing of long query against an ad database.
The difference with conventional QBD query is that after projecting the ads into the
latent topic space, most of the dimensions are left empty. This motivates us to devise
rank-safe algorithms that return the exact top-k matching ads rather than approximate
results obtained by dimension reduction.

4. A NEW TWO-LEVEL PARTITIONING WITH LAZY EVALUATION

Our work revisits the classic TA algorithm in the new search paradigm. This technique
has rarely been used to solve the QBK problem for the following reasons. In the Web
document search, TA cannot be applied because of the expensive overhead in random
access to the document database, which requires multiple disk I/O to access the original
document (normally stored in a B+-tree), whereas in the memory-based microblog
search, it conflicts with the goal of fast insertion because tweets are generated with
high velocity. In Twitter’s EarlyBird system [Busch et al. 2012; Asadi and Lin 2013],
the inverted lists are sorted by doc id such that new tweets can be directly appended to
the end of the lists, whereas TA requires the inverted lists to be sorted by impact score
and is not suitable for the application with frequent insertion. Fortunately, in our new
search scenario, the whole ad database is small enough to be accommodated in memory
and no disk I/O is incurred. The update in the ad database is infrequent, which allows
us to sort the inverted lists by impact score. However, given a large number of inverted
lists to aggregate, the loose upper bound estimation of the original TA algorithm still
remains an obstacle. In this section, we propose a two-level partitioning strategy with
tight upper bound estimation to improve the TA method.

4.1. Two-Level Partitioning

The main idea of our two-level partitioning mechanism is that in the first level, all ads
are partitioned into a set of groups based on the length |Ta|, where |Ta| refers to the
number of nonzero dimensions in the topic vector. In the second level, the ads in each
group are organized into an inverted index, the same as in the conventional manner.
The new partitioning strategy provides us the information of the maximum length of
the ads within a group such that instead of aggregating the maximum scores in all
query lists, we only need to aggregate a portion of them for upper bound estimation.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 28, Publication date: May 2017.
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Fig. 2. Two-level partitioning.

A straightforward method for first-level partitioning is to assign an ad with |Ta| = j
into the j-th group. Each group contains ads with the same length, and there are
at most |T | groups. The drawback is that the distribution of ad length is very skew
according to Figure 4 (shown later), resulting in many empty or near-empty groups. To
alleviate the issue, we partition the ad database into J + 1 groups, each with length
|Ta| = 1, |Ta| = 2, . . . , |Ta| = J, and |Ta| > J+1, respectively, as illustrated in Figure 2.
The intuition is that there are only a small portion of ads projected to groups with large
|Ta|, and these ads have limited potential to facilitate pruning. Thus, by grouping them
together in one partition, we can improve the cache locality when accessing these
elements.

Our search algorithm scans the groups in descending order of |Ta| and evaluates the
ads within each group with a tighter upper bound. For groups with |Ta| = j (1 ≤ j ≤ J),
instead of using

∑
t∈Q θt in the original TA algorithm, we use a tighter bound

Bk =
∑

1≤i≤ j

θ̄i · qwi, (2)

where θ̄i denotes the i-th highest maximum score for the unseen ads in all query lists
and qwi is the i-th highest query weight. This is because an unseen ad must contain
j relevant topics in the group of |Ta| = j. Thereafter, we only need to aggregate the
maximum scores of j lists and associate them with the highest query weights to obtain
an upper bound. Since j is normally much smaller than the total number of query
terms, our new upper bound estimation is tighter than that used in conventional TA
algorithms. For example, all ads in group |Ta| = 1 are associated with only one relevant
topic. The new upper bound is θ̄1 ·qw1, where θ̄1 be the maximum θt among the relevant
inverted lists and qw1 is the maximum query weight. This bound is much smaller than
the one used in the original TA algorithm. For the group with |Ta| > J, the upper bound
is set to be the same as the original TA algorithm and needs to aggregate θt from all
query lists.

4.2. Lazy Evaluation

To further reduce the number of accessed ads, we propose a lazy evaluation scheme
to delay calculating the full scores of unpromising candidates. To achieve the goal,
we propose a highly efficient method to quickly decide whether an ad is worth an
immediate evaluation. If not, we store it in a temporary buffer and assign it with a
new tight upper bound. When the promising ads have been evaluated, we can obtain
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a relatively high δk to prune the remaining unpromising candidates in the buffer and
thus save computational overhead.

The key to the success of the lazy evaluation scheme is that the additional payload
must be significantly smaller than the evaluation cost on a single candidate. Since
the payload includes the cost to determine whether an ad is promising, as well as
the estimation cost of a new upper bound, we propose an effective strategy based on
bitmap. In particular, we maintain an additional bitmap for each ad in the inverted
list and hash each relevant topic to one of the bits. Given a query, we sort its relevant
topics in descending order of query weight and project the top-b topics into the bitmap
with the same hash function.

The bitmap solution provides two kinds of benefits. First, we can apply a binary
AND operation between the query bitmap and the candidate bitmap. If the result is 0,
then the candidate does not contain any “important” query topics and is marked as
“unpromising.” This candidate will be appended to a temporary buffer and evaluated
later. Since only a binary operation is involved, our method of judging the promisingness
of a candidate is very efficient. Second, we can provide a tight upper bound for each
unpromising candidate ad a in a group with |Ta| = j:

UB(a) =
∑

t

Wa(t) · qwb+1 = qwb+1 ·
∑

t

Wa(t). (3)

This is because the candidate does not contain any of the top-b most important weights
in a query. Thus, its associated maximum query weight is qwb+1. For more efficient
upper bound estimation, we can precompute the sum of all topic weights

∑
t Wa(t) for

each ad and store it in the inverted list. Each entry in the list now has four fields:
〈id, weight, bitmap, weight sum〉. With this information available, we only need one
bitmap operation to judge whether a candidate is promising or not. If yes, we evaluate
its full score immediately and update δk if this is a better result. Otherwise, we use one
multiply operation in Equation (3) to estimate its upper bound and store it in the buffer.
When the TA algorithm terminates, we scan the candidates in the buffer and compare
their stored upper bound to the new δk. They will be evaluated only if their upper
bounds are larger than δk. In this way, a considerable portion of candidates can be
further skipped without evaluation.

5. RANK-AWARE BLOCK-ORIENTED INDEX

The preceding two-level partitioning strategy based on |Ta| can shrink the upper bound
for the partitions with very sparse vectors, and most of these partitions can be skipped.
However, for partitions with moderate values of |Ta|, the derived upper bound may not
be tight enough. If the whole partition cannot be pruned, we need to apply the lazy eval-
uation scheme, which, even though it can reduce the number of accessed candidates,
still incurs additional overhead. To further improve performance, we propose a novel
rank-aware block-oriented inverted index, which can be viewed as another variant of
two-level partitioning. Each entry in an inverted list is assigned a rank based on its
importance in the ad. Elements with the same rank are organized in a block and sorted
in descending order of their weights. The main purpose is to devise an even tighter
upper bound estimation when it is applied in a block-at-a-time search strategy. In the
following, we elaborate on the details of indexing, searching, and new upper bound
estimation.

5.1. Index Structure

Before we present the index structure, we first introduce the concept of topic rank in
an ad, which is crucial to understand the intuition behind our index design. Given
an ad associated with multiple topics, we can sort the topics in descending order of
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Fig. 3. A novel rank-aware block-oriented organization of an inverted index.

their weights. The topic with the highest weight is assigned a rank value 1, and
the second highest is assigned a rank value 2. Ties can be broken in an arbitrary
order. Consequently, we can assign a distinct rank value to each topic. For instance,
given an ad a = 〈(t1, 0.5), (t2, 0.15), (t3, 0.35)〉, we will generate three entries (t1, 0.5, 1),
(t2, 0.15, 3), and (t3, 0.35, 2) by assigning a rank value to each topic according to its
relative importance in the ad.

Our rank-aware inverted index is also block oriented—that is, we maintain an in-
verted list for each topic, and the list is composed of a sequence of sorted blocks. A
distinguishing feature of our index is that we store entries with the same rank in a
block and sort the blocks in ascending order of the rank value. In our implementa-
tion, we maintain an array of |T | pointers for each inverted list. The i-th entry in the
pointer array indicates the starting memory address of the associated block with rank
i. If there is no such block, the pointer is set to NULL. In this way, our additional space
overhead for the pointers is |T |2, but the cost of locating a particular block is O(1).

Figure 3 depicts the rank-aware inverted index in which the lists are organized into
a sequence of blocks. Given an ad, we first sort its topics in descending order of weight
such that each topic can be assigned a rank. The fields of topic and rank uniquely
determine the block in an inverted list to insert the entry. For example, the entry
(t1, 0.5, 1) is inserted into the first block of inverted list t1, and (t2, 0.15, 3) is inserted
into the third block of inverted list t2. The entries within a block can be stored in
an arbitrary order. In the following, we present our search algorithm based on the
block-oriented index.

5.2. Block-at-a-Time Search

Our search algorithm, namely block at a time, scans and evaluates all candidates
in a block before proceeding to the next block. The algorithmic sketch is shown in
Algorithm 1. It accesses the blocks with higher ranks or more important entries earlier
than those with lower ranks. Since the maximum length of an ad is |Ta|max, there are at
most |Ta|max iterations in the first loop. In each iteration about rank = r, we estimate
the local upper bound UB2 of all unseen ads located in rank ≥ r. If the upper bound
is no greater than δk, the algorithm can terminate safely. Otherwise, we continue to
examine the query lists in any order and access their r-th blocks. For each block, we
iteratively evaluate the full score of a candidate and update δk if a better result is
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ALGORITHM 1: Block-at-a-Time Search
1: for r = 1; r ≤ |Ta|max; r + + do
2: estimate global upper bound UB2 for all unseen ads
3: if UB2 ≤ δk then
4: break
5: end if
6: for each query inverted list Li do
7: for each candidate a in the r-th block of Li do
8: evaluate the full score of a
9: if the score of a is larger than δk then
10: update top-k heap and δk
11: end if
12: estimate local upper bound UB1 for the remaining ads in Li
13: if UB1 ≤ δk then
14: break
15: end if
16: end for
17: end for
18: end for

derived. The evaluation of full score is the same as that in the TA-based methods.
Before proceeding to the next candidate, we estimate a global upper bound UB1 for
the remaining candidates in this block. If UB1 ≤ δk, it provides an early termination
for the block and we can directly advance to the next inverted list. In the next section,
we present our upper bound estimation for UB1 and UB2 with the target of early
termination.

5.3. Upper Bound Estimation

Let qw1, qw2, . . . , qwm be a list of query weights sorted in descending order for the mrel-
evant latent topics in a query and their corresponding topics denoted by q1, q2, . . . , qm,
respectively. Suppose that we are accessing a candidate a with weight wt in the r-th
block of topic t′. Since the entries in a block are sorted by the weight, the maximum
weight for the remaining candidates in the block is also wt. Before we propose our
upper bound estimation, we first present the following observation:

OBSERVATION. For any query topic qi, its maximum weight in a candidate a is wt.

PROOF. If an ad candidate a has not been visited before in the r-th block of inverted
list t′, we can conclude that there is no query topic in this candidate such that i < r.
Thus, if a query topic occurs in the candidate a, its rank must be at least r. Since wt is
the r-th highest weight, we finish the proof.

Based on the preceding observation, we estimate the local upper bound UB1 as follows:

UB1(wt) = wt

∑
1≤i≤h

qwi + (θ − h · wt) · qwh+1, (4)

where h = 
θ/wt� and θ is the maximum sum of weights in an ad candidate (i.e.,
θ = ∑

t Wa(t)).

PROOF. Our proof consists of two steps. First, we show that UB1 is an upper bound for
a new candidate ad with weight wt in the block. Second, we show that as wt decreases,
the upper bound gets smaller. Thereafter, since wt is the maximum weight for the
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remaining ads in the block, we can conclude that the upper bound for the unseen
candidates in the block must be no greater than UB1.

Step 1. We show UB1 ≥ φ(d, a). Let w1, w2, . . . , wm be the weights in ad a for query
topics q1, q2, . . . , qm, respectively. We have∑

1≤i≤m

wi · qwi

≤
∑

1≤i≤h

wi · qwi + qwh+1

∑
h+1≤i≤m

wi (because qwi−1 ≤ qwi)

≤
∑

1≤i≤h

wi · qwi + qwh+1

⎛
⎝θ −

∑
1≤i≤h

wi

⎞
⎠ (

because
∑

wi ≤ θ
)

≤
∑

1≤i≤h

(wt · qwi − (wt − wi) · qwi) + qwh+1

⎛
⎝θ −

∑
1≤i≤h

wi

⎞
⎠

≤
∑

1≤i≤h

(wt · qwi − (wt − wi) · qwh+1) + qwh+1 · θ

=
∑

1≤i≤h

(wt · qwi) −
∑

1≤i≤h

(wt · qwh+1) + qwh+1 · θ

= wt

∑
1≤i≤h

qwi + (θ − h · wt) · qwh+1.

Step 2. We show UB1(wt) ≥ UB1(w′
t) if wt ≥ w′

t.

wt

∑
1≤i≤h

qwi + (θ − h · wt) · qwh+1

= w′
t

∑
1≤i≤h

qwi + (wt − w′
t)

∑
1≤i≤h

qwi + (θ − h · wt) · qwh+1

≥ w′
t

∑
1≤i≤h

qwi + (wt − w′
t)

∑
1≤i≤h

qwh+1 + (θ − h · wt) · qwh+1

= w′
t

∑
1≤i≤h

qwi + (θ − h · w′
t) · qwh+1

= w′
t

∑
1≤i≤h

qwi + (h′ − h) · w′
t · qwh+1 + (θ − h′ · w′

t) · qwh+1

≥ w′
t

∑
1≤i≤h

qwi + w′
t

∑
h+1≤i≤h′

qwi + (θ − h′ · w′
t) · qwh′+1

≥ w′
t

∑
1≤i≤h′

qwi + (θ − h′ · w′
t) · qwh′+1.

Note that θ may not necessarily equal 1 because our problem definition is general
and allows any type of normalization techniques. A θ can be obtained by scanning all
ads, calculating the sum of topic weights for each ad, and identifying the maximum one.

To estimate UB2, we store a variable Maxr
t for each block in an inverted list. It refers

to the maximum weight in the r-th block as well as all subsequent blocks in inverted
list t. In other words, when the search algorithm is examining the r-th block, Maxr

t
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provides the maximum weight of all unseen candidates in the list. Then, based on
Equation (4), we simply need to replace wt with maxt∈Q Maxr

t to obtain the global upper
bound UB2. If UB2 ≤ δk, the whole algorithm terminates. It is worth noting that as the
algorithm proceeds, r increases. Since the r-th block stores the r-th highest weight in
a candidate, Maxr

t drops dramatically and quickly leads to an early termination.

6. EMPIRICAL STUDY

In this section, we introduce our experimental environment to simulate real social
network and news reader applications and compare the performance of existing repre-
sentative keyword search techniques to our proposed methodologies in the new search
paradigm. All methods are implemented in C++, and all data structures and data are
memory resident on a CentOS server (1.9GHz CPU and 64GB RAM).

6.1. Experimental Setup

Due to lack of real advertising platforms, we use several real datasets that are publicly
accessible to build a simulated experimental environment.

6.1.1. Ad Datasets. We use Amazon products [Leskovec et al. 2007] and AOL keyword
queries8 to simulate the ad database. The Amazon products can be viewed as discounted
products advertised to Twitter users or news subscribers. The keywords in an AOL
search request can be considered as tag annotations on an ad. The Amazon dataset
consists of 548,552 products associated with metadata and reviews; in the AOL dataset,
there are more than 7 million keyword queries. We then apply LDA upon the products
and keyword queries, and project them into the common latent space with those in the
news feed datasets. We also plot the distribution of the number of relevant topics in the
ads in Figure 4. We can see that the Amazon dataset contains more textual information
than the AOL dataset, and its ads are associated with more topics. The AOL search log
contains a small number of keywords in each query, and more than 75% of the ads are
associated with fewer than five topics. We plot the distribution of inverted list length
for each topic in Figure 5. It shows that most topics are associated with a considerable
amount of ads. This makes top-k retrieval rather challenging, as we need to aggregate
a large number of long inverted lists for each query.

6.1.2. News Feed Datasets. We use two real datasets, Twitter and News, from SNAP9

to simulate the news feed generation. The Twitter dataset contains 41.6 million users,
1.3 billion edges, and 476 million tweets. For each user, we materialize the news feed
by retrieving all tweets posted by the people the user is following and sort them chrono-
logically. Thereafter, we split the user’s news feed into windows of size 20 and apply
LDA [Blei et al. 2003] upon the textual contents in the window to generate topic vec-
tors. When window size increases, more textual contents are mapped to the topical
space. This results in denser topic vectors and a higher search time. The News dataset
contains 1.42 million Web sites and 96 million articles in total. Similarly, for each Web
site, we split its associated articles into windows and apply LDA for each window.

6.1.3. Query Generation. A query is issued when a user sends a pull request to retrieve
a window of unseen news feed. To simulate query generation in real environments, we
need to determine who will be the next user to submit a pull request. In the Twitter
dataset, we can infer the frequency of postoperation for each user. We assume that the
frequency of a pull operation is positively correlated with the postoperation. Hence,
we first estimate and normalize the probability of users posting a tweet and randomly

8http://www.cim.mcgill.ca/∼dudek/206/Logs/AOL-user-ct-collection/.
9http://snap.stanford.edu/.
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Fig. 4. Frequency of relevant topic numbers for various datasets.

Fig. 5. Inverted list length distribution.

generate 10,000 queries based on this probability distribution. In the News dataset,
since we have the hyperlink graph among the Web sites, we can assign a PageRank
score for each Web site. We assume that a more authoritative (important) Web site is
more likely to be subscribed to by users. With more subscribing users, a Web site is
more likely to be selected as a query for ad matching. Thus, we sample 10,000 Web
sites as queries based on their PageRank score. In Figure 4, we plot the frequency
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distribution for the number of nonzero values in the projected vectors with |T | = 100.
A vector with more nonzero entries means that its sliding window is more diverse and
relevant to more topics. Thus, the News dataset is more diverse than Twitter, as most
tweets are only projected to fewer than 20 latent topics, but newsis more abundant
in text information and a considerable amount of news is associated with more than
20 latent topics. Consequently, the document query in the News dataset involves more
inverted lists and will take a longer time to process.

6.2. Comparison Methods

We use TA-PAR to denote our two-level partitioning solution that extends the TA
algorithm, TA-PAR-Lazy to denote our lazy evaluation scheme, and RANK-PAR to
denote the rank-aware block-oriented index. For the baseline competitors, we choose
three types of existing methods that are adapted in our new search paradigm:

6.2.1. TAAT. The memory-resident version of TAAT max score proposed in Fontoura
et al. [2011] contains two phases:

(1) Access the terms in decreasing order of postings list sizes, and aggregate the vis-
ited ads in an accumulator. After processing the i-th term, examine whether the
condition δk >

∑
t>i maxt holds, where maxt is the maximum weight in the inverted

list of unvisited topic t.
(2) If yes, we cannot find a better unseen candidate from the remaining postings lists.

We sort the ads in the accumulator by their doc id and use them as a skip list to
process the remaining terms. An ad will be aggregated only if its id occurs in the
skip list.

To adapt TAAT in our new search paradigm, we made two major revisions. First,
according to Figure 3, the latent topics are similar in terms of postings lists size. Thus,
longer lists may not be helpful to quickly reach the condition δk >

∑
t>i maxt. Instead, we

observed that the distribution of term weight may be a better discriminative indicator,
and we choose to access the inverted lists sorted in descending order of query weight.
In this way, the upper bound of the unseen lists can drop more dramatically than using
postings list size as we proceed to access more lists. Second, we observed that based
on property P1 presented in Section 1, we are expected to evaluate a large number
of candidates in the second stage. Based on P2 and P3, we can infer that the cost of
evaluating the full score of an ad is small because the ad is in memory and only a few
dimensions are nonzero. Hence, we propose the following improved version of TAAT
for our new search scenario:

(1) Access each term in decreasing order of the associated query weight, and evaluate
the full score of each candidate. After processing the i-th term, examine whether
the condition δk >

∑
t>i maxt holds.

(2) If yes, the algorithm terminates.

In the revised algorithm, there is no need to maintain an accumulator to store par-
tial scores due to the small cost of full score evaluation. When the upper bound of
remaining postings is smaller than δk, the algorithm can be safely terminated because
all visited documents have been fully evaluated. Since the top-k results are associated
with complete relevance scores, we can guarantee that the top-k candidates are exactly
the same as those in the original TAAT max score algorithm with the same ordering.

6.2.2. Block-Oriented Methods (BM-OPT). In the block-oriented methods, BM-OPT
[Dimopoulos et al. 2013b] and BMW-LB-PB [Dimopoulos et al. 2013a] are considered
two state-of-the-art solutions. The main idea of BM-OPT is to partition the document
id space into fixed-size intervals, and ads located in the same interval are organized as
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a block. It requires larger space cost to store the varied-length blocks, but the aggre-
gation is fast because no block alignment overhead is incurred. The query processing
strategy is interval by interval. For each interval, it is convenient to estimate an upper
bound by storing a maximum block score in advance.

In our implementation of BM-OPT, we made the following customizations according
to the new properties of our problem setup. First, we did not use a hybrid strategy
as proposed in the original BM-OPT [Dimopoulos et al. 2013b]. This is because the
experimental results in Dimopoulos et al. [2013b] show that BMW is superior when
there are only a few (no more than five) query keywords. Otherwise, BMM achieves
much better performance. Since we are handling long queries in our problem setup, it
is natural to choose to implement the BMM algorithm only when evaluating ads for the
same block partition. Second, we did not apply BMM-NLB [Dimopoulos et al. 2013b]
either. As pointed out in Dimopoulos et al. [2013b], when there are many keywords,
the effect of dead areas is limited. The experimental results in Dimopoulos et al.
[2013b] also confirmed that the performance of BMM-NLB is not as effective as BMM
when there are more than five query keywords. Therefore, we only apply BMM in
our implementation of the BM-OPT algorithm. Third, we use a fixed-size block rather
than a variable-size block. According to the analysis in Dimopoulos et al. [2013b], the
partitioning strategy with a fixed-size block is the most efficient. However, it cannot
be directly applied due to the enormous space overhead when handling 20 million
distinct terms in the TREC GOV2 dataset. Thus, a variable-size block was proposed to
achieve better trade-off between space and efficiency. In our problem setup, we handle
hundreds of topics and millions of ads. Thus, space overhead is not a troublesome issue,
and we choose to apply the fixed-size block to maximize performance.

In the original implementation of BM-OPT in the Web document search context, the
best performance was achieved when the block/interval size is set to 64. When the
block size grows, the pruning effect by the sum of block-max scores becomes weaker,
incurring more evaluation cost. On the other hand, when the block size is set too small,
performance degrades because we get small skips and have a lot of memory access to
fetch block-max scores. In our new search context, we find that the optimal interval size
occurs at 1024, primarily because when there are dozens of query terms, the pruning
power based on the sum of block-max scores is significantly weakened. In other words,
it becomes more difficult for the sum of dozens of block-max scores to be smaller than
the k-th best score. In this case, setting the block size to be 64, even though with better
pruning effect and evaluating fewer ads than setting it to 1024, it pays more cost in
fetching block-max scores and frequent context change in the cache when aggregating
scores within a block partition. It is also worth noting that the best block size selection
could be affected by the server cache size, because when pruning is less effective in
the new search context, the property of cache consciousness when evaluating ads in a
block partition becomes a more important factor.

BMW-LB-PB [Dimopoulos et al. 2013a] improves on BM-OPT [Dimopoulos et al.
2013b] by maintaining additional bitmaps for pruning. The essential idea is to maintain
a bit for a doc id interval with certain granularity. The bit is set only if there exists at
least one document in that interval. This provides a tighter upper bound estimation
because we only need to sum up the maximum scores of the inverted lists whose
corresponding bits are set. If the maximum score of an interval is smaller than δk,
all documents within that interval can be pruned. Additional optimizations include
the cache-conscious implementation with windows and the SIMD implementation.
Since the window size and sub-block size are functions of the server cache size, we
set these two parameters by simply testing the running time of different parameter
combinations. Finally, we choose to use a window size of 4 and split each BM block into
eight sub-blocks.
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6.2.3. Impact-Sorted Methods (TA+). In the basic TA algorithm, the ads in the sorted lists
are accessed in a round-robin manner and all query keywords are treated equally. An
improved idea is to access the sorted lists in a certain order that can lead to an early
termination [Güntzer et al. 2000; Ilyas et al. 2008]. Since the termination condition is
δk ≥ Bk, we can either aggressively increase δk or decrease Bk to make the condition
hold as early as possible. To increase δk quickly, the sorted lists with higher influence
on the overall scores should be accessed first because their candidates are more likely
to be top-k results. To decrease Bk quickly, inverted lists with rapidly decreasing scores
should be accessed first because they can help decrease the upper bound of unseen ads’
scores. By combining these two factors, we have the following equation to express the
effectiveness of a sorted list:

�t = Wd(t) · Wa(t) · (wa′ − wa),

where a is the current ad in the sorted list of topic t and a′ is its preceding ad. Wd(t)·Wa(t)
measures its influence on the overall scores, and (wa′ − wa) captures the power in
decreasing Bk. In each iteration of the new TA algorithm, denoted by TA+, a sorted list
with the maximum �t is selected to get the new ad for evaluation. Such query processing
strategy is particularly efficient when the data exhibits tangible skewness [Ilyas et al.
2008].

6.3. Index Compression

Index compression is a standard technique in conventional keyword search to improve
retrieval performance. In the context of disk-based retrieval, the index size can be
significantly reduced. As a side product, it also improves the search engine’s retrieval
performance due to reduced disk I/O overhead as smaller quantities of data are loaded
from disk to memory. Compression is also helpful for memory-resident indexes. It can
reduce the memory consumption such that the whole index can be accommodated in
memory. For example, in the state-of-the-art memory-based index [Dimopoulos et al.
2013a], the uncompressed dataset requires 426GB. After compression, it takes less than
12GB and can be held in a commodity server. This is one important reason memory
resident indexes choose to use compression for retrieval. However, compression could
also be beneficial to improve retrieval performance, as it can reduce the number of cache
misses, even though it needs to pay an additional cost for decompression. However, in
modern hardware, the cache size has been enlarged to a great extent and the number of
CPU cycles caused by cache miss is also reduced. Thus, the performance improvement
brought by compression may be offset, which would be an interesting research topic
and deserves a quantitative study. For instance, Twitter’s EarlyBird system [Asadi
and Lin 2013] for real-time tweet search accommodates all tweets in memory and
discards the compression component. We also conducted an offline experiment to test
whether performance can be improved in our new search environment. We observed
that the running time varied in a negligible way. There may be two reasons to explain
this. First, the improvement of modern hardware and cache size has improved the
access time to the uncompressed lists, which are stored sequentially and accessed in
a cache-conscious manner. This can help reduce the cost of cache miss. Second, in the
conventional Web document retrieval application, there are a great number of block
skips in the inverted lists. We believe that in this scenario, compression should be able
to help improve the skipping process with less memory random access. However, in our
new search application, most of the blocks have to be accessed for conventional methods
(including BM-OPT and BMW-LB-PB). It incurs much fewer block skips, which may
limit the effect of compression. For our proposed PAR-RANK method, there is no block
skip in the inverted list, as we use an impact-sorted index. In the query processing
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stage, we only access the front blocks for the relevant inverted lists. Thus, applying
compression may not yield performance boosting.

6.4. Performance Study

We conduct two sets of experiments to evaluate the performance with respect to an
increasing number of results k and number of latent topics |T |. We test various values
of k (5, 10, 15, 20, and 100) and |T | ( 5, 50, 100, 150, and 200). By default, we set
k = 10 and |T | = 100. Since we only study the performance of search efficiency, we
report the average search time and the percentage of accessed ads compared to the
whole repository. The cost of online LDA is around 1ms in the default setting with 100
latent topics. It is worth noting that we did not count in the cost of online LDA in the
reported performance. This is because online LDA can be viewed as a preprocessing
step and takes the same amount of time for all competitors.

6.4.1. Parameter Tuning. In the implementation of TA-PAR and TA-PAR-Lazy, we set
J = 10 in the AOL dataset and J = 15 in the Amazon dataset, because if J is set
too small, the size of the last partition for ads with |Ta| > J would be dominating
and accessing this partition would become a performance bottleneck. However, if J
is set to be a large value, there would be many small partitions, and the pruning in
these partitions is not powerful due to the loose upper bound in Equation (2). Based on
our offline parameter tuning, which is quite trivial and not reported, the performance
varies slightly as long as J is set around 10 for the AOL dataset and 15 for the Amazon
dataset.

6.4.2. Performance with Increasing k. The experimental results of increasing k in the four
combinations of news feed and query datasets are shown in Table III, and we have the
following observations.

First, the performance of TAAT and TA+ are not promising—much worse than BM-
OPT—primarily because their upper bound estimation is not effective in the new search
problem and the majority of ads are fetched by random access.

Second, the methods based on block-max indexes (including BM-OPT and BMW-LB-
PB) achieve the best performance among the baseline competitors, because their block-
oriented retrieval strategy is cache conscious and friendly to partial score aggregation.
Thus, even though most of the ads were evaluated, they still demonstrate competitive
performance. It is also surprising to find that BMW-LB-PB did not achieve superior
performance in our new search context. Our explanation is that the block-max–based
solutions rely on the sum of block-max scores for pruning. In our problem setup, there
are too many query terms, rendering the effect of pruning to be limited. As we can
see from the experimental results, the number of evaluated candidates is not reduced
significantly when we use sub-blocks in BMW-LB-PB. In contrast, when using a fixed
block size, BM-OPT can be implemented with very simple logic. Thus, the additional
cost paid by BMW-LB-PB (more complicated logic and bitset access) is higher than the
benefit brought by the better pruning effect. A similar explanation was also proposed
in Dimopoulos et al. [2013b] to analyze why BMM achieves similar performance with
BMW even with 20 to 30 times more doc evaluations. This is because BMW spends a
fair amount of effort trying to avoid evaluations and calls, whereas BMM tries to keep
the control structure simple.

Third, with the tight upper bound estimation, TA-PAR and TA-PAR-Lazy improve
the search performance of TA+ dramatically. In the Amazon dataset, it is faster than
TA+ by 3 times, and in the AOL dataset, this margin increases to be more than 15 times.
Its performance is inferior to BM-OPT in the Amazon dataset even though it evaluates
much fewer candidates. This is because the TA variants use memory random access to
evaluate the full score of a candidate, whereas BM-OPT uses sequential access for the
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Table III. Experimental Results with Increasing k (|T| = 100)

Matching Time (ms) Evaluated Ads
Methods 5 10 15 20 100 5 10 15 20 100

Datasets: Twitter + Amazon

TAAT 321 324 319 326 337 87.2% 87.3% 87.3% 87.5% 87.9%
BM-OPT 52.2 52.5 56.1 55.0 59.4 91.8% 91.8% 91.8% 91.8% 92.0%

BMW-LB-PB 55.7 58.2 63.3 69.2 78.9 89.2% 89.5% 90.2% 90.1% 90.8%
TA+ 240 247 249 245 298 55.9% 56.3% 56.6% 57.1% 62.3%

TA-PAR 97.7 101 105 109 128 24.9% 26.1% 26.9% 27.4% 30.8%
TA-PAR-Lazy 77.8 78.5 79.5 80.5 92 19.4% 19.8% 20.0% 20.4% 23.4%
RANK-PAR 8.69 15.4 20.5 26.3 40.7 4.63% 7.53% 9.42% 11.5% 17.5%

Datasets: News + Amazon

TAAT 349 345 348 348 357 92.4% 92.4% 92.4% 92.4% 92.9%
BM-OPT 76.3 77.0 77.5 78.5 87.0 94.1% 94.1% 94.1% 94.1% 94.7%

BMW-LB-PB 80.3 82.8 85.2 89 97.3 91.0% 91.8% 92.5% 93.9% 94.3%
TA+ 245 247 247 247 265 52.8% 53.0% 53.1% 53.2% 55.1%

TA-PAR 82.8 84.5 86.8 88.4 102.4 20.9% 21.5% 22.1% 22.5% 26.5%
TA-PAR-Lazy 63.2 63.4 63.8 63.7 75.2 15.9% 16.0% 16.1% 16.2% 18.9%
RANK-PAR 2.48 4.14 6.45 6.70 11.5 1.38% 2.12% 2.74% 3.08% 5.7%

Datasets: Twitter + AOL

TAAT 1,101 1,092 1,075 1,062 1,239 67.2% 67.2% 67.2% 67.3% 73%
BM-OPT 264 269 278 283 297 69.8% 69.8% 69.8% 69.8% 70.6%

BMW-LB-PB 256 264 272 279 299 55.2% 58.0% 59.8% 60.2% 65.2%
TA+ 1,571 1,516 1,493 1,494 1,694 44.7% 44.8% 44.9% 44.9% 52.3%

TA-PAR 94.1 96.3 99.1 101.3 118.1 4.96% 5.17% 5.30% 5.40% 7.90%
TA-PAR-Lazy 66.8 65.7 67.4 67.1 83.4 3.62% 3.67% 3.71% 3.74% 4.6%
RANK-PAR 4.88 7.94 13.4 18.9 31.2 0.40% 0.74% 1.19% 1.61% 2.94%

Datasets: News + AOL

TAAT 1,472 1,460 1,446 1,448 1,523 80.8% 80.8% 80.8% 80.9% 82.2%
BM-OPT 273 292 299 307 326 82.4% 82.4% 82.4% 82.4% 82.9%

BMW-LB-PB 283 298 312 333 360 77.4% 78.9% 80.4% 80.8% 81.1%
TA+ 1,756 1,798 1,796 1,746 1,815 50.7% 50.7% 50.8% 50.8% 51.2%

TA-PAR 103 104 105 107 119 5.03% 5.17% 5.25% 5.31% 5.91%
TA-PAR-Lazy 84.2 83.1 83.0 84.2 93.7 4.09% 4.12% 4.14% 4.16% 4.98%
RANK-PAR 2.91 3.49 5.77 6.74 10.3 0.18% 0.34% 0.52% 0.64% 1.01%

candidates in a block and their partial scores are aggregated using a small fixed-size
array that can be finished very efficiently. However, in the million-scale AOL dataset,
TA-PAR is more than 2 times superior over BM-OPT. This is because the average length
of ads in the AOL dataset is much smaller than that in the Amazon dataset. Due to
the tight upper bound for partitions with small |a|, the new TA-based algorithm only
accesses 5% of the ads in the AOL dataset. TA-PAR-LAZY can remarkably reduce the
number of accessed ads. This number was shrunk by 25% in the Amazon dataset and
by 20% in the AOL dataset. Consequently, performance was respectively improved by
20% and 15% in the two datasets.

Fourth, rank-aware partitioning and upper bound estimation strategies are highly
effective, and top-k ad matching is supremely fast. Its performance is scalable to the
number of query topics and the size of the ad database. When the query set is the
News dataset (whose average number of query topics is higher than that in the Twitter
dataset), its performance is up to 60 times superior over all competitors in the Amazon
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Fig. 6. Iterative visualization of upper bound versus δk in TA-based algorithms.

dataset for small k and |T |. Alternatively, when querying against the AOL dataset
with k = 5 and |T | = 100, the performance gap is further widened. Overall, most of
the top-k ad matching queries can be answered within 10ms, which is fast enough to
provide candidates for the second-stage reranking and return the final recommended
ads to users in real time. This verifies that our proposed upper bound estimation is very
tight and our block-at-a-time search strategy can really support early termination.

We also note that our RANK-PAR is the only algorithm that is sensitive to k. When k
increases from 5 to 20, there is a clear trend of growth in terms of search time. This is a
positive signal because it implies that our algorithm is not overevaluating candidates.
In the News + AOL datasets, it evaluates less than 1% of the ads in most cases. The
other algorithms are not sensitive to k because when the upper bound estimation is not
tight enough, they need to overevaluate a large number of unpromising candidates. We
visually display the convergence process of the upper bound of various algorithms in
Figure 6. The horizontal line OPT is the final k-th score of a selected query. As more
candidates are evaluated, δk will gradually increase to be OPT and the upper bound of
all unseen ads will decrease. The algorithm terminates when the upper bound equals
δk. The red marks indicate the iteration in which δk increases to OPT. We can see
that for different algorithms, the convergence of δk to OPT is very fast. For example,
in the first 10 iterations, TA-PAR and TA+ have accessed the top-k results and its δk
has become optimal. The remaining part of the algorithms is to continue to evaluate
the candidates with an upper bound higher than δk and prune them. The algorithm
terminates only when the upper bound decreases to OPT. Therefore, when k increases,
δk still reaches OPT much earlier than the time when the upper bound decreases to
OPT and performance of TA-based algorithms is not sensitive to k.

6.4.3. Performance with Increasing |T|. As shown in Table IV, when |T | increases, the
running time grows dramatically among all methods because with more topics in a
query, there are more inverted lists involved for aggregation. However, with more
topics in an ad, the inverted lists become longer and incur a higher evaluation cost.
For the TA variants and our proposed methods, calculating the full score of an ad is a
highly frequent procedure and requires |T | iterations for inner product calculation in
the worst case.
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Table IV. Experimental Results with Increasing |T|
Matching Time (ms) Accessed Ads

Methods 5 50 100 150 200 5 50 100 150 200

Datasets: Twitter + Amazon

TAAT 93 288 324 371 411 95.7% 89.0% 87.3% 88.5% 87.8%
BM-OPT 16 40.3 52.5 75.6 131 97.8% 94.8% 91.8% 89.8% 88.3%

TA+ 68 187 247 294 351 42.5% 48.0% 56.3% 56.4% 61.7%

TA-PAR 29 49.2 101 129 169 28.0% 17.4% 26.1% 28.6% 35.8%
TA-PAR-Lazy 24.5 36.5 78.5 99.3 133 23.0% 13.5% 19.8% 21.7% 27.6%
RANK-PAR 0.4 4.8 15.4 18.4 37.1 0.23% 2.96% 7.53% 7.19% 12.2%

Datasets: News + Amazon

TAAT 113 306 345 377 428 89.2% 86.7% 86.6% 86.5% 87.4%
BM-OPT 12 39.3 77.0 125 156 98.6% 95.6% 94.1% 92.4% 91.1%

TA+ 78 193 247 300 337 43.6% 49.3% 53.0% 59.2% 60.7%

TA-PAR 31 50.4 84.5 125 151 26.9% 17.9% 21.5% 27.7% 31.0%
TA-PAR-Lazy 25 36.4 63.4 96.4 107 21.5% 14.0% 16.0% 20.5% 22.9%
RANK-PAR 0.09 0.61 4.14 8.06 11.5 0.04% 0.69% 2.12% 3.19% 4.57%

Datasets: Twitter + AOL

TAAT 356 891 1,092 1,560 1,864 76.6% 59.6% 67.2% 58.2% 61.8%
BM-OPT 71 225 278 310 387 89.6% 78.7% 69.8% 63.3% 58.8%

TA+ 444 1,202 1,516 1,632 1,731 32.9% 37.5% 44.7% 42.9% 41.5%

TA-PAR 81.3 82.9 96.3 112.2 131.5 11.5% 5.48% 5.17% 5.28% 5.04%
TA-PAR-Lazy 62 60.4 65.7 75.4 84.9 9.6% 4.25% 3.62% 3.47% 3.20%
RANK-PAR 0.03 2.96 7.94 13.1 21.5 0.04% 0.29% 0.74% 1.10% 1.41%

Datasets: News + AOL

TAAT 587 1,302 1,460 1,797 2,283 86.2% 81.9% 80.8% 77.9% 75.5%
BM-OPT 70 225 292 328 408 90.7% 87.6% 82.4% 78.2% 74.9%

TA+ 467 1,444 1,798 2,161 2,246 38.4% 44.9% 50.7% 54.1% 54.4%

TA-PAR 85 97 104 121 156 10.9% 6.83% 5.17% 5.30% 5.33%
TA-PAR-Lazy 76 80.0 83.1 98.1 111 8.92% 6.03% 4.12% 4.03% 3.90%
RANK-PAR 0.02 0.78 3.49 10.39 19.22 0.01% 0.11% 0.34% 0.39% 0.70%

Table V. Experimental Results of Two-Level BM-OPT (Twitter + Amazon)

Matching Time (ms) Accessed Ads
Methods 50 100 150 200 50 100 150 200

Datasets: Twitter + Amazon

BM-OPT 40.3 52.5 75.6 131 94.8% 91.8% 89.8% 88.3%
BM-OPT-Two-Level 34.8 45 67 109 71.8% 66.2% 62.8% 59.3%

6.4.4. Applying the Two-Level Framework on BM-OPT. In this experiment, we evaluate the
two-level partitioning on the BM-OPT algorithm. The ads are first partitioned accord-
ing to their length (i.e., number of nonzero entries), and for each partition we apply the
BM-OPT algorithm. Results in Table V show that the performance of BM-OPT can be
improved because the two-level partitioning provides a tighter upper bound estimation
when we use the sum of block-max scores for pruning and the number of evaluated ads
are significantly reduced.

6.4.5. Memory Consumption. Since we assume that the index can fit in memory and
the postings lists are not compressed, our final experiment is to examine the memory

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 28, Publication date: May 2017.



28:24 D. Zhang et al.

Table VI. Index Size (MB) with Increasing |T|
Amazon Dataset AOL Dataset

Methods 20 50 100 200 20 50 100 200
BM-OPT 16 24 30 37 103 130 147 163
TA-Par 20+16 50+24 101+30 203+37 232+103 580+130 1,161+147 2,322+163

TA-Par-Lazy 20+33 50+49 101+61 203+74 232+206 580+261 1,161+295 2,322+327
Rank-Par 20+16 50+24 101+30 203+37 232+103 580+130 1,161+147 2,322+163

consumption. As shown in Table VI, the total overhead is reported in the form of A+ B.
A is the size of the ad database, which consists of all ads in the form of topic vectors and
is used for random access by the TA-based methods as well as our proposed approaches.
A random access means that the topic vector will be retrieved from the ad database to
directly evaluate its relevance score with respect to the query. B refers to the inverted
index size, including the additional data structures required by the partitioning, the
max scores, and bitmaps that can facilitate pruning. To reduce the space overhead of
raw ad database, we apply quantization, which is a standard technique in information
retrieval, and several methods have been proposed for quantizing term scores. In our
implementation, we follow the quantization process in Dimopoulos et al. [2013b] to
reduce the storage cost of block-max scores. The difference is that we assign 2 bytes
(16 bits) instead of 1 byte to represent the term weights normalized in [0, 1]. Each
weight is approximately represented by the quantized interval with length 1

65536 , which
can provide better approximation. Results show that the conventional block-oriented
methods such as BM-OPT consume a smaller amount of memory. This is because they
only need to access the inverted index for query processing and the space overhead of ad
database does not need to be taken into account for BM-OPT. For the methods proposed
in this article, as the number of topics |T | increases, the memory consumption grows
linearly. In the default setting of |T | = 100, their space overhead is mainly caused by
the ad database that is memory resident. The metadata for the partition information
is negligible compared to the index size. Thus, TA-Par and Rank-Par consume almost
the same amount of memory. The index size of TA-Par-Lazy is around two times that
of TA-Par because it needs to store an additional signature and max score to facilitate
decision making. Finally, we can see that even when there are 7 million ads with 200
topics, the total memory consumption is still affordable for a commodity server.

7. CONCLUSION

In this article, we studied efficient processing of long queries against a short text corpus
for news stream advertising. To solve the top-k matching problem efficiently, we revis-
ited the TA algorithm by exploiting the distinctive properties of the new search scenario.
Since directly adopting existing TA algorithms results in disappointing performance,
we devised a two-level partitioning and lazy evaluation scheme that runs three to four
times faster than existing keyword search techniques in a million-scale ad database.
To further improve performance, we proposed a novel rank-aware block-oriented in-
verted index, a block-at-a-time search strategy, and tight upper bound estimations.
Experimental results show that our proposed techniques are highly effective. Search
performance is significantly boosted and is at least one order of magnitude superior
over its competitors in most query settings.
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