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• The raw data we collect from the real world always 
contain missing values.

• How to handle the missing values?
– Dropping the records containing missingness.
– Using Imputation methods to complete data.

• It is hard to obtain the ground-truth via value imputation

Missing Data is Everywhere
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Noise Shift in Source and Target Datasets

• Separately impute source and target data might cause an even 
bigger divergence on data distributions.
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If we cannot repair them to be correct, can we repair them to be “similar”?



Adaptive Data Augmentation 
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① Target Mask Generation

② Source Data Adaptation

④ Retrain the model ⑤ Apply the new model

③ Simple Imputation
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Target Mask Generation
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We utilize Conditional GAN to 
learn the p(mask|observed data)
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Source Data Adaptation
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We then use another GAN to learn 
the p(target data)
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Adaptive Data Augmentation

7

Finally, we can transform a source 
data to the target data by using the 
mask generator Gm and data generator 
Gx.



Experiment
• Datasets

• Baselines:
– MICE: Multiple Imputation with Chained Equations.
– MISF: MissForest.
– GAIN: Generative Adversarial Imputation Nets.

8

Real Missing

Synthetic 
Missing



Experiment

• Evaluation Framework
– Evaluation Task:

• Classification.
– Metrics:

• F1 score of model.
– For Imputation Methods:

• Train the model on imputed source data, then apply it to the 
imputed target data.

– For DAGAN:
• Train the model on adapted source data, then directly apply it to 

the target data.
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Evaluation on Real-World Datasets.
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* MISF fails on the Ipums dataset because its R-based implementation cannot 
handle categorical attributes with more than 53 categories



Evaluating Effect of Data Adaptation
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Repairing source and target to 
be “similar” is beneficial for ML 
training.



Robustness Evaluation
• We consider three different settings of missing value injection.

– MCAR (Missing Completely at Random)
– MAR (Missing at Random)
– MNAR (Missing Not at Random)
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DAGAN is robust for different missing data patterns.



Conclusion
• We propose DAGAN to adapt the source data to better serve 

the prediction on the unseen target data.
• DAGAN performs well over different missing patterns. 
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Average F1 across missing rates 
under different datasets and
missing patterns
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Thank you!

Github repository:  https://github.com/ruc-datalab/dagan



Multi-ADA
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