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Abstract
Data labeling, which assigns data with multiple classes, is indispensable for many applications, such as machine learning
and data integration. However, existing labeling solutions either incur expensive cost for large datasets or produce noisy
results. This paper introduces a cost-effective labeling approach and focuses on the labeling rule generation problem that
aims to generate high-quality rules to largely reduce the labeling cost while preserving quality. To address the problem, we
first generate candidate rules and then devise a game-based crowdsourcing approach CrowdGame to select high-quality
rules by considering coverage and accuracy. CrowdGame employs two groups of crowd workers: One group answers rule
validation tasks (whether a rule is valid) to play a role of rule generator, while the other group answers tuple checking tasks
(whether the label of a data tuple is correct) to play a role of rule refuter. We let the two groups play a two-player game:
Rule generator identifies high-quality rules with large coverage, while rule refuter tries to refute its opponent rule generator
by checking some tuples that provide enough evidence to reject rules with low accuracy. This paper studies the challenges in
CrowdGame. The first is to balance the trade-off between coverage and accuracy. We define the loss of a rule by considering
the two factors. The second is rule accuracy estimation. We utilize Bayesian estimation to combine both rule validation and
tuple checking tasks. The third is to select crowdsourcing tasks to fulfill the game-based framework for minimizing the loss.
We introduce a minimax strategy and develop efficient task selection algorithms. We also develop a hybrid crowd-machine
method for effective label assignment under budget-constrained crowdsourcing settings. We conduct experiments on entity
matching and relation extraction, and the results show that our method outperforms state-of-the-art solutions.

Keywords Crowdsourcing · Data labeling · Labeling rules

1 Introduction

In many applications, such as data integration and machine
learning (ML), it is indispensable to obtain large-scale
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labeled datasets with high quality. For example, deep learn-
ing (DL) has become a major advancement in machine
learning and achieves state-of-the-art performance in many
tasks, such as image recognition and natural language pro-
cessing [20]. However, most of the DL methods require
massive training sets to achieve superior performance [37],
which usually causes significant labeling costs or efforts.

To address the problem, crowdsourcing can be utilized
to harness the crowd to directly label tuples in a dataset at
relatively low cost (see a survey [23]). However, as many
datasets contain tens of thousands to millions of tuples, such
tuple-level labeling still inevitably incurs large labeling cost.
Another approach is to leverage labeling rules that label mul-
tiple tuples. For example, in relation extraction that identifies
structural relations, say spouse relation, from unstructured
data, labeling rules like “A is married to B” can be used to
label tuples like Michelle Obama and Barack Obama.
Unfortunately, it is challenging to construct labeling rules.
Handcrafted rules from domain experts are not scalable, as
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(a)
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Fig. 1 Rule-based data labeling in entity matching

it is time and effort consuming to handcraft many rules with
large coverage.Weak-supervision rules automatically gener-
ated [32,33], e.g., distant supervision rules, can largely cover
the tuples; however, they may be very noisy and provide
wrong labels.

In this paper, we study the data labeling problem that
assigns data with multiple classes (i.e., labels), and focus on
examining labeling rule generation using crowdsourcing to
reduce labeling cost while preserving high quality. We aim
at generating “high-quality” rules using two objectives: 1)
high coverage: selecting the rules that cover as many tuples
as possible to label the data. Intuitively, the larger the cov-
erage is, the higher the cost on tuple-level labeling could be
reduced and 2) high accuracy: preferring the rules that induce
few wrong labels on their covered tuples.

Example 1 To illustrate the problem, let us consider an appli-
cation of entity matching (EM) [7], i.e., identifying whether
a pair of product records is the same entity, as shown in
Fig. 11. In the application, we regard each product pair as
a tuple and aim to assign each tuple with one of the two
possible labels: matched and unmatched. To save label-
ing cost, we can introduce blocking rules that discriminate
product pairs and assign the product pairs as unmatched.
Some example blocking rules, each of which is represented
by two keywords, are shown in Fig. 1b. For example, r1 :
(Sony,Apple) expresses that any product pair, with one
product containing keyword Sony and the other containing
Apple, is labeled as unmatched. Among these rules, we
can see that r4 has larger coverage, i.e., coveringmore tuples,
than r2.However, r4 is less accurate, as it only correctly labels

1 Note that the matching criterion is the same product model and the
same manufacture, without considering specifications like color and
storage.

two out of four tuples (e1 and e4). Thus, our goal is to select
labeling rules with large coverage and high accuracy.

Labeling rule generation is very challenging as there may
bemany ruleswith diverse quality. Evenworse, althougheasy
to know coverage of rules, it is hard to obtain rule accuracy.
To address this problem,we propose to utilize crowdsourcing
for rule selection. A straightforward approach employs the
crowd to answer a rule validation task is to check whether
a rule is valid or invalid. Unfortunately, the crowd may give
low-quality answers for a rule validation task, as a rule may
cover many tuples and the workers cannot examine all the
tuples covered by the rule. To alleviate this, we introduce a
type of tuple checking task, which asks the crowd to give the
label of a tuple and utilizes the result to validate/invalidate
rules that cover the tuple. However, it is expensive to ask
many tuple checking tasks.

We devise a two-pronged crowdsourcing scheme that first
uses rule validation tasks as a coarse pre-evaluation step and
then applies tuple checking tasks as a fine post-evaluation
step. To effectively utilize the two types of tasks, we intro-
duce a game-based crowdsourcing approach CrowdGame.
It employs two groups of crowdworkers: One group answers
rule validation tasks to play a role of rule generator, while
the other group answers tuple checking tasks to play a role of
rule refuter. We let the two groups play a two-player game:
Rule generator identifies high-quality rules with large cov-
erage and accuracies, while rule refuter tries to refute rule
generator by checking some tuples that provide enough evi-
dence to “reject” more rules.

We study the research challenges in our game-based
crowdsourcing. First, it is challenging to formalize the qual-
ity of a rule by trading off its accuracy and coverage. We
introduce the loss of a rule set that combines the uncovered
tuples and the incorrectly covered tuples. We aim to select
a rule set to minimize the loss. Second, it is hard to obtain
the real accuracy of a rule. To address the challenge, we uti-
lize theBayesian estimation technique.We regard crowd rule
validation results as a prior, which captures crowd judgment
without inspecting any specific tuples. As the prior may not
be precise, we then use the crowd results on tuple checking as
“data observation” to adjust the prior, so as to obtain a poste-
rior of rule accuracy. Third, it is hard to obtain high-quality
rules to minimize the loss under our framework. We develop
a minimax strategy: Rule generator plays as a minimizer to
identify rules to minimize the loss; rule refuter plays as a
maximizer to check tuples for maximizing the loss. We iter-
atively call rule generator and rule refuter to select the rules.
Fourth, in many circumstances, the generated rules are insuf-
ficient to cover all the tuples. To address this, we introduce a
hybrid label assignment method to combine crowdsourcing
and deep learning models.

To summarize, we make the following contributions:
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(1) We propose a data labeling approach using game-based
crowdsourcing for labeling rule generation. We employ
two groups of crowd workers and let the workers play a
two-player game to select high-quality rules.

(2) We introduce the loss of a rule set that combines uncov-
ered and incorrectly covered tuples to balance coverage
and accuracy.We estimate accuracy of a rule by combin-
ing rule validation and tuple checking through Bayesian
estimation and develop effective task selection algo-
rithms.

(3) We develop a hybrid crowd-machine label assignment
method for data labeling under total crowdsourcing bud-
get constraints.

(4) We conducted experiments on real entity matching
and relation extraction datasets. The results show that
our approach outperforms state-of-the-art solutions on
tuple-level crowdsourcing and ML-based consolidation
of labeling rules.

This article extends our conference version [49], where
the main extension is summarized as follows:

– We introduce a hybrid crowd-machine label assignment
method to address the budget-constrained crowdsourc-
ing setting. Section 6 presents the method, and Sect. 7.6
reports the experimental results.

– We provide proofs for all the lemmas and theorems in the
paper (Appendix A).

– We add additional experiments, such as empirical obser-
vations of candidate rules (Sect. 7.2), effect of parameter
settings (Sect. 7.7), and examples of labeling rules
(Appendix B).

2 Problem formulation

This paper studies the data labeling problem. Given a
set E = {e1, e2, . . . , em} of data tuples, the problem aims
to annotate each tuple ei ∈ E with one of the l possi-
ble labels, denoted by L = {L1, L2, . . . , Ll}. Without
loss of generality, this paper focuses on the binary label-
ing problem that considers two possible labels, denoted as
L = {L1 = −1, L2 = 1}. For example, in the appli-
cation of entity matching, each tuple is a product record
pair, and it needs to be labeled with one of the two labels
L1 = −1 (unmatched) and L2 = 1 (matched). Another
application is relation extraction [29] from the text data (e.g.,
sentences), which identifies whether a tuple consisting of
two entities, say Barack Obama and Michelle Obama,
have a target relation (label L2 = 1), say spouse, or not
(L1 = −1).

2.1 Overview of our framework

We introduce a cost-effective data labeling framework as
shown in Fig. 2. The framework makes use of the label-
ing rules (rules for simplicity), each of which can be used to
label multiple tuples in E , to reduce the cost.
Definition 1 (Labeling rule) A labeling rule is a function r j :
E → {L,nil} that maps tuple ei ∈ E into either a label L ∈
L or nil (which means r j does not cover ei ). In particular,
let C(r j ) = {e|r j (e) �= nil} denote the covered tuple set of
r j , C(R) = {e|∃r ∈ R, r(e) �= nil} denote the covered set
of a rule set R, and |C(R)| denote the size of C(R), called
the coverage of the rule set R.

Our framework labels a set of unlabeled tuples utilizing
labeling rules in two phases.
Phase I: Crowdsourced rule generation. This phase aims
at generating “high-quality” rules, where rule quality is mea-
sured by coverage and accuracy.

We first construct candidate rules, which may have var-
ious coverage and accuracy. There are two widely used
ways to construct candidate rules: handcrafted rules from
domain experts and weak-supervision rules automatically
generated by algorithms. Handcrafted rules ask users to write
domain-specific labeling heuristics based on their domain
knowledge. However, the rules are not scalable, especially
for large datasets, as it is time and effort consuming to
handcraft many rules with large coverage. Weak-supervision
rules automatically generated are introduced [32,33], e.g.,
distant supervision rules in information extraction, like uti-
lizing textual patterns, such as “A marries B,” as rules for
labeling spouse relation between entities A and B. Weak-
supervision rules can largely cover the tuples; however, some
of them may be very unreliable that provide wrong labels.

To address this problem, we propose to study a problem of
rule generation using crowdsourcing, to leverage the crowd
on identifying good rules from noisy candidates. We will
formalize this problem in Sect. 2.2.
Phase II: Label Assignment. This phase first labels tuples
using the high-quality rules generated in the previous phase.
However, as the rules may not cover all tuples, there exist
a proportion of tuples, which are not assigned with labels.
For these tuples, we devise techniques by considering the
following two settings:

– If there is no crowdsourcing budget constraint, we simply
use conventional tuple-level labeling [4,43] to label all
the tuples, where answer inference, such as transitivity,
can also be applied.

– If there is some crowdsourcing budget constraint, where
not all the tuples can be crowdsourced, we first judi-
ciously select the tuples with higher “utility” for crowd-
sourcing until the budget is used up. Then, we leverage
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Fig. 2 Framework of data labeling with game-based crowdsourcing

machine learning algorithms to infer labels for the
remaining tuples.

Recall the entity matching task example in Fig. 1. Our
framework uses crowdsourcing to select the rules with large
coverage and accuracy from the candidates (i.e., Phase I).
Suppose that {r1, r3} are selected, and then, six tuples can
be labeled by the rules in Phase II. Now, as the other four
tuples are still not covered, the framework can label them
using conventional crowdsourcing or utilize machine learn-
ing algorithms if there are crowdsourcing budget constraints.

For ease of presentation, this paper focuses on the “unary”
case that all rules annotate only one label (|L| = 1), e.g.,
L1 = −1 in our entity matching example. We will discuss
a more general case that some rules label L1 = −1, while
others provide L2 = 1 in Appendix C.

2.2 Labeling rule generation

Labeling rule generation in the first phase of our framework
is the focus of this paper. Intuitively, the problem aims to
identify “high-quality” rules with the following two objec-
tives:

– High coverage: selecting the rules that cover as many
tuples as possible.According to our framework, the larger
the coverage of rules is, the higher the cost on tuple-level
labeling (Phase II) could be reduced.

– High accuracy: preferring the rules that induce few
wrong labels on their covered tuples.

There may be a trade-off between coverage and accuracy.
On the one hand, some labeling scenarios prefer accuracy.
For instance, in most of entity matching tasks, ground-truth

labels are very skew. Thus, rule generation prefers not to
induce too many errors, which may lead to low quality (e.g.,
F-measure) of the overall entity matching process. On the
other hand, some scenarios prefer coverage formore labeling
cost reduction.

To balance the preference among coverage and accuracy,
we introduce the loss of a rule set R that considers two fac-
tors. Formally, consider a set R of rules that annotate label
L ∈ L to tuple set E . The first factor is the number of uncov-
ered tuples |E | − |C(R)| that formalizes the loss in terms of
the coverage, and this factor is easy to compute. In contrast,
the number of errors, i.e., incorrectly labeled tuples, is hard to
obtain, as true labels of tuples are unknown. Thus, we intro-
duce P(yi �= L) that denotes the probability that true label
yi of tuple ei is not L , and consider the expected number of
errors

∑
ei∈C(R) P(yi �= L) as the second factor. We define

the loss of a rule set R as follows:

Definition 2 (Loss of rule set) The loss Φ(R) of a rule set
R is defined as a combination of the number of uncov-
ered tuples |E | − |C(R)| and the expected number of errors
∑

ei∈C(R) P(yi �= L):

Φ(R) = γ (|E |− |C(R)|)+ (1− γ )
∑

ei∈C(R)

P(yi �= L), (1)

where γ is a tunable parameter between [0, 1] to balance the
preference among coverage and accuracy of the generated
rule setR.

For example, consider R1 = {r1} covering three tuples
without errors and R2 = {r1, r3} covering more but with
errors (e5 and e7). As entity matching prefers accuracy over
coverage on the blocking rules, one needs to set a small
parameter γ , say γ = 0.1. Under this setting, we have
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Table 1 Table of notations

yi True label of tuple ei
r j ; R A labeling rule; a set of rules

C(r) (C(R)) A set of tuples covered by rule r (rule set R)

L Label annotated by R to tuples

λ j (λ̂ j ) Accuracy (accuracy estimate) of rule r j
Φ(R) Loss of a rule set R

Φ(R1) < Φ(R2), which shows that a larger setR2 is worse
than a smaller set R1.

Now,weare ready to define the problemof rule generation.
LetRC = {r1, r2, . . . , rn}denote a set of candidate rules. The
problem is defined as below.

Definition 3 (Rule generation) Given a set RC of candidate
rules, it selects a subset R∗ that minimizes the loss, i.e.,
R∗ = argRminR⊆RC Φ(R).

Labeling rule generation is very challenging as there may
be many rules with diverse coverage and accuracy. Even
worse, although easy to know coverage of rules, it is hard to
obtain rule accuracy P(yi �= L). To address the problem, this
paper focuses on using crowdsourcing to achieve the above
loss minimization, which will be presented in Sections 3, 4,
and 5.

For ease of presentation, we summarize frequently used
notations (some only introduced later) in Table 1.

3 Crowdsourced rule generation

This section presents an overview of rule generation using
crowdsourcing. For ease of presentation, we first assume
that candidate rules have already been well constructed and
focus on presenting a game-based crowdsourcing framework
for selecting high-quality rules from the candidates in Sec-
tion 3.1. To solve the introduced game,we propose aminimax
crowdsourcing objective in Section 3.2. Finally, we discuss
how to construct candidate rules in Section 3.3.

3.1 Game-based crowdsourcing

The central obstacle of rule generation is that there may be
many rules with diverse and unknown accuracy. A naïve
crowdsourcing approach is to first evaluate each rule by
sampling some covered tuples and checking them through
crowdsourcing. For example, Fig. 3a shows an example
crowdsourcing task for such tuple checking, i.e., check-
ing whether two product records are matched. However, as
crowdsourcing budget (affordable number of tasks) is usu-
ally much smaller than data size, such “aimless” checking

Fig. 3 A two-pronged crowdsourcing scheme

without focusing on specific rules may result in inaccurate
rule evaluation, thus misleading rule selection.
Two-pronged task schemeWedevise a two-pronged crowd-
sourcing task scheme that first leverages the crowd to directly
validate a rule as a coarse pre-evaluation step and then
applies tuple checking tasks on validated rules as a fine post-
evaluation step. To this end, we introduce another type of
task, rule validation. Figure 3b shows such a task to validate
rule r1 (Sony,Apple). Intuitively, human is good at under-
standing rules and roughly judges the validity of rules, e.g., r1
is valid as the brand information (Sony andApple) is useful
to discriminate products. However, it turns out that rule val-
idation tasks may produce false positives because the crowd
may not be comprehensive enough as they usually neglect
some negative cases where a rule fails. This intuition is sup-
ported by our empirical observations in Section 7.2. Thus,
the fine-grained tuple checking tasks are also indispensable.

A game-based crowdsourcing approach There is usually a
trade-off between these two types of tasks. On the one hand,
assigning more budget on rule validation will lead to fewer
tuple checking tasks, resulting in less accurate evaluation on
rules. On the other hand, assigning more budget on tuple
checking, although being more confident on the validated
rules, may miss the chance for validating more good rules.

To effectively utilize these two types of tasks and balance
their trade-off, we introduce a game-based crowdsourcing
approach CrowdGame, as illustrated in the central part of
Fig. 2. It employs two groups of crowd workers from a
crowdsourcing platform (e.g., Amazon Mechanical Turk):
One group answers rule validation tasks to play a role of rule
generator (RuleGen), while the other answers tuple check-
ing tasks to play a role of rule refuter (RuleRef). To unify
these two groups, we consider that RuleGen and RuleRef
play a two-player gamewith our rule set lossΦ(R) in Eq. (1)
as the game value function:

– RuleGen plays as aminimizer: It identifies some rulesR
fromcandidatesRC for crowdsourcing via rule validation
tasks and tries to minimize the loss.

– RuleRef plays as amaximizer: It tries to refute its oppo-
nent RuleGen by checking some tuples that provide
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Fig. 4 Example of game-based crowdsourcing

enough evidence to “reject” more rules in R, i.e., maxi-
mizing the rule set loss Φ(R).

Awell-knownmechanism to solve suchgames is theminimax
strategy in game theory: The minimizer aims to minimize
the maximum possible loss made by the maximizer. Before
delving into formalization of this strategy, let us consider the
following intuitive example:

Example 2 Consider our example under a budget with four
tasks to askworkers and γ = 0.1.Wefirst consider a baseline
rule-validation-only strategy that crowdsources rules r1 to r4.
Suppose that all rules are validated except r4 (as laptop
and notebook are synonym), and we generate rule set
R1 = {r1, r2, r3} with loss Φ(R1) = 3∗ 0.1+ 2 ∗ 0.9 = 2.1
(three uncovered tuples and two error labels). Figure 4 shows
how CrowdGameworks, which is like a round-based board
game between two players. In the first round, RuleGen
selects r3 for rule validation, as it covers four tuples and can
largely reduce the first term of the loss in Eq. (1). However,
its opponent RuleRef finds a “counterexample” e5 using a
tuple checking task. Based on this, RuleRef refutes both r3
and r4 and rejects their covered tuples to maximize the loss.
Next in the second round, RuleGen selects another crowd-
validated rule r1, while RuleRef crowdsources e1, finds e1
is correctly labeled, and finds no “evidence” to refute r1. As
the budget is used up, we find a better rule set R2 = {r1}
than R1 with a smaller loss Φ(R2) = 0.7.

3.2 Formalization of minimax objective

For illustration purpose, Example 2 shows an extreme case
that one counterexample is enough to refute all rules covering
the tuple. However, inmany applications, rules that are 100%
correct may only cover a very small proportion of data. Thus,
we need to tolerate some rules which are not perfect but with
high “accuracy”.

We first introduce the accuracy, denoted by λ j , of rule r j
as the ratio of the tuples in C(r j ) correctly annotated with
label L of r j , i.e.:

λ j =
∑

ei∈C(r j ) 1{yi=L}
|C(r j )| , (2)

where1{yi=L} is an indicator function that returns 1 if yi = L
or 0 otherwise. In particular, let ΛR denote the accuracies of
all rules inR.

Rule accuracy λ j is actually unknown to us, and thus, we
need to estimate it using tuple checking crowdsourcing tasks.
Let λ̂ j (Eq) be an estimator of λ j for rule r j based on a set
Eq of tuples checked by the crowd, and Λ̂R(Eq) = {λ̂ j (Eq)}
is the set of estimators, each of which is used for evaluating
rule r j ∈ R.

We use Λ̂R(Eq) to compute our overall loss defined in
Eq. (1). Formally, let Ri ⊆ R denote the set of rules in R
covering tuple ei , i.e., Ri = {r j ∈ R|r j (ei ) �= nil}. For
ease of presentation, we denote P(yi = L) as P(ai ) if the
context is clear. Then, we introduce Φ(R|Eq) to denote the
estimated loss based on a set Eq of tuples checked by the
crowd, i.e.:

Φ(R|Eq) = γ (|E | − |C(R)|) + (1 − γ )
∑

ei∈C(R)

1 − P(ai |Λ̂Ri
(Eq))

= γ |E | − (1 − γ )
∑

ei∈C(R)

{
P(ai |Λ̂Ri

(Eq)) − 1 − 2γ

1 − γ

}
(3)

The key in Eq. (3) is P(ai |Λ̂Ri
(Eq)), which captures our

confidence about whether yi = L (ei is correctly labeled)
given the observations that ei is covered by rule Ri with
accuracies ΛRi

(Eq). Next, we discuss how to compute

P(ai |Λ̂Ri
(Eq)). First, if ei is only covered by a single rule

r j ∈ Ri , we can consider ei is sampled from Bernoulli dis-
tribution with parameter λ̂ j (Eq) and thus the probability that
ei is correctly labeled is λ̂ j (Eq). Second, if ei is covered

by multiple rules, the P(ai |Λ̂Ri
(Eq)) is not easy to esti-

mate, because rules may have arbitrary kinds of correlation.
In this paper, we use a “conservative” strategy that com-
putes P(ai |Λ̂Ri

(Eq)) as the maximum rule accuracy among

ΛRi
, i.e., P(ai |Λ̂Ri

(Eq)) = maxr j∈Ri λ̂ j (Eq). The rational
is that ei is covered by rule r∗

j with the largest accuracy, and
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its P(ai |Λ̂Ri
(Eq)) is at least λ̂∗

j . Consider our example in

Fig. 4. Suppose that we have already estimated λ̂3 = 0.5
and λ̂1 = 1 using Eq. Then, we compute P(a7|Λ̂R7

(Eq))
for e7 as 0.5, since e7 is only covered by λ3. We compute
P(a1|Λ̂R1

(Eq)) for e1 as 1.0, as we know that e1 is covered
by a perfect rule r1.Wewill studymore complicatedmethods
for computing P(ai |Λ̂Ri

(Eq)) in the future work.
Now, we are ready to formalize the minimax objective.

Let Rq and Eq, respectively, denote the sets of rules and
tuples, which are selected by RuleGen and RuleRef, for
crowdsourcing. Given a crowdsourcing budget constraint k
on number of crowdsourcing tasks for rule generation, the
minimax objective is defined as

OR∗
q,E∗

q = min
Rq

max
Eq

Φ(Rq|Eq)

⇐⇒ max
Rq

min
Eq

∑

ei∈C(Rq)

{

P(ai |Λ̂Ri (Eq)) − 1 − 2γ

1 − γ

}

⇐⇒ max
Rq

min
Eq

∑

ei∈C(Rq)

{

max
r j∈Ri

λ̂ j (Eq) − 1 − 2γ

1 − γ

}

(4)

such that task numbers |Rq| + |Eq| ≤ k. For ease of presen-
tation, we introduce the notation JRq,Eq where

JRq,Eq =
∑

ei∈C(Rq)

{

max
r j∈Ri

λ̂ j (Eq) − 1 − 2γ

1 − γ

}

(5)

Based on Eq. (4), we can better illustrate the intuition of
CrowdGame. Overall, CrowdGame aims to find the opti-
mal task sets R∗

q and E∗
q with constraint |Rq| + |Eq| ≤ k.

Specifically,RuleGenwould prune rules with λ̂ j <
1−2γ
1−γ

as
they are useless for the maximization. Moreover, RuleGen
prefers to validate rules with large coverage and high accu-
racy to minimize the loss. On the contrary, RuleRef aims to
check tuples which are helpful to identify low-accuracy rules
that cover many tuples, so as to maximize the loss. These two
players iteratively select tasks until crowdsourcing budget is
used up.

We highlight the challenges in the above process. The first
challenge is how to select rule validation and tuple checking
tasks for crowdsourcing to achieve the minimax objective.
To address this challenge, we propose task selection algo-
rithms in Sect. 4. Second, as shown in Eq. (4), the objective
is based on rule accuracy estimators, e.g., λ̂ j (Eq). We intro-
duce effective estimation techniques in Sect. 5.

3.3 Candidate rules construction

This section presents our methods to create candidate rules
from the raw text data for entity matching (EM) and relation

Fig. 5 Candidate rules construction

extraction (RE). Note that our approach can also utilize other
sources of candidate rule construction, e.g., from domain
experts and using alternative algorithms. Development of
more effective candidate rule generation is not the focus of
this paper.

Candidate rules for entity matching The first application
is entity matching for records with textual description, as
shown in our running example. We want to construct candi-
date blocking rules annotating label L1 = −1 to record pairs.
Note that, although blocking rules are extensively studied
(see a survey [7]), most of the approaches are based on struc-
tured data, and there is limited work on generating blocking
rules from unstructured text. The idea of our approach is
to automatically identify keyword pairs, which are effective
to discriminate record pairs, from raw text. For example, in
Fig. 5a, keyword pairs, such as (Canon,Panasonic) and
(Camera,Telephone), tend to be capable of discriminat-
ing products, because it is rare that records corresponding
to the same electronic product mention more than one man-
ufacture name or product type. More precisely, we want to
discover the word pair (wa, wb) such that any record sa con-
taining wa and another record sb containing wb cannot be
matched.

The challenge is how to automatically discover these “dis-
criminating” keyword pairs. We observe that such keyword
pairs usually have similar semantics, e.g., manufacture and
product type. Based on this, we utilize word embedding
techniques [27,28], which are good at capturing semantic
similarity. We leverage the word2vec toolkit2 to generate an
embedding (i.e., a numerical vector) for each word, where
words with similar semantics are also close to each other
in the embedding space. Then, we identify keyword pairs
from each record pair (sa, sb) using the Word Mover’s Dis-
tance (WMD) [19]. The idea of WMD is to optimally align
words from sa to sb, such that the distance that the embed-
ded words of sa “travel” to the embedded words of sb is
minimized (see [35] for more details). Figure 5a illustrates
an example of using WMD to align keywords between two

2 https://code.google.com/p/word2vec/
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records, where the alignment is shown as red arrows. Using
the WMD method, we identify keyword pairs from multiple
record pairs and remove the oneswith frequency smaller than
a threshold (e.g., 10 in our experiments).

The WMD technique is also used to compute the refute
probability P(e×

i ) described in Sect. 4.2. The intuition is that
refute probability captures how likely the crowd will label a
tuple as matched (label +1) and thus refute a blocking rule.
As ground truth of labels is unknown, we use the similar-
ity between the two records in a tuple, which is measured
by WMD, to estimate the probability: The more similar the
records are, the more likely the crowd will label the tuple
as matched. The similarity-based idea is also used in other
crowdsourced entity matching works [4,44].

Candidate rules for relation extraction Relation extrac-
tion aims to discover a target relation of two entities in
a sentence or a paragraph, e.g., spouse relation between
Kerry Robles and Damien in Fig. 5b. This paper uti-
lizes keywords around the entities as rules for labeling +1
(entities have the relation) or −1 (entities do not have the
relation). For example, keyword husband can be good at
identifying the spouse relation (i.e., labeling +1), while
brother can be regarded as a rule to label −1.

We apply distant supervision [29], which is commonly
used in relation extraction, to identify such rules, based on
a small amount of known positive entity pairs and negative
ones. For example, given a positive pair (Kerry Robles,

Damien), we can identify the words around these entities,
e.g., living, Mexico City, and husband (stop words
like was and with are removed), as the rules labeling +1.
Similarly, we can identify rules that label −1 from nega-
tive entity pairs. We remove the keywords with frequency
smaller than a threshold (5 in our experiments) and take the
remaining ones as candidate rules. One issue is how to iden-
tify some phrases, e.g., Mexico City. We use point-wise
mutual information (PMI) discussed in [5] to decide whether
two successive words, say wi and w j , can form a phrase.
Specifically, we consider the joint probability P(wi , w j ) and
marginal probabilities P(wi ) and P(w j ), where the proba-
bility can be computed by the relative frequency in a dataset.

Then, PMI is calculated by log2
P(wi ,w j )

P(wi )P(w j )
. Intuitively, the

larger the PMI is, the more likely that wi and w j are fre-
quently used as a phrase. We select the phrases whose PMI
scores are above a threshold (e.g., log2 100 in our experi-
ments).

To compute refute probability P(e×
i ), we devise the fol-

lowing method. Based on the small amount of positive and
negative tuples mentioned above, we train a logistic regres-
sion classifier using the bag-of-words features. Given any
unlabeled tuple, we extract the bag-of-words feature from it
and take the output of the classifier as refute probability of
the tuple.

4 Task selection algorithms

To achieve the minimax objective, we develop an iterative
crowdsourcing algorithm, the pseudo-code of which is illus-
trated in Algorithm 1. Overall, it runs in iterations until BR

(crowdsourcing budget) tasks are crowdsourced, where each
iteration consists of a RuleGen step and a RuleRef step.

Algorithm 1: MinimaxSelect (RC, E , BR, b)
Input: RC: candidate rules; E: tuples to be labeled;

BR: a budget; b: a crowdsourcing batch
Output: Rq: a set of generated rules
Initialize Rq ← ∅, Eq ← ∅ ;1
for each iteration t do2

/* Rule Generator Step */

Select R(t)
q ← argR maxR⊆RC−Rq,|R|=b Δg(R|JRq,Eq ) ;3

Crowdsource R(t)
q as rule validation tasks ;4

Add the crowd validated rules in R(t)
q into Rq ;5

Update objective JRq,Eq ;6

RC ← RC − R(t)
q ;7

/* Rule Refuter Step */

Select E(t)
q ← argE minE∈E−Eq,|E|=b Δ f (Eq|JRq,Eq ) ;8

Crowdsource E(t)
q as tuple checking tasks ;9

Add the crowd-checked E(t)
q into Eq ;10

Update accuracy Λ̂Rq (Eq);11
Update budget BR ← BR − 2b ;12
if BR = 0 then break ;13

Remove rules from Rq with λ̂ j ≤ 1−2γ
1−γ

;14

Return Rq ;15

Rule generator step In this step, RuleGen selects rule val-
idation tasks. Due to the latency issue of crowdsourcing
[15], it is very time consuming to crowdsource tasks one
by one. Thus, we apply a commonly used batch mode which
selects b tasks and crowdsources them together, where b is a
parameter. Specifically, RuleGen selects a b-sized rule set
R(t)

q that maximizes the rule selection criterion denoted by
Δg(R|JRq,Eq) in the t th iteration (line 1). We will intro-
duce the criterion Δg(R|JRq,Eq) and present an algorithm
for selecting rules based on the criterion in Sect. 4.1. After
selectingR(t)

q ,RuleGen crowdsourcesR(t)
q , adds the crowd-

validated rules intoRq, and updates objectiveJRq,Eq . Note
that we do not consider the rules failed crowd validation,
because they have much lower accuracy than the validated
ones, and incorporating them will largely increase the loss.

Rule refuter step In this step, RuleRef selects a batch of b
tuple checking tasks E (t)

q , so as to minimize the tuple selec-
tion criterion denoted by Δ f (E |JRq,Eq). We will discuss
the criterion and a selection algorithm in Section 4.2. After
obtaining the crowd answers for E (t)

q ,RuleRef adds E (t)
q into

Eq and updates the accuracy estimates Λ̂Rq(Eq).
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For simplicity, we slightly abuse the notations to also use
R (E) to represent a rule set (tuple set) selected by RuleGen
(RuleRef) in each iteration.

The last step of the iteration is to update budget BR and
check whether the algorithm terminates (i.e., the budget is
used up). The algorithm continues to iteration t + 1 if BR >

0. Otherwise, it “cleans up” the generated rule set Rq by
removing bad rules with λ̂ j ≤ 1−2γ

1−γ
as they are useless based

on our objective (see Section 3.2), and returns Rq as result.
Consider the example in Fig. 4 with BR = 4 and b = 1.

In the first iteration, RuleGen and RuleRef, respectively,
select r3 and e5 for crowdsourcing. Based on the crowdsourc-
ing answers, the algorithm updates accuracy estimates and
continues to the second iteration as shown in Fig. 4c,d. After
these two iterations, the budget is used up, and the algorithm
returns Rq = {r1} as the result.

4.1 Task selection for rule generator

The basic idea of task selection for RuleGen, as observed
from Eq. (4), is to maximize the objective JRq,Eq =∑

ei∈C(Rq)

{
maxr j∈Ri λ̂ j (Eq) − 1−2γ

1−γ

}
, given current accu-

racy estimation Λ̂(Eq). However, as task selection is before
crowdsourcing the tasks, the essential challenge for Rule-
Gen is that it does not know which rules will pass the crowd
validation. To address this problem, we follow the existing
crowdsourcing works [10,43] to consider each possible case
of the validated rules, denoted byR

√ ⊆ R, and measure the
the expected improvement on JRq,Eq that R

√
achieves.

Formally, let P(R
√

) denote the probability that the crowd
returns R

√ ⊆ R as the validated rules, and rules in
R − R

√
fail the validation. And P(r) is the probability

that an individual rule r passes the validation. As the rules
in R are independently crowdsourced to the workers, we
have P(R

√
) = ∏

r∈R√ P(r) · ∏r ′∈R−R√ (
1 − P(r ′)

)
. For

example, consider rule set R1 = {r1, r3} shown in Fig. 4:

There are four possible values forR
√
1 , i.e., ∅, i.e., {r1}, {r3},

and {r1, r3}. Let us also consider a simple case that the prob-
ability P(r) for each rule r is 1/2. Then, all the probabilities
of the above four values are 1/4. We will study how to adopt
more effective P(r) in future work.

Now, we are ready to define the rule selection criterion,
denoted asΔg(R|JRq,Eq), as the expected improvement on
our objective JRq,Eq achieved by rule set R. For ease of
presentation, we omit the superscript of JRq,Eq and simply
use J if the context is clear. Formally, the rule selection
criterion Δg(R|J ) can be computed as:

Δg(R|J ) =
∑

R√
P(R

√
) · (JR

√∪Rq,Eq − JRq,Eq). (6)

For instance, consider R = {r1} in our previous example
and Rq = ∅. Suppose that we have estimated accuracy
λ̂1 = 1.0 and let P(r1) = 0.5 and γ = 0.1. Then, we have
Δg(R|J ) = P(r1) · ∑

ei∈C(r1)

{
λ̂1 − 1−2γ

1−γ

} = 0.33.
Based on the criterion, we formalize the problem of task

selection for RuleGen as follows:

Definition 4 (Task Selection for RuleGen) Given a batch size b
and current objectiveJRq,Eq , it finds b rules from remaining
candidates that maximize rule selection criterion, i.e.,R∗ =
argRmaxR⊆RC−Rq,|R|=b Δg(R|J ).

Theorem 1 The problem of task selection for RuleGen is
NP-hard.

Note that all the proofs in the paper can be found in
Appendix A.

Nevertheless, although the theorem shows that obtaining
the best rule set is intractable in general, we can show that the
criterion Δg(R|J ) possesses two good properties, namely
monotonicity and submodularity, which enable us to develop
a greedy selection strategy with theoretical guarantee. Recall
that Δg(R|J ) is monotone iff Δg(R1|J ) ≤ Δg(R2|J )

for any sets R1 ⊆ R2. And Δg(R|J ) is submodular
iff Δg(R1 ∪ {r}|J ) − Δg(R1|J ) ≥ Δg(R2 ∪ {r}|J ) −
Δg(R2|J ) for any sets R1 ⊆ R2, which intuitively indi-
cates a “diminishing returns” effect.

Lemma 1 The rule selection criterionΔg(R|J ) ismonotone
and submodular with respect to R.

Based on Lemma 1, we develop a greedy-based approx-
imation algorithm. The algorithm first initializes R = ∅.
Then, it inserts rules intoR based on our criterionΔg(R|J )

in b iterations where b is the batch size of crowdsourcing. In
each iteration, it finds the best rule r∗ such that the margin is
maximized, i.e., r∗ = argλ maxΔg(R∪{r}|J )−Δg(R|J ).
Then, it inserts the selected r∗ into R and continues to the
next iteration. Finally, it returns the b-sized R. Due to the
monotonicity and submodularity of our selection criterion,
the greedy algorithm has an approximation ratio of 1 − 1/e
where e is the base of the natural logarithm.

Note that the computation of Δg(R|J ) does not have to
actually enumerate all the exponential cases of R

√
. In fact,

given a new rule r , Δg(R ∪ {r}|J ) can be incrementally
computed based on Δg(R|J ).

4.2 Task selection for rule refuter

As the opponent of RuleGen, RuleRef aims to minimize
JRq,Eq by checking tuples to re-estimate rule accuracy. The
idea of RuleRef is illustrated in Fig. 6. Given tuple ei , it
considers two factors.

1) The first one is the refute probability, denoted by P(e×
i )

that the crowd identifies ei is not correctly labeled by rules.
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Fig. 6 Illustration of RuleRef task selection

We will discuss how to estimate refute probability later.
Our intention is to identify and refute those rules covering
tuples with higher refute probability and to keep those with
lower refute probability. The main reason is that the lower
the refute probability of a tuple is, the more likely that the
tuple is correctly labeled by the rules. Take entity match-
ing as an example, where refute probability of a tuple is
estimated by the similarity between the two products in the
tuple. The lower the refute probability is, the less likely that
the products are similar, and the more likely that the label
of -1 given by the rules is correct. Thus, those rules cover-
ing tuples with lower refute probability are more likely to
be accurate. Given a set of tuples E , we denote the subset
of refuted ones as E×. We assume the refute probabili-
ties of the tuples in E are independent to each other, i.e.:
P(E×) = ∏

ei∈E× P(e×
i )

∏
ei∈E−E× 1 − P(e×

i ).
2) The second factor is the impact of refuted tuple e×

i ,
denoted by I(e×

i ). Suppose that refuting e5 would lower
accuracy estimates of r3 and r4 and thus have chance to reduce
the termmaxr j∈Ri λ̂ j (Eq)− 1−2γ

1−γ
for six tuples in the objec-

tive JRq,Eq . For example, consider an extreme case that λ̂3
and λ̂4 re-estimated to 0 after checking e5. Then, tuples e5, e6,
e7, and e9 would be “eliminated” from JRq,Eq , as the max-
imum accuracy associated with them changes to 0. Thus,
RuleRef successfully reduces the objective. Formally, we
denote the amount of such “reduction” as impact I(e×

i ), i.e.,

I(e×
i ) = JRq,Eq − JRq,Eq∪{e×

i }

=
∑

el∈C(Rq)

max
r j∈Rl

{
λ̂ j (Eq) − λ̂ j (Eq ∪ {e×

i })}. (7)

In particular, given a set E× of refuted tuples, we have
I(E×) = ∑

el∈C(Rq) maxr j∈Rl

{
λ̂ j (Eq) − λ̂ j (Eq ∪ E×)

}
.

Now, we are ready to define the tuple selection criterion
Δ f (E |J ) using the above two factors:

Δ f (E |J ) = −
∑

E×
P(E×) · I(E×). (8)

Definition 5 (Task Selection for RuleRef) Given a batch size
b and current objective JRq,Eq , it finds b tuples from
unchecked tuples that minimize the tuple selection criterion,
i.e., E∗ = argE minE⊆E−Eq,|E |=b Δ f (E |J ).

Theorem 2 The problem of task selection for RuleRef is
NP-hard.

Unfortunately, RuleRef selection criterion does not have
the submodularity property, which makes optimization very
complex. In this paper, we utilize a greedy-based approxima-
tion algorithm that iteratively inserts e∗ with the maximum
margin

∑
E× P(E×) · I(E×) into E in b iterations. More-

over, similar to RuleGen, Δ f (E |J ) can be incrementally
computed without the exponential enumeration on P(E×).

Recall that we have discussed how to obtain the refute
probability P(e×

i ) for entitymatching and relation extraction
in Section 3.3.

5 Rule accuracy estimation

The challenge in estimating rule accuracy λ̂ j (Eq) is how
to effectively utilize both rule validation and tuple check-
ing tasks. Intuitively, we utilize rule validation tasks as
“coarse pre-evaluation” and use tuple checking tasks as
“fine post-evaluation”. For example, consider rule r3 :
(Black,Silver) shown in Fig. 1. Suppose that r3 success-
fully passed rule validation, which makes us to roughly eval-
uate r3 as a good rule.However, after checking tuples covered
by r3, we find errors and thus refine the accuracy evaluation.

To formalize the intuition, we utilize the Bayesian estima-
tion technique [2]. We regard crowd rule validation results
as a prior, which captures crowd judgment on r j without
inspecting any specific tuples. As the prior may not be pre-
cise, we then use the crowd results on tuple checking as “data
observation” to adjust the prior, so as to obtain a posterior
of rule accuracy. Formally, let p(λ|r√

, Eq) denote the prob-
ability distribution of accuracy λ of rule r given the fact that
r is validated by the crowd (denoted by r

√
) and checked

by a set Eq of tuples. Then, following the Bayesian rule and
assuming that rule validation and tuple checking results are
conditionally independent given λ, we have

p(λ|r
√

, Eq) = p(Eq|λ) · p(λ|r√
)

p(Eq|r
√

)
, (9)

where p(λ|r√
) is the prior distribution of λ given that rule

r has passed rule validation, p(Eq|λ) is the likelihood of
observing tuple checking result Eq given accuracy λ, and
p(λ|r√

, Eq) is the posterior distribution to be estimated.
Besides, p(Eq|r

√
) can be regarded as a normalization factor.

Likelihood of tuple observations Recall that, given a set

Eq of checked tuples, we use E×
q and E

√
q to, respectively,
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denote the subsets of Eq refuted and passed by the crowd (see
Section 4.2 for more details on tuple refuting). Clearly, we

have E×
q ∪E

√
q = Eq and E×

q ∩E
√
q = ∅. Then, given accuracy

λ, we consider that Eq follows a binomial distribution with
λ as its parameter, i.e.:

p(Eq|λ) =
( |Eq|

|E×|
)

· λ|E
√
q |(1 − λ)|E×

q |, (10)

which considers all the
( |Eq|
|E×|

)
cases of sampling |E

√
q | passed

and |E×
q | refuted tuples from Eq.

Prior of rule validation To model the prior distribution of
a rule validated by the crowd, we use the beta distribution,
which is commonly used in Bayesian estimation for binomial
distributions, i.e.:

p(λ|r
√

) = Γ (α + β)

Γ (α)Γ (β)
λα−1(1 − λ)β−1, (11)

where Γ (·) is the gamma function (see [2] for details), and
α and β are parameters of beta distribution.

As beta distribution is conjugate to binomial distribution,
we can compute the posterior distribution as

p(λ|r
√

, Eq) = Γ (α + β + |Eq|)
Γ (α + |E

√
q |)Γ (β + |E×|)

×λα+|E
√
q |−1(1 − λ)β+|E×|−1

which is also a beta distribution with the parameters α +
|E

√
q | and β + |E×|. Then, we compute the estimate λ̂ as the

expectation of λ to minimize the squared error:

λ̂(Eq) = E[λ|r
√

, Eq] = α + |E
√
q |

α + β + |Eq| . (12)

Lemma 2 Expectation of squared error, E[(λ− λ̂)2], is min-
imized at the estimate λ̂ computed by Eq. (12) [2].

Example 3 To illustrate the Bayesian estimation method, let
us consider an example shown in Fig. 7 with the prior, likeli-
hood, and posterior distributions over λ. In this example, we
use a beta distribution denoted as beta(4, 1) with α = 4
and β = 1. Then, we examine how the “data observation” is
used to adjust the prior.When crowdsourcing three tuples and
receiving two passed and one refuted answers, we can obtain
the likelihood p(Eq|λ) shown as the red dotted line, and the
posterior shown as the red solid line. Applying Eq. (12),
we estimate λ̂ = 0.75. Similarly, after crowdsourcing seven
tuples with four passed and three refuted answers, we obtain
the curves shown as green lines and estimate λ̂ as 0.67. We
can see that, although both of the cases have onemore passed

Fig. 7 Illustration of Bayesian estimation

tuple than the refuted ones,we have a lower estimate, because
more refuted tuples are observed.

Remarks First, we want to emphasize that the set Eq of
checked tuples will be incrementally updated as RuleRef
selects more tuple checking tasks, as illustrated in Sec-
tion 4.2. From Eq. (12), we can clearly see how a refuted
tuple e×

i can decrease accuracy estimation: With numera-
tor fixed and denominator added by 1, estimate λ̂ becomes
smaller. Second, we explain how to choose α and β. The
basic idea is to sample some rules passed crowd validation
and use them to estimate α and β. One simple method is to
use themean μ̂ and variance σ̂ 2 of accuracyλ calculated from
the sample. Beta distribution has the following properties on
statistics μ = α

α+β
and σ 2 = αβ

(α+β)2(α+β+1)
. Based on the

statistics, we solve the parameters as α = (
1−μ̂

σ̂ 2 − 1
μ̂
)μ̂2

and β = α( 1
μ̂

− 1). We can also apply more sophisticated
techniques in [3] for parameter estimation.

6 Hybrid crowd-machine label assignment

After generating high-quality labeling rules via game-based
crowdsourcing, CrowdGame can utilize the rules to assign
labels to the tuples. It is usually the case that the rules only
cover a proportion of tuples, while the ones not covered by
the rules are still lacking of labels. It is trivial to solve the
problem if there is no crowdsourcing budget constraint: We
can simply crowdsource all the unlabeled tuples using tuple-
checking tasks to obtain their labels. However, the problem
is challenging given certain budget constraint, when not all
the tuples can be crowdsourced for assigning labels.

To address the challenge, we study a budget constraint
label assignment problem defined as below.

Definition 6 (Budget Constraint LabelAssignment) Consider a set
EU of tuples that are not labeled by the generated rules, and
assume a crowdsourcing budgetBL such thatBL < |EU|. The
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problem aims to assign labels to all the tuples in EU such that
the number of tasks allowed for crowdsourcing is not greater
than BL.

We introduce a hybrid crowd-machine approach to solve
the problem. The basic idea is to first select the most “bene-
ficial” tuples for crowdsourcing until budget BL is used up.
Then, it uses the labels to train a discriminative machine
learning model for inferring labels of the un-crowdsourced
tuples. There are two challengeswhen fulfilling the approach.
The first one is how to determine what constitutes a “bene-
ficial” tuple for crowdsourcing. We study this challenge by
developing a tuple selection algorithm in Sect. 6.1. The sec-
ond challenge is how to design a discriminative model which
can generalize beyond the existing labels, increasing label-
ing coverage.We discuss twomodels for entity matching and
relation extraction, respectively, in Sect. 6.2.

Remark Crowdsourcing budgets for rule generation (i.e., BR

in Algorithm 1) and label assignment (i.e., BL in this sec-
tion) can be determined by dividing a total crowdsourcing
budget B proportionally via a ratio factor within [0, 1]. We
will empirically study the effect of such ratio factor in the
experiments.

6.1 Crowdsourcing tuple selection

In practice, most binary labeling applications do not treat the
two labels L1 and L2 equally. Instead, they have their own
labeling target. For example, entitymatching aims to identify
matched record pairs, while relation extraction focuses on
entities with specified relation. In both applications, positive
label (L2 = 1) is more important than negative label (L1 =
−1). Similar applications include image recognition, outlier
detection, etc. For ease of presentation, the more important
label is called as target label, denoted by LT.

Thus, the basic idea of our tuple selection strategy is to
make full use of the limited crowdsourcing budget to identify
asmany target labels as possible. The benefit of the strategy is
twofold. First, as the crowd is more accurate than a discrimi-
native model, the strategy allows more potential target labels
to be judgedby the crowd, thus improving the precision/recall
of the labeling results. Second, many binary labeling appli-
cations have the class skewness problem; for example, target
(positive) labels are much fewer than the other (negative)
labels. Thus, identifying more target labels would alleviate
the skewness problem,which is then beneficial to the training
of the discriminative model.

To determine which tuples are more likely to have target
label, we design the following scoring function. Formally,
given a tuple ei , we compute its selection score, denoted by
S(ei ) by considering two parts.
1) RULEGEN-based score Sg(ei ), which measures if the
generated rules in RuleGen support that ei has target label

LT. Recall the notations defined in Eq. (3): The score can be
estimated by P(yi = LT|Λ̂Ri

), which is the probability that
whether yi = LT given the observations that ei is covered
by rule Ri with accuracy ΛRi

. As discussed in Section 3.2,
given a tuple covered by multiple rules, we use a “conser-
vative” strategy to compute the probability of its label by
considering the maximum rule accuracy, i.e.:

Sg(ei ) = P(yi = LT|Λ̂Ri
) =

{
maxr j∈Ri λ̂ j LT = L

1 − maxr j∈Ri λ̂ j LT �= L

Example 4 Consider again our example in Fig. 4. Suppose
that we have already estimated the rule accuracy as λ̂3 = 0.6
and λ̂1 = 0.8. As both rules annotate, label L1 = −1, which
is not the target label L2 = 1 in entity matching. We thus
estimate the score for tuple e1, which is covered by rules r1
and r3, as Sg(e1) = 1 − max {λ̂3, λ̂1} = 0.2.

2) RULEREF-based score S f (ei ), which measures if
RuleRef supports that ei has target label LT. In particular,
if LT �= L , which is usually the case in entity matching, this
score is essentially the refute probability P(e×

i ), defined in
Section 3.3. Moreover, as discussed in Section 3.3, this prob-
ability is, respectively, estimated as the similarity between
records in entity matching and the output of a logistic regres-
sion classifier in relation extraction. On the other hand, if
LT = L , then S f (ei ) can be trivially computed by 1−P(e×

i ).
For instance, considering tuple e5 in Fig. 6, its score can be
computed as S f (ei ) = P(e×

5 ) = 0.9.
Overall, we compute the tuple section score S(ei ) by aver-

aging Sg(ei ) and S f (ei ), which are, respectively, determined
by RuleGen and RuleRef. Based on our empirical study,
we will see the consideration of both sources of scores is
beneficial in Section 7.

Algorithm 2: TupleSelect (Rq, Eq, EU, BL, b)

Input: Rq: generated rules; EU: unlabeled tuples;
BL: budget for label assignment;
b: a crowdsourcing batch

Output: El: a set of labled tuples
Initialize El ← ∅ ;1

for each iteration i do2

Sort tuples in EU based on function S(ei ) ;3

Crowdsource the top b tuples, denoted by E (i)
l via4

tuple checking tasks ;
Add the crowd-checked tuples E (i)

l into El ;5

EU ← EU − E (i)
l ;6

Update rule accuracy estimation ;7

Update budget BL ← BL − b ;8

if BL = 0 then break ;9

Return El ;10

123



A game-based framework for crowdsourced… 1323

Fig. 8 Utilizing DeepMatcher for entity matching

Next, we present an algorithm of crowdsourcing tuple
selection based on the scoring function introduced above.
One issue is that the rule accuracy estimation is adjusted
as more tuples are crowdsourced, which would impact the
RuleGen-based scores. To address the issue, we develop an
iterative crowdsourcing tuple selection method, the pseudo-
code of which is shown in Algorithm 2. Overall, it runs in
iterations until BL tasks are crowdsourced. It applies a batch
mode of selecting b tasks in each iteration, which is similar
to Algorithm 1. In each iteration, it selects the tuples accord-
ing to our scoring function S(ei ) and updates rule accuracy
estimation after crowd answers are collected.

6.2 Discriminative models for inference

After rule generation and tuple selection, no more budget
can be used for crowdsourcing. If there still exist unlabeled
tuples, we then use a discriminative machine learning model,
which can learn to generalize beyond the existing labels. We
train the model on the existing labeled tuples from crowd-
sourcing and use the model to further increasing coverage of
data labeling. In ourwork, we employ the state-of-the-artML
models for our two applications, i.e., DeepMatcher [31] for
entity matching and BERT [7] for relation extraction. Next,
we give a brief description of the models as they are not the
focus of the paper, and we encourage the interested readers
to refer to the original papers.

DeepMatcher for entity matching We adopt the hybrid
mode of DeepMatcher, which achieves the best performance
on entity matching. As shown in Fig. 8, it takes as input two
records, say r1 and r2, and uses the following modules to
produce a matching probability. First, aContextualizer mod-
ule is introduced to model the context of each word in a
record, which is beneficial for disambiguation; for example,
“Apple” in r1 ismore like amanufacture due to its context. It
takes as input raw word embeddings (gray lines in the figure)
anduses a bidirectionalGRUmodel to output a context-aware
embedding sequence (blue lines). Then, a Comparator mod-
ule “aligns” each word in a record, say r1, to the words in
r2 using an attention mechanism. For example, the align-
ment for notebook would attend more to macbook than
silver. Based on the attention weights, it uses a two-layer

Fig. 9 Utilizing BERT for relation extraction

Highway Net with ReLU to generate a comparison vector
for the word (red lines), by a weighted combination of the
aligned words. Next, an Aggregator module aggregates the
word comparison vectors in each record to produce a single
summary vector (green lines), by using a bidirectional RNN
with attention mechanism. Finally, DeepMatcher uses a two-
layer fully connected ReLU Highway Net to implement a
classifier over the two summary vectors, for producing the
matching probability.

BERT for relation extractionThe basic idea is to first utilize
BERT [7] to pretrain language representation models on our
dataset, as BERT achieves state-of-the-art results for many
NLP tasks. Then, we use the labels for relation extraction to
fine-tune the model.

BERT Pretraining is a joint training of the following
two tasks: (1) masked language model: BERT masks out
15% of the words in the input randomly and runs a mul-
tilayer bidirectional transformer encoder that predicts the
masked words to learn better bidirectional representations.
(2) Next sentence prediction: To learn relationships between
sentences, BERT performs a task that predicts whether a sen-
tence is the next sentence that comes after another one. The
BERT architecture used in our work is shown in Fig. 9a.
We adopt the architecture of BERTLARGE with parameters
L=24, H=1024, and A, where L , H , and A are, respec-
tively, the numbers of layers, hidden states, and self-attention
heads.

For fine-tuning, we use the final hidden state of a sentence
to be extracted, shown as token [CLS] C ∈ Rh in Fig. 9b as
the representation of the sentence.We feed the hidden state to
a softmax layer to output the predicted label, e.g., whether or
not a spouse relation can be extracted. Then, we can train the
entire model by minimizing a loss defined on the predicted
and ground-truth labels.

7 Experiments

This section evaluates the performance of our approach. We
first evaluate different task selection strategies for crowd-
sourced rule generation. Then, we compare our approach

123



1324 J. Yang et al.

Table 2 Statistics of datasets
and crowd answers

Abt-Buy Ama-Goo Ebay Spouse

# +1 tuples 1090 1273 2057 424

# −1 tuples 227,715 179,525 107,847 5493

# cand-rules 16,344 15,157 13,903 360

Rule labels −1 −1 −1 −1, 1

Crowd accuracy on tuple checking 95.61% 93.53% 99.87% 99.05%

with the state-of-the-art methods in two real-world applica-
tions: entity matching and relation extraction. In addition, we
also evaluate how parameter settings, such as crowdsourcing
batch size b and weight γ in loss, affect the performance.

7.1 Experiment setup

Datasets We use standard datasets, which are commonly
used in the existingworks, to evaluate the approaches. Table 2
shows the statistics of the datasets. For entity matching, we
evaluate the approaches on three real datasets. 1) Abt-Buy
contains electronics product records from twoWeb sites: Abt
and BestBuy. We regard each tuple ei as a pair of records
with one from Abt and the other from BestBuy, where each
record has a text description as illustrated in Fig. 1. Follow-
ing the existing works in entity matching [4,43], we prune
the pairs with similarity smaller than a threshold 0.3 (we use
WMD [19] to measure similarity) and obtain 1090 tuples
with label 1 (matched) and 227, 715 tuples with label
−1 (unmatched). 2) Ama-Goo contains software products
from two Web sites: Amazon and Google. Similar to Abt-
Buy, we obtain 1273 tuples with label 1 and 179, 525 tuples
with label −1. 3) Ebay contains beauty products collected
from Web site Ebay. Using the above method, we, respec-
tively, obtain 2057 and 107, 847 tuples with labels 1 and−1.
For these three datasets, we construct candidate rules, which
only annotate the−1 label for discriminating records. Statis-
tics of candidate rules are also found in Table 2.

For relation extraction, we use a Spouse dataset to
identify whether two persons in a sentence have spouse rela-
tion. The Spouse dataset contains 2591 news articles3. We
segment each article into sentences and identify entitiesmen-
tioned in the sentences. We consider each tuple as a pair of
entities occurring in the same sentence and obtain 424 tuples
with label 1 (entities have spouse relation) and 5493 tuples
with label −1 (entities do not have spouse relation). We con-
struct candidate rules and obtain 360 rules. Note the rules
on this dataset can annotate both 1 (e.g., husband) and −1
(e.g., brother) labels. Ground truth of each of the above
datasets is already included in the original dataset.

3 http://research.signalmedia.co/newsir16/signal-dataset.html

Crowdsourcing on AMTWe use AmazonMechanical Turk
(AMT, https://www.mturk.com/) as the platform for publish-
ing crowdsourcing tasks. Examples of the two task types are
shown in Fig. 3.

For fair comparison, we crowdsource all candidate rules
for crowd validation to collect worker answers, so as to run
different strategies on the same crowd answers. For tuple
checking on the Spouse dataset, we also ask the crowd to
check all the tuples. For the EM datasets, we crowdsource
all the +1 tuples for collecting crowd answers. Neverthe-
less, as there are a huge number of −1 tuples, we use a
sampling-based method. We sample 5% of the −1 tuples for
each dataset to estimate the crowd accuracy on tuple check-
ing (Table 2). Then, for the rest of the −1 tuples, we use the
estimated accuracy to simulate the crowd answers: Given a
tuple, we simulate its crowd answer as its ground truth with
the probability equals to the accuracy, and the opposite oth-
erwise. We use a batch mode to put ten tasks in an HIT,
and spend $0.01 for each HIT. We use a qualification test
to only allow workers with at least 150 approved HITs and
95% approval rate. We do not use more strict qualification
(e.g., more approved HITs or Master workers), because, on
one hand, our worker qualification is sufficient for provid-
ing reliable crowdsourcing results after majority voting, as
shown in Table 2. One the other hand,we have a large number
of crowdsourcing tasks in our experiments. Thus, although
more strict worker qualification would further improve the
accuracy, it will cost us much more money and take much
longer time.

Parameter settings First, γ is the weight balancing quality
and coverage in our loss function in Eq. (1). Due to the label
skewness in entity matching as observed in Table 2, we set
γ = 0.001 to prefer quality over coverage. In a similar way,
we set γ = 0.1 for relation extraction. Second, parameters
α and β of beta distribution can be set based on our discus-
sion in Section 5. We use (350, 1) for entity matching and
(4, 1) for relation extraction. Third, batch size b of Rule-
Gen/RuleRef (Algorithm 1) is set to 20.

7.2 Empirical observations of candidate rules

This section provides observations for the quality of initial
(candidate) rules constructed by our method in Section 3.3.
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Table 3 Ratios of perfect (λ = 1) versus imperfect (λ < 1) candidate
rules constructed on the four datasets

Datasets Ratio

Perfect rule Imperfect rule

Abt-Buy 0.333 0.667

Ama-Goo 0.427 0.573

Ebay 0.433 0.567

Spouse 0.105 0.895

We report the ratios of perfect rules (accuracy 1.0) and imper-
fect rules (accuracy< 1.0) in initial rule sets on our datasets.
As observed from Table 3, the result shows that there are
less perfect rules than the imperfect rules. This demonstrates
that it is not easy to identify high-quality rules from noisy
candidates.

We then investigate the crowd performance on rule val-
idation tasks. We compute the real accuracy of each rule
based on true labels of tuples covered by the rule. Then, for
the set of rules passed (failed) crowdsourcing validation, we
use a histogram to show the accuracy distribution, where
the x-axis is values of accuracy and y-axis is the percent-
age of rules with the corresponding accuracy values. Note
that this figure shows accuracy distribution of rules which
pass/fail the workers’ validation, where the denominator is
not the number of rules in candidate set. Figure 10 shows
the distributions on our four datasets. We have the following
observations: First, most of the crowd-validated rules have
high accuracies. For example, about 90% of crowd-validated
rules have perfect accuracy 1.0 on datasets Ama-Goo and
Ebay. In contrast, accuracies of rules that failed the valida-
tion are diverse and thus unreliable. Second, although capable
of identifying good rules, crowd validation may introduce
false positives. For example, on the Spouse dataset, there
are some less precise rules that also passed the validation.
This is because crowd may not be comprehensive enough as
they usually neglect some negative cases where a rule fails.
This motivates us to use rule validation task as a coarse rule
evaluation and tuple checking tasks as fine rule evaluation,
so as to eliminate the false positives.

We also observe that values of rule accuracy on the
entity matching datasets are larger than those on the relation
datasets. This is because labels on entity matching datasets
are very skew. However, a minor difference on rule accuracy
may have significant effects on the final F1 score, because
there are very few positives. This increases the challenge of
high-quality rule generation.

7.3 Evaluation onminimax crowdsourcing

This section evaluates the minimax crowdsourcing objective
and task selection algorithms. We compare different alter-
native task selection strategies, by varying crowdsourcing
budget BR for rule generation.

– Gen-Only only utilizes rule validation tasks and uses the
prior as accuracy estimates, instead of using tuple check-
ing tasks for refinement. Then, it utilizes the criterion of
RuleGen for task selection.

– Ref-Only only utilizes tuple checking tasks. As there
is no rule validation tasks, in each iteration, it selects a
batch of rules that maximize the coverage, and assumes
that they have passed the validation. Then, it utilizes the
criterion of RuleRef for selecting tuple checking tasks
for crowdsourcing.

– Gen-RandRef considers both components: RuleGen
and RuleRef. However, the RuleRef uses a random
strategy to select tuples for checking.

– CrowdGame is our game-based approach.

We also compare with simpler conflict-based heuristics. R-
TConf selects the rules covering the largest number of
“conflicting” tuple. As tuples labels are unknown, we con-
sider a tuple is conflicting with a rule if its refute probability
is larger than threshold 0.5. For relation extraction where
conflicting rules exist, we also use another two baselines. R-
RConf selects the rules that have the largest conflicts with
other rules. Given a rule, it counts the number of tuples cov-
ered by the rule which are also annotated by other rule(s)
with a conflicting label. We select the rules with the largest
such numbers. T-RConf selects tuples that have the largest
conflicting labels from the rules covering the tuples.

(a) (b) (c) (d)

Fig. 10 Accuracy distributions of crowdsourced rules passed/failed rule validation.
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(a) (b) (c) (d)

Fig. 11 Evaluating game-based crowdsourcing with different strategies

Figure 11 shows the experimental results. Conflict-based
heuristics R-TConf and R-RConf perform the worst,
because the selected rules are with more conflicts and tend
to cover tuples with opposite true labels. These rules may be
either invalidated by the crowd or be selected to incur more
errors and larger overall loss. T-RConf performs better than
R-TConf and R-RConf, because tuples covered by conflict-
ing rules can be used to refute some “bad” rules. However,
it cannot beat our methods in the framework of Algorithm 1,
as it may not find tuples with the largest refuting impact.

Gen-Only achieves the inferior performance, because,
without tuple checking, the selection criterion used inRule-
Gen is to essentially identify rule with large coverage.
However, without refuting false positive ones, rules with
large coverage are more harmful as they tend to induce more
errors. Ref-Only performs better with the increase of bud-
get k. For example, the loss decreases from 509 to 242 as
the budget increases from 3000 to 9000 on the Abt-Buy
dataset. This is because more checked tuples lead to better
accuracy estimation and thus facilitate to refute bad rules.
Moreover, Ref-Only is in general better than Gen-Only.
Gen-RandRef is a straightforward approach that combines
RuleGen and RuleRef. It can reduce loss in some cases,
which shows the superiority of combining rule validation
and tuple checking. However, it only achieves limited loss
reduction, and it is sometimes even worse than Ref-Only
(Fig. 11a). This is because a random refuter strategy may
not be able to find the rules with the largest impact and thus
performs weak to refute bad rules.

CrowdGame achieves the best performance. For exam-
ple, the loss achieved by CrowdGame is an order of
magnitude smaller than that of the alternatives on the Ebay
dataset. This significant improvement is achieved by themin-
imax objective formalized in the game-based crowdsourcing,
where RuleGen can find good rules, while RuleRef refutes
bad rules in a two-player game. Moreover, our task selection
algorithm can effectively select tasks to fulfill the minimax
objective. We may observe that, on the Spouse dataset,
CrowdGame has little improvement compared to Gen-
RandRef when the budget is large. This is because the
number of candidate rules is small on this dataset (i.e., 360
as shown in Table 2). Under such circumstance, checking a

large number of tuples may also be enough to identify good
rules.

7.4 Comparisons for entity matching (EM)

This section evaluates how CrowdGame boosts entity
matching and compares with state-of-the-art approaches.
Note that it considers the setting of no budget constraint in
label assignment. Specifically, recall our two-phase frame-
work introduced in Section 2.1: Phase I uses some crowd
budgetBR for generating blocking rules, and Phase II applies
the rules and crowdsources tuple checking tasks until all the
tuples are labeled.

For evaluation, In Phase I, we measure rule coverage as
the ratio of tuples covered by the rules. We also examine the
extent of “errors” incurred by the rules using false negative
(FN) rate, which is the ratio of true matches “killed off” by
the generated rules. Intuitively, rule generation in Phase I per-
forms well if it has large coverage and low FN rate. In Phase
II, we measure the performance using precision (the num-
ber of correct matches divided the number of returned ones),
recall (the number of correct matches divided the number of
all true matches), and F1 score ( 2·precision·recall

precision+recall ). We also
measure the total crowdsourcing cost in EM, including the
rule generation crowd budget BR in Phase I and the number
of pair-based tasks in Phase II.

As shown in Table 4, increasing rule generation budget
can improve both quality and cost. For instance, on the Abt-
Buy dataset, with the increase in rule generation budget from
3000 to 9000, the coverage of the generated rules improves
from 0.764 to 0.924, while the FN rate remains at a very low
level. This validates that CrowdGame can select high cov-
erage rules while incurring insignificant errors. Moreover,
this can also effectively boost the overall EM process. The
total cost is reduced from 61, 739 to 26, 381 due to larger
rule coverage. The precision improves from 0.927 to 0.969.
This is because more high-quality rules are selected to cor-
rect the crowd errors in tuple checking (e.g., some workers
misjudge unmatched pairs with matched ones). On the other
hand, more budget for RuleRef can identity more bad rules
(especially those with large coverage) and thus reduces false
positive rules to improve recall.
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Table 4 Using CrowdGame for entity matching (EM)

Dataset Rule gen Phase I Phase II Total crowd cost

crowd budget Rule coverage FN rate Precision Recall F1 Crowd cost (Phases I & II)

Abt-Buy 3000 0.764 0.083 0.927 0.916 0.921 58,739 61,739

5000 0.867 0.037 0.942 0.928 0.935 34,189 39,189

7000 0.898 0.033 0.960 0.955 0.957 24,269 31,269

9000 0.924 0.028 0.969 0.957 0.963 17,381 26,381

Ama-Goo 3000 0.528 0.003 0.925 0.996 0.959 89,671 92,671

6000 0.697 0.002 0.947 0.998 0.972 57,685 63,685

9000 0.767 0.002 0.959 0.998 0.978 43,864 52,864

12,000 0.799 0.002 0.966 0.997 0.981 36,115 48,115

Ebay 1000 0.504 0.005 0.995 0.969 0.982 33,321 34,321

2000 0.785 0.004 0.995 0.985 0.990 18,761 20,761

4000 0.902 0.004 0.999 0.988 0.993 5292 9292

6000 0.966 0.003 1.000 0.996 0.998 1410 7410

We compare CrowdGame with state-of-the-art
approaches, where we set rule generation budget to 9000,
12,000, and 6000 on the three datasets, respectively. In our
experiments, all the approaches have the same termination
condition that all the tuples are labeled. We first com-
pare CrowdGame with the crowdsourced EM approaches:
Trans [44], PartOrder [4], and ACD [46]. We get source
codes of these approaches from the authors. Note that these
baselines do not consider labeling rules. Instead, they select
some “representative” tuples (record pairs) for crowdsourc-
ing and use tuple-level inference, such as transitivity [44,46]
and partial order [4]. As shown in Table 5,CrowdGame sig-
nificantly reduces the total crowdsourcing cost over Trans
and ACD, nearly by an order of magnitude. This shows that
rules generated by CrowdGame are much more powerful
than the transitivity to prune unmatched pairs. For qual-
ity, Transmay “amplify” crowd errors through transitivity.
ACD addresses this issue by using adaptive task selection.
CrowdGame also outperforms Trans and ACD on F1
score, since it utilizes the game-based framework with min-
imax objective to optimize the quality. Second, although
PartOrder achieves much less total cost, its F1 is very
low, e.g., 0.486 on the Ama-Goo dataset. This is because
PartOrder utilizes the partial order among tuples deter-
mined by similarity between records. Although performing
well on structured data, PartOrder has inferior perfor-
mance on our datasets, because textual similarity is very
unreliable for such inference.

We also compare CrowdGamewith Snorkel (with the
crowdsourcing setting described in [32]). Snorkel first
relies on crowdsourcing (as well as labeling functions) to
label some tuples and then uses these labels to train a dis-
criminative ML model to label all the remaining ones. As
a result, we need to determine the size of the training set,

Table 5 Comparison with EM methods

Dataset Method F1 of EM Total crowd cost

Abt-Buy Trans 0.864 203,715

PartOrder 0 1063

ACD 0.887 216,025

Snorkel1 0.909 26,381

Snorkel2 0.961 86,720

CrowdGame 0.963 26,381

Ama-Goo Trans 0.896 158,525

PartOrder 0.486 763

ACD 0.919 167,958

Snorkel1 0.923 48,115

Snorkel2 0.98 149,540

CrowdGame 0.982 48,115

Ebay Trans 0.971 50,163

PartOrder 0.553 170

ACD 0.998 57,637

Snorkel1 0.857 7410

Snorkel2 0.997 39,920

CrowdGame 0.998 7410

i.e., the crowdsourcing budget, for the discriminative ML
model. For fair comparison, we set up two experimental set-
tings for Snorkel, which are denoted as Snorkel1 and
Snorkel2, respectively. Snorkel1 uses the same total
crowdsourcing cost of CrowdGame as budget, e.g., 26, 381
on the Abt-Buy dataset, to obtain labels from the crowd,
which makes sure that the two approaches rely the same
human (crowd) efforts. Second, Snorkel2 examines how
much crowdsourcing cost it needs to achieve similar results
with CrowdGame. It continues to collect crowdsourcing
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Table 6 Using CrowdGame for relation extraction on the Spouse dataset

Rule gen Phase I Phase II Total Crowd Cost

crowd budget Rule coverage FN rate FP rate Precision Recall F1 Crowd cost (Phases I & II)

50 0.587 0.019 0.734 0.504 0.747 0.602 2227 2277

100 0.687 0.027 0.537 0.545 0.645 0.591 1686 1786

150 0.719 0.026 0.453 0.585 0.640 0.611 1511 1661

200 0.695 0.027 0.149 0.810 0.635 0.712 1643 1843

labels in batches, where 20 tasks are put in each batch,
until the difference between F1 obtained by Snorkel2

and CrowdGame is very small (i.e., ≤ 0.002). Another
issue is which tuples should be selected for crowdsourcing
in Snorkel. We select the tuples with higher pairwise sim-
ilarity measured by WMD, in order to obtain a tuple set with
more balanced labels. Specifically, due to label skewness of
EM datasets, random tuple selection may end up with very
rare +1 tuples selected, which is not good for model train-
ing in Snorkel. In contrast, the selection by similarity will
increase the chance of finding +1 tuples.

As shown in Table 5, the experimental results show
that, under the same crowdsourcing cost, CrowdGame out-
performs Snorkel1 on quality, e.g., achieving 6 − 15%
improvements on F1. This quality boost is because of the
high-quality rules identified by CrowdGame, which label a
large number of tuples with high accuracy. To achieve simi-
lar labeling quality, CrowdGame can save the cost by up to
81% compared with Snorkel2. This shows that the rules
generated by CrowdGame can reduce the cost more effec-
tively.

7.5 Comparison for relation extraction (RE)

This section evaluates CrowdGame for RE on the Spouse
dataset. Note that this section also considers the setting of
no crowdsourcing budget constraint in label assignment. We
construct candidate rules using the method in Section 3.3.
Different from CrowdGame for EM that only considers
L1 = −1 rules, CrowdGame for relation extraction gen-
erates both L1 = −1 and L2 = 1 rules in Phase I. Thus,
besides FN rate, we introduce false positive (FP) rate (the
ratio of FPover all negatives) tomeasure the “errors” incurred
by L2 = 1 rules in Phase I. Then, Phase II exploits crowd-
sourcing to check all the entity pairs not covered by the rules.

Table 6 shows the performance of CrowdGame. With
the increase in the rule generation budget, the total crowd
cost is largely reduced because rule coverage is improved
from 0.587 to 0.695. One interesting observation is that,
when increasing the budget from 150 to 200, the precision is
improved from 0.585 to 0.810 while rule coverage and recall
slightly decrease. This is because RuleRef is able to iden-

Table 7 Comparison with Snorkel in RE

Method Precision Recall F1

Snorkel (ManRule) 0.389 0.608 0.474

Snorkel (ManRule+Crowd) 0.519 0.696 0.595

CrowdGame 0.81 0.635 0.712

tify and refutemore low-accuracy rules and thus significantly
reduces false positives for relation extraction.

We compare CrowdGame with Snorkel for relation
extraction. Note thatSnorkel is fedwith labeling functions
designed by users in our experiments, which are denoted by
manual rules in our experiments. We consider the follow-
ing two settings of Snorkel. First, we feed a set of manual
rules provided by the original paper [32] toSnorkel, which
consist of the following two kinds: 1) some keywords sum-
marized by domain experts, such as “wife” (labeling +1),
“ex-husband” (labeling +1), and “father” (labeling −1) and
2) a set of 6126 entity pairs with spouse relation extracted
from an external knowledge base, DBPedia4. Second, we
take both these manual rules and crowd labels as label-
ing functions. Note that we use the similarity-based method
(same to the EM scenario) to select tuples for crowdsourcing
to obtain tuples with more balanced classes, and the num-
ber of selected tuples is the same to the total crowd cost
of CrowdGame, e.g., the same crowd cost 1843 for both
Snorkel and CrowdGame. As observed from Table 7,
Snorkel with only manual rules achieves inferior quality.
The reason is that the manual rules are based on some gen-
erally summarized keywords and external knowledge, which
are not specifically designed for the Spouse dataset. More-
over, further considering crowd labels, Snorkel achieves
better precision and recall, as it can learn better ML models
due to the additional crowd efforts. However, CrowdGame
still achieves the best performance by a margin of 0.11 on
F1, at the same crowd cost. This is because our approach can
identify high-quality rules from the candidates; especially,
the refuter can effectively eliminate error-prone rules, thus
resulting in superior precision.

4 http://wiki.dbpedia.org/
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(a) (b) (c) (d)

Fig. 12 Evaluation tuple extraction strategies for label assignment under various total crowd budgets

7.6 Comparisons under total budget constraints

This section evaluates the setting that a budget constraintB on
the total number of crowdsourcing tasks is given by the end
user. Under this setting, the budget is divided proportionally
into rule generation budget BR and label assignment budget
BL. We consider the default ratio between BR and BL over
B as 0.3 in this section and will study the effect of the ratio
later.

Evaluation on tuple selection. We evaluate our proposed
crowdsourcing tuple selection method presented in Sect. 6.1
and compare the following alternatives:

– Random selects unlabeled tuples randomly.
– Active utilizes deep active learning with the least con-
fidence strategy: It selects the most uncertain tuples with
respect to the discriminative model, by using entropy to
measure the uncertainty.

– FProb uses our strategy of identifying target labels, but
it only considers RuleRef-based score.

– GProb also aims at identifying target labels, but consid-
ering only RuleGen-based score.

– GFProb takes both RuleGen-based and RuleRef-
based scores into consideration for tuple selection.

Figure 12 shows the experimental results. Active is
more effective than the naïve Random, because Active
can findmore appropriate tuples for better training of the dis-
criminative model. However, both methods cannot achieve
satisfactory results, since neither of them takes identify-
ing tuples with target label as the criterion. As analyzed in
Sect. 6.1, as the crowd is more accurate than the model,
it is better to use the crowd to find as many target labels
as possible, while letting the model play a complementary
role. Among the three alternatives in our criterion, GFProb
is better than FProb and GProb, which validates that the
combination of RuleGen-based and RuleRef-based scores
is more effective in identifying tuples with target label.

Comparisons for entity matching. We evaluate the
approaches under crowdsourcing budget constraints in entity
matching. As the crowdsourced EM approaches: Trans

[44], PartOrder [4], and ACD [46], cannot support the
budget constraint setting, we only compare with Snorkel.
For both CrowdGame and Snorkel, we first use the total
budget B for crowdsourced data labeling5 and then apply
DeepMatcher for label generalization. We evaluate the label-
ing quality (precision, recall, and F1 score) in both of the two
steps.

As observed in Table 8, CrowdGame outperforms
Snorkel under each budget constraint on all datasets.
This is mainly attributed to the following reasons. First,
CrowdGame can identify much more matched tuples, i.e.,
achieving higher recall, after crowdsourcing, due to our pro-
posed techniques of rule generation and tuple section. This
essentially relieves the burden of the downstreaming Deep-
Matcher model. Second, CrowdGame can train a better
DeepMatcher model to further increase the recall, without
much loss of precision. This is because that CrowdGame
provides a better training set for DeepMatcher, e.g., with
more matched record pairs.

Comparisons for relation extraction. We evaluate the
approaches under crowdsourcing budget constraints in rela-
tion extraction and compare with Snorkel. Table 9 shows
the experimental results. Similar to the case in entity
matching, CrowdGame can effectively utilize BERT to
increase the recall without much loss in the precision, lead-
ing to an improvement of the overall F1 score. Moreover,
CrowdGame also outperforms Snorkel under various
budget constraints.

7.7 Effect of parameter settings

This section evaluates the effect of parameters used in
CrowdGame. Specifically, we examine four parameters: (1)
the batch size b of crowdsourcing tasks in each iteration of
Algorithm 1, (2) the weight γ that balances coverage and
quality in our loss function in Eq. (1), (3) the proportion of
budget allocation over rule generation (BR) and tuple selec-
tion (BL), and 4) the effect of refute probability P(e×

i ) in
RuleRef step.

5 See how Snorkel uses crowdsourcing in Section 7.4
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Table 8 Method comparisons under various crowdsourcing budget constraints in entity matching

Dataset Total CrowdGame Snorkel

crowd After Crowdsourcing After DeepMatcher

budget Precision Recall F1 Precision Recall F1 Precision Recall F1

Abt-Buy 5000 0.984 0.582 0.731 0.863 0.699 0.772 0.982 0.57 0.721

8000 0.982 0.714 0.827 0.909 0.801 0.852 0.976 0.678 0.800

11,000 0.979 0.808 0.885 0.912 0.903 0.907 0.97 0.728 0.832

14,000 0.975 0.879 0.925 0.94 0.925 0.932 0.965 0.773 0.858

Ama-Goo 5000 0.991 0.622 0.764 0.947 0.676 0.789 0.986 0.609 0.753

11,000 0.983 0.799 0.882 0.951 0.839 0.891 0.977 0.782 0.869

17,000 0.977 0.877 0.924 0.943 0.956 0.949 0.968 0.838 0.898

23,000 0.973 0.925 0.925 0.94 0.925 0.932 0.965 0.773 0.858

Ebay 1000 1.000 0.522 0.686 0.932 0.688 0.792 1.000 0.525 0.689

2000 1.000 0.829 0.907 0.959 0.907 0.932 0.999 0.768 0.868

3000 0.999 0.944 0.971 0.976 0.982 0.979 0.997 0.856 0.921

4000 0.997 0.970 0.983 0.988 0.985 0.986 0.997 0.897 0.944

Table 9 Method comparison
under various crowdsourcing
budget constraints in relation
extraction

Total CrowdGame Snorkel

crowd After Crowdsourcing After BERT

budget Precision Recall F1 Precision Recall F1 Precision Recall F1

200 0.575 0.268 0.366 0.529 0.431 0.475 0.298 0.507 0.375

500 0.603 0.316 0.415 0.569 0.561 0.565 0.379 0.582 0.459

800 0.568 0.55 0.559 0.521 0.696 0.596 0.402 0.603 0.482

1100 0.803 0.574 0.669 0.735 0.639 0.684 0.488 0.656 0.560

Batch size b We first examine the effect of batch size b in
each iteration. We vary the batch size on each dataset and
evaluate the loss. Note that we set the budgets as the max-
imum budgets of the datasets shown in Fig. 11. Figure 13
shows the experimental results. We can see that, with the
increase in b, the loss also increases. The main reason is the
followings. In CrowdGame, RuleGen and RuleRef iter-
atively crowdsource tasks with the goal of competing with
each other and “adjust” their decisions based on the oppo-
nents’ decisions. For example, given some rules selected
with RuleGen, RuleRef decides to select tuples to refute
the rules, which will further adjust RuleGen’s later deci-
sions on selecting more rules. Given a fixed budget, a larger
batch size b means less “interactions” between RuleGen
and RuleRef. Thus, RuleGen and RuleRef may not be
able to adjust their decisions in time to minimize the overall
loss. On the other hand, a very small batch size b would lead
to high crowdsourcing latency (i.e., waiting time). Based on
the experimental results, we suggest to set b to a reasonable
number (e.g., 20− 200 in the figures) that balances loss and
crowdsourcing latency.

Weight γ in loss Then, we examine the weight γ in the loss
function. Observed from Eq. (5), (1 − 2γ )/(1 − γ ) plays a

threshold role that any rules with λ̂ j < (1−2γ )/(1−γ )will
be pruned from RuleGen, as they are useless to minimize
the loss. Thus, for each dataset, we vary (1− 2γ )/(1− γ ) in
the values: 0.999, 0.8, 0.6, 0.4, and 0.2, which result in the
following γ values: 0.001, 0.167, 0.286, 0.375, and 0.444.
Then, on each dataset, we plot coverage and error number
under each of the γ values.

Figure 14 illustrates the results.With the increase in γ , the
coverage increases,while the number of errors also increases.
For example, when increasing γ from 0.001 to 0.167 (i.e.,
changing (1− 2γ )/(1− γ ) from 0.999 to 0.8), the coverage
increases from 0.890 to 0.912, while the number of errors
also increases from 60 to 180, as shown in Fig. 14a. This is
because the larger theγ is, themore preferable the coverage is
and the less preferable the accuracy is. In particular, a larger γ
will lead to a smaller threshold 1−2γ

1−γ
on rule accuracy. Thus,

the accuracy will degrade. Asmentioned in Section 2, setting
an appropriate γ depends on the targeted applications.

Budget allocation. We evaluate the budget allocation over
rule generation and tuple selection. To this end, we vary the
ratio ofBR over the total budgetB from0.1 to0.9andexamine
the labeling quality (before discriminative model). As shown
in Fig. 15,with the increase in the ratio, the F1 score increases
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(a) (b) (c) (d)

Fig. 13 Effect of batch size b with respect to overall loss

(a) (b) (c) (d)

Fig. 14 Effect of weight γ on balancing quality and coverage of rule generation

(a) (b) (c) (d)

Fig. 15 Effect of the ratio of rule generation budget BR over the total crowdsourcing budget B

first and then decreases. This is attributed to the following
reasons.On the onehand,when less budget is allocated to rule
generation, CrowdGame cannot generate enough labeling
rules, resulting in a large number of unlabeled tuples. On
the other hand, when the ratio is too high, the budget for
selecting tuples with target label is insufficient. This would
make the downstreaming discriminative model difficult to
achieve high performance. Another observation is that as the
total budget increases, the effect of the ratio on F1 becomes
less significant. This shows thatCrowdGamebecomesmore
robust given sufficient budget.

Refute probability P(e×
i ) We also empirically examine the

effect of considering refute probability P(e×
i ). We compare

with a baseline without considering P(e×
i ). As shown in

Table 10, the experimental result validates the importance
of refute probability P(e×

i ). For example, by considering the
probability on the Abt-Buy dataset, the loss can be reduced
by about four times. The reason is that, without considering
the refute probability, the selected tuples, although may have
large impact, are less likely to be voted by the crowd as con-
flicting with the rules. Thus, such tuples are less useful to
refute the rules in the RuleRef step.

Table 10 Effect of considering refute probability P(e×
i )

Dataset Rule gen Loss

crowd budget With P(e×
i ) Without P(e×

i )

Abt-Buy 3000 208.6 452.8

5000 113.1 414.4

7000 95.2 390.4

9000 82.3 389.8

Ama-Goo 3000 197.6 393.3

6000 129.2 269.0

9000 108.8 239.2

12,000 102.0 232.8

Ebay 1000 113.3 170.4

2000 63.6 152.9

4000 46.5 158.6

6000 12.5 160.4

Spouse 50 556.0 567.3

100 470.0 524.5

150 425.0 511.0

200 338.0 491.6
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8 Related work

Crowdsourced data labeling Recently, crowdsourcing has
been extensively studied for harnessing the crowd intelli-
gence. There is a large body of works on crowdsourcing (see
a recent survey [23]), such as quality control [9,25,40,49,50,
50] and crowd DB systems [11,12,22,26,31,39]. This paper
pays special attention on crowdsourced data labeling, which
acquires relatively low cost labeled data in a short time using
crowdsourcing, with the focus on reviewing such works in
entity matching and relation extraction. Crowdsourced entity
matching (aka. crowdsourced entity resolution) [4,6,8,13,18,
21,41–43,46,47] has been extensively studied recently. Exist-
ing works have studied many aspects in the field, including
task generation [43], transitivity-based inference [4,42,44],
partial-order inference [4], and task selection [41]. However,
most of them only label tuples (i.e., record pairs) and do not
consider generating labeling rules for reducing total crowd
cost. One exception is the hands-off crowdsourcing approach
[6,13]. However, the approach generates blocking rules on
structured data using random forest, and the method cannot
be applied to text data studied in our approach. Crowdsourc-
ing is also applied in relation extraction [1,24]. However,
similar to entity matching, most of the works focus on tuple-
level labeling.

Weak-supervision labeling rules There are many works
in the machine learning community to label large training
sets using weak-supervision labeling rules. A well-known
example is distant supervision [16,29,34,38],where the train-
ing sets are created with the aid of external resource such
as knowledge bases. The distant supervision sources are
usually noisy. To alleviate this problem, [34,38] label data
with hand-specifieddependencygenerativemodels. [16] uses
multi-instance learning models to denoise different sources.
When gold labels are not available, some methods esti-
mate potential class labels based on noisy observations, e.g.,
spectral methods [30] and generative probabilistic models
[17,48]. Some approaches are recently proposed to consol-
idate noisy or even contradictory rules [32,36]. Some works
demonstrate that the proper use ofweak-supervision rules can
also boost the performance of deep learning methods [33].
Our approach and these works focus on different aspects of
data labeling: They focus on “consolidating” given labeling
rules (functions), while we pay more attention to generat-
ing high-quality rules. To this end, we leverage game-based
crowdsourcing to select high-quality rules with large cover-
age and accuracy, which results in performance superiority
shown in our experiments.

Generative Adversarial Networks The recent Generative
Adversarial Network (GAN) also applies a minimax frame-
work for training neural networks and has been widely
applied in image and text processing [14,45]. Our approach

is different from GAN in the following aspects. First of
all, CrowdGame uses the minimax framework to combine
two types of tasks for data labeling, while GAN focuses
on parameter learnings. Second, GAN uses algorithms such
as stochastic gradient descent to optimize the parameters.
In contrast, the optimization of CrowdGame is rule/tuple
task selection. Third, CrowdGame needs to consider cost
of crowdsourcing, which is not a concern of GAN.

9 Conclusion and future work

In this paper, we have studied the data labeling problem. We
introduced labeling rules to reduce labeling cost while pre-
serving high quality. We devised a crowdsourcing approach
to generate rules with high coverage and accuracy.We devel-
oped a game-based crowdsourcing framework that employs
a group of workers that answers rule validation tasks to play a
role of rule generator, and another group that answers tuple
checking tasks to play a role of rule refuter. We proposed
a minimax optimization method to unify rule generator and
rule refuter in a two-player game.We conducted experiments
on entity matching and relation extraction to show perfor-
mance superiority of our approach.

One important future work is to explore more broad data
labeling scenarios. The key challenge is how to improve the
effectiveness of crowd workers in rule validation. We argue
that it mainly depends on the interpretability of machine-
generated candidate rules, that is, whether the rules are easily
understandable by the crowd. For example, the textual pat-
terns for relation extraction are easily understandable, and
our experiments have shown that workers are effective in
validating them. In contrast, some domains or labeling tasks
may construct rules which are not intuitive to the crowd.
For instance, some schema matching works [10] construct
instance similarity-based rules. Obviously, workers may find
it difficult to judge which similarity function is appropriate
or what threshold is effective.
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(61632016, 61925205, U1711261, 61832017, 61972401, 61932001),
Huawei, TAL education, Beijing Outstanding Young Scientist Pro-
gram NO. BJJWZYJH012019100020098, Research Funds of Renmin
University of China (18XNLG18, 18XNLG21), and the Fundamental
Research Funds for the Central Universities.

A Proofs

A.1 Proof of Theorem 1

We can prove NP-hardness of the problem by a reduction
from the k maximum coverage (KMC) problem, which is
known to be NP-hard.
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Recall that an instance of the KMC problem (E,S,k)
consists of a universe of elements E = {s1, s2, · · · , sn}, a col-
lectionof subsets of the universeE, i.e.,S ={S1, S2, · · · , Sm}
where any Si ∈ S satisfies Si ⊆ E , and a number k. The
objective is to select k subsets from S, denoted by S ′, so that
the number of covered tuples

∣
∣⋃

S∈S ′ S
∣
∣ is maximized.

An instance of our problem consists of a set of tuples E ,
a set of rulesR, and a number b. The optimization objective
is to select b rules fromR so that the expected rule selection
criterion, according to Eq. 6, is maximized.

The reduction from KMC to our problem. We show next
that for any instance (E,S,k) of KMC, we can create a cor-
responding instance of our problem based on (E,S,k) in
polynomial time.

– We translate the set E of elements into the set E =
{e1, e2, · · · , en} of tuples in our problem.

– Given an element s j in E , if s j ∈ Si , we set add a tuple e j
into the rule ri whose accuracy and validation probability
is 1. We set the parameter γ to 0.5. The gain of objective
J ri calculates to 1 if s j ∈ Si , and 0 otherwise. Thus,
each set Si in the KMC problem corresponds to the rule
ri and the elements covered by Si correspond to the tuples
covered by ri .

– We translate number k in KMC into b in our problem.

Equivalence of optimization objectives.We show the opti-
mization objectives of the two problems are equivalent:

– Since in our instance the probability that an individual
rule r passes the validation is 1, the validated rule setR

√

is equivalent to the selected rule setR(t)
q , and P(R

√
) =

P(R(t)
q ) = 1.

– Since in our instance the rule accuracy is 1 and the
parameter γ is 0.5, based on Equation 4, we know that

JR(t)
q =

∣
∣
∣C(R(t)

q )

∣
∣
∣.

With R
√ = ∅, the expected rule selection criterion there-

fore becomes
∣
∣
∣C(R(t)

q )

∣
∣
∣. Since our problem is to find the b

best rules, R(t)
q , that maximizes the expected criterion, this

is equivalent to finding b best sets that maximize the set of
covered elements.

A.2 Proof of Lemma 1

Consider two rule sets R1 ⊆ R2; we first prove the mono-
tonicity as follows. For simplicity, we use Γ to denote 1−2γ

1−γ

in this proof:

Δg(R2|J ) − Δg(R1|J ) =
∑

R
√
2

P(R
√
2 )

∑

ei

max
r j

λ̂ j − Γ

−
∑

R
√
1

P(R
√
1 )

∑

ei

max
r j

λ̂ j − Γ

SinceR1 ⊆ R2, for simplicity, we introduceR3 = R2 −
R1. Then, for any R

√
2 , we can find a R

√
1 and R

√
3 such that

R
√
2 = R

√
1 ∪ R

√
3 . Based on this, we have

Δg(R2|J ) − Δg(R1|J ) =
∑

R
√
1

P(R
√
1 )

[ ∑

R
√
3

P(R
√
3 )

( ∑

ei∈C(R
√
1 ∪R

√
3 )

{max
r j

λ̂ j − Γ } −
∑

ei∈C(R
√
1 )

{max
r j

λ̂ j − Γ })].

It is not difficult to know
∑

ei∈C(R
√
1 ∪R

√
3 )

{maxr j λ̂ j − Γ }−
∑

ei∈C(R
√
1 )

{maxr j λ̂ j − Γ } ≥ 0, and we prove monotonic-

ity.
We next prove that Δg(R|J ) is submodular. Given any

rule r , using the previous equation, we have

Δg(R ∪ {r}|J ) − Δg(R|J ) =
∑

R√
P(R

√
)P(r

√
)

( ∑

ei∈C(R√∪{r√})
{max

r j
λ̂ j − Γ } −

∑

ei∈C(R√
)

{max
r j

λ̂ j − Γ })

= −Γ +
∑

R√
P(R

√
)P(r

√
)
( ∑

ei∈C(r
√

)−C(R√
)

λ̂

+
∑

ei∈C(r
√

)∩C(R√
)

max{λ̂ − maxΛR(i)
, 0}) (13)

From the equation, we can see that the above margin
depends on the following two factors under each cases cor-
responding to P(R

√
)P(r

√
):

– Improvement on “additional” tuples covered by r
√
, i.e.,

∑
ei∈C(r

√
)−C(R√

) λ̂.

– Improvement on the tuples already covered by R
√
.

Now, let us consider a rule setR1 ⊆ R2. It is not difficult
to see that both of the above factors corresponding to R2

will not be greater than that ofR1. Thus, we have Δg(R1 ∪
{r}|J )−Δg(R1|J ) ≥ Δg(R2∪{r}|J )−Δg(R2|J ), which
proves the submodularity. Hence, we prove the lemma.

A.3 Proof of Theorem 2

To prove Theorem 2, let us consider a special case of the
RuleRef task selection problem, as shown in Fig. 16. Each
rule has the same accuracy λ̂ j = λ, and each tuple has the
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Fig. 16 Illustration of Theorem 2 proof

same refute probability P(e×
i ) = 1.0.Moreover, we consider

the “strict” refuting strategy used in Example 2: One coun-
terexample is enough to refute all rules covering the tuple.
And we consider the weight γ = 0.5. In this case, refuting
a tuple, say e1, will remove all the rules covering the tuple,
say {r1, r2, r3}. However, the removed rules cannot induce
any impact defined in Section 4.2, as the tuples covered by
{r1, r2, r3} are still covered by other un-refuted rules, and
thus the maximum accuracy associated with these tuples is
still λ. Suppose that we refute e5, and then, we have an impact
λ as maximum rule accuracy associated with e6 becomes 0.
Based on these examples, it is not difficult to see this special
case of RuleRef task selection problem is equivalent to the
following maximum isolated node problem:

Definition 7 (Maximum Isolated Node Problem) Given a
bipartite graph over a rule node set R and a tuple node set
E , consider the following removal conditions: (1) If a tuple
node is removed, then all the rule nodes connected to the tuple
node as well as the edges associated with the rule nodes are
removed; (2) a tuple node is called “isolated node” iff there
is no edge associated with the tuple node. The problem finds
k tuple nodes E ′ ⊆ E such that the number of isolated nodes
after the removal is maximized.

For example, in Fig. 16, after removing {e2, e3}, there is no
isolated tuple nodes. On the contrary, after removing {e1, e2},
e3 and e4 become isolated tuple nodes.

We can prove the maximum isolated node problem is NP-
hard by a reduction from the minimum vertex cover (MVC)
problem, which is known as NP-hard. Recall that an instance
of the MVC problem consists of a graph G ′ = (V , E) of
vertex set V and edge set E . The problem aims to find the
minimum vertex subset V ′ ⊆ V such that every edge e ∈ E
has at least one endpoint in V ′.

Next, we show the reduction from the MVC problem to
our maximum isolated node problem. Given any instance of
the MVC problem G ′ = (V , E), we create a tuple node set
E , each of which corresponds to a vertex in V , and a rule
node set R, each of which corresponds to an edge in E .

Then, suppose that our maximum isolated node problem
is solved; given any number k, we can find a subset E ′ ⊆ E
of tuple nodes that the number of isolated nodes is maxi-
mized. So we can vary k from 1 to |E | to find the minimum k
that satisfies all nodes in E −E ′ are isolated. Given the above
reduction, we can see that this actually solves theMVC prob-
lem, because isolating all tuple nodes is equivalent to find a
vertex subset V ′ that covers all edge E in the MVC problem.

Thus, we prove that the maximum isolated node prob-
lem can be solved only if the MVC problem is solved. As
the MVC problem is NP-hard, the maximum isolated node
problem is NP-hard. Moreover, since the maximum isolated
node problem is a special case of our RuleRef task selection
problem formalized in Definition 5, we prove Theorem 2.

B Examples of Labeling Rules

Wealso provide some examples to better understand the intu-
ition behind our method. Table 11 shows some high-quality
rules validated by the crowd on four datasets. Take the rule
(Sony,Toshiba) on the Abt-Buy dataset as an exam-
ple: We can observe that applying a rule is equivalent to
annotating over 2000 samples. Selecting these high-quality
rules forms the basis for CrowdGame. For EM tasks, such
good rules usually contain brand names, product names, the
product functions, properties, abbreviations, and so on. For

Table 11 Examples of crowd-validated rules

Dataset Example rule Coverage

Abt-Buy (Sony, Toshiba) 2,050

(Canon, Samsung) 1,319

(Camera, Vaio) 1,028

(Player, TV) 909

(Camera, Headphone) 770

Ama-Goo (Macintosh, Windows) 907

(Mac, Vista) 789

(Adobe, Office) 769

(Mac, Sony) 689

(Microsoft, Photoshop) 568

Ebay (Face, Lip) 1,166

(Dior, NYX) 761

(Blush, Cream) 742

(Cream, Liner) 685

(Lipstick, Powder) 628

Spouse Mama (−1 rule) 33

Dad (−1 rule) 27

Lover (+1 rule) 26

Rival (−1 rule) 26

Assistant (−1 rule) 17
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spouse relation dataset, the good rules usually consist of
words related with kinship.

C Extension of Labeling Rule

We discuss a more general case that some rules in the
candidates RC annotate label L1 = −1 (called L1 rules
for simplicity), while others annotate L2 = 1 (called L2

rules). Consider our spouse relation extraction example
that annotates L2 = 1 if entities have spouse relation
or L1 = −1 otherwise. In this case, a tuple, e.g., entity
pair (Michelle Obama,Barack Obama), could be cov-
ered by conflicting rules (textual patterns), e.g., a L2 rule
“married with” and a L1 rule “meets.”

CrowdGame devises a simple extension from Algo-
rithm 1 by taking L1 and L2 rules independently. More
specifically, let RL1

q (RL2
q ) denote the set of L1 (L2) rules

selected by RuleGen for crowdsourcing. Recall that Eq is
the set of tuples selected by RuleRef for crowdsourcing.
First, we extend the overall minimax optimization objective,
denoted by J̃ , as a combination of objectives of L1 and

L2 rules, i.e., J̃ = JRL1
q ,Eq + JRL2

q ,Eq , where JRL1
q ,Eq

(JRL2
q ,Eq) is defined in Eq. (5). Then, we run the iterative

crowdsourcing framework in Algorithm 1. We present how
RuleGen and RuleRef work in each iteration as follows:

– RuleGen only slightly extends the computation of rule
selection criterion Δg(R|J ) as the summation of 1)
the expected improvement of L1 rules RL1 in R over

JRL1
q ,Eq and 2) the expected improvement of RL2 over

JRL2
q ,Eq , where the expected expectation is computed

using Eq. (6). Then, RuleGen uses the greedy strategy
to find an optimal rule setR∗ thatmaximizes the criterion
Δg(R|J ).

– RuleRef extends the notation of e×
i to eL1

i (or eL2
i ),

which, respectively, means tuple ei is checked and anno-
tated with L1 (or L2). Then, given a checked tuple eL1

i

(or eL2
i ), RuleRef considers it to refute the L2 part

(or the L1 part) of objective J̃ using Eq. (7). Based
on this, given a tuple set E , we consider every pos-
sible case of (E L1 , E L2) where E L1 ∪ E L2 = E and
E L1 ∩ E L2 = ∅, and revise Eq. (8) to Δ f (E |J ) =
−∑

E L1 ,E L2 P(E L1)P(E L2) · (I(E L1) + I(E L2)). Then,
RuleRef utilizes this criterion for selecting tuples.

Using the above method, CrowdGame obtains a rule set
Rq returned by Algorithm 1. Then, let us use Ri

q ⊆ Rq as
the set of rules covering a tuple ei . CrowdGame labels ei
using label of the rule in Ri

q with the maximum accuracy.
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