
Managing a Large Shared Bank of Unstructured Data
by Using Free-Table*

Xiao ZHANG1,#, Xiaoyong DU2,++, Jinchuan CHEN3, Shan WANG4
Renming University of China

Key Lab. of Data Engineering and Knowledge Engineerging, MOE, China
59 Zhongguancun Street, Haidian District, Beijing, China

{1zhangxiao,2duyong, 3jcchen, 4swang}@ruc.edu.cn

Abstract—This paper presents a reference framework, called
BUD, to manage a large shared bank of unstructured data. This
paper lists several important issues on managing or maintaining
the unstructured data in BUD. BUD stores and manages the
ever-growing unstructured data by introducing a novel
technique called free-table, which is a conceptual view for end-
users and a physical entity maintained by transactional storage
manager of BUD. Free-table is cell-oriented but not column-
oriented as relational table. It can store various types of
unstructured data in cell with different versions. Additionally,
we study two cases, VMP and PXRDB, to show that our proposal
is feasible and tractable.

I. INTRODUCTION
Unstructured data is pervasive now and contains various

potential values out of human's imaginations[1]. Meanwhile,
its volume are increasing explosively[2]. It has become
necessary to establish an extensible infrastructure to manage
the ever-growing unstructured data and then extract more
valuable information from them continuously. In this paper,
we propose one reference framework, called BUD, refering to
the Bank of Unstructured Data, and discuss the key issues
while constructing an instance of BUD.

A BUD system has to manage voluminous and various
formats of unstructured data. Its data model must be universal
and extensible, i.e., adaptive to any existing or future
emerging unstructured data. Unlike structured relation data,
unstructured data has no explicit schema to represent its
various internal structures, while its descriptive metadata is
structured relational data. So it is one natural approach to
manage and describe them by combining unstructured data
with structured relational data in a uniformed platform. There
is no such a uniformed platform now. In practice, in relation
databases, the unstructured data is stored in LOB and is
interpreted by applications. Object model seems to be an
appropriate choice. Unfortunately, it bases upon Abstract Data
Type (ADT) theory and an ADT is a pre-defined data type,
which is difficult to do run-time optimization. In addition, an
object can only maintain the current state of the data while
unstructured data might have many versions with time going.

In this paper, we propose a new data model, Free-Table
(FT in short), to meet this requirement and overcome the
drawbacks of the existing models. At a first glance,

researchers who are familiar with this area might take BUD as
only a coined word and another appearance of wide-table[3, 8]
or a bigtable[4]. But, FT is much different from the wide-table
and object as well. First, FT is cell-oriented table or relation
while wide-table is still column-oriented, in other word,
domain-oriented as the traditional relational model. Second,
FT is much more "free" than XML. FT allows any format of
data to be saved in a cell and its meaning or content depends
on the operators affiliated to the cell. Third, it is not the
traditional object. A cell has different versions beside the
current state. The operations of a cell are optimizable that is
very different from object model.

A. Organization of this paper
Section II describes our reference framework BUD and lists

some important research problems related to management of
unstructured data, including system architecture, data model,
quality of services, query language, distributed TSM,
metadata repository, optimization and versioning.

We present what an FT is in detail in Section III. Next, two
use cases of FT, VMP(Video Management Platform) and
PXRDB(Pure XML-Relational Database), are studied in
Section IV that show our proposal is feasible. We conclude
this paper in Section V.

II. A REFERENCE FRAMEWORK---BUD
We will introduce a layered reference framework, BUD, to

manage the unstructured data in a database approach. BUD
can be illustrated as in Figure 1.

Fig. 1 Framework of BUD

BUD has four core components: Data Services, Query
Processors, Transactional Storage Managers and CEI
Services, i.e., USD Capture, Extraction and Integration. All

Web XML audi/video Imagee-Docs
(PDF,Word,. …

CEI Services

Transactional Storage Managers
Query Processors

B
U
D…

Data Services

Free-Table Data

Indicies Meta data data

*Partly supported by National 863 High Tech. Project (No. 2009AA01Z149),
Partly Supported by Shanghai Key Lab. of Intelligent Information Processing,
China. (No. IIPL-09-018),
++ Partly Supported by National Science Fundation of China. (No. 60873017).

2010 12th International Asia-Pacific Web Conference

978-0-7695-4012-2/10 $26.00 © 2010 IEEE

DOI 10.1109/APWeb.2010.78

441

components are required to be extensible and scalable. Each
layer can be a cluster of distributed service units.

A. Data Service
Data Services(DSs) are a collection of services that accept

the requests from users and feed back desired data with
specific formats. DSs allow users to harvest various kinds of
information through specific service(s). We recommend four
types of services to manage the unstructured data.

 Uniform query service. User can retrieve different
types of data, such as well-formed relational data, xml
data, e-docs, video, audio and so on, in a single query.

 Content retrieval service. It enables user to do
semantic search over the unstructured data with no
idea of their real format.

 Import/Export/Transformation service. User can
execute them to convert data among FT data,
relational data, xml data and others.

 Analyticcal and mining service. They run built-in
analytical and mining algorithms to accomplish
classification, aggregation, association rule finding
and so on.

DS layer also provides users with many DBA utilities.

B. Query Processor
Query Processors(QPs) are invoked by any DS to act as the

brokers to search various data in FT through accessing the
available Transactional Storage Managers(TSMs).

A QP unit has those functionalities similar to the query
processor in a SQL engine. It consists of parser, optimizer,
plan generator and executor. Each component processes its
task in a distributed manner. For example, the optimizer
evaluates which plan is best according the pre-defined rules.
Also, the generator translates the computation primitives into
operators adaptive to distributed infrastructures.

More importantly, a set of operators are implemented in the
QP for unstructured data and treated as the built-in first-class
citizens like relational operators. These operators include
keyword-search, approximation-query, content-based retrieval
and so on. Moreover, QP is highly extensible so that BUD
allows user to register new operator(s) for unstructured data.

QP in BUD enhances the result processing through several
post-retrieval operations. QP can accept users' online feedback
and then adjust the query policy taking into account users'
satisfaction to afford adaptive and personalized query service.

Another important issue in BUD's query processing is the
management of uncertain data. In BUD, semantics, contents
and even some metadata, e.g., information schema, of
unstructured data are not pre-defined. They can be
automatically extracted from unstructured data according to
users' requirements. Hence these data are intrinsically
uncertain. Techniques such as probabilistic queries [12]
should be incorporated in QP for providing reasonable query
services over uncertain data.

C. Transactional Storage Manager
TSMs are the kernel of BUD framework since various

formats of unstructured data might emerge in the future, BUD

must be capable of managing them. We design a concept and
technique of Free-Table to build the TSMs.

TSM mainly manipulates three types of data: user data in
FT, indices used for optimization and summary retrieval, and
metadata repository with incremental information schema for
unstructured data. It has capabilities of: 1) multi-version
concurrency control; 2) distributed task scheduling over new
computational environment, for instance, cloud environment;
3) security assurance based on certificates; 4) versioning data
that maintains the different versions of the original and
extracted data; 5) incremental maintenance of data extraction
in a pay-as-you-go manner that makes BUD able to explore
more valuable information and refines them with more
approaches; 6) allowing users to build indices for FT. Index
can improve system performance and leverage the QoS for
managing unstructured data.

D. CEI Services
Capture, Extraction and Integration(CEI) layer plays very

important role in BUD because it acts as the preprocessor
before unstructured data are loaded into TSM. CEI can: 1)
collect or crawl unstructured data from web according to the
policies; 2). execute declarative query to extract information
including structured description, information and schema, so
that more effective analysis can be deployed. 3). classify the
input data by computing the similarity of extracted features,
and infer the global schema thereafter.

E. Open Research Problems
As a reference framework, there are many open problems

to be solved. We list some of them and our consideration on
these issues.

1. How to build a fully extensible architecture?
BUD should not only be easy to add more components, but

also enable users or DBA to register a new type of
unstructured data that will be as accessible as other existing
types in BUD. So BUD needs to be fully extensible in both
functionality and inclusion of new data type.

2. What is the universal data model for diverse
unstructured data?

BUD manages all sorts of data no matter they are collected,
extracted or self-derived. So it is a key issue to provide one
effective technique to model, in particular, those unstructured
data so that any operator can be designed for certain general-
purpose but not arbitrarily. To solve this problem, we propose
a novel technique, Free-Table, to model all data in BUD. FT
will be discussed thoroughly in Section III.

3. How to guarantee the quality of data services(QoSs)?
Both content retrieval and analytical mining services are

subject to users' expectation. In term of the content
understanding, to assure the QoS is to make them able to
"understand" the semantics of unstructured data precisely.
This needs more efforts in both data services and CEIs.

4. Long way to standardize uniform query language.
One goal of BUD is to free users from learning more

complicate query languages and understanding the certain
specific operations on USD. Users can construct one query in
a uniform language to manipulate diverse types of data

442

including relational data, semi-structured data and
unstructured data. One feasible way is to support a collections
of user-defined functions(UDFs). The problem remains that it
will take a long time to reach the standardization of
specifications of UDFs.

5. How can TSMs manage distributed USD?
Distributed TSMs are necessary to cope with ever-

emerging unstructured data and computing environment, such
as grid computing or cloud computing. Even for an enterprise
environment, its partners might spread over several areas or a
whole country. We propose a data portal model in this paper
to organize the TSM as shown in Fig. 2.

Fig. 2 Data portal model
TSM is adaptive to the content of unstructured data. Mostly,

it is difficult to determine the general optimization rule or
policy applying to the unstructured data before processing it.
Some hidden schema or structural information might be
discovered with processing the data. Therefore, TSM needs to
adjust its prior storage plan to a more efficient organization.

6. How to organize the metadata repository and evolve it?
There is no bypass to manage unstructured data without

metadata repository. Whether users or BUD has no idea about
the unstructured data if no any metadata for them, that is, the
metadata repository is the "open sesame" to the treasure cave
of unstructured data. So, building a metadata repository is one
of critical tasks to deploy a BUD instance. Furthermore, it will
evolve with time going since BUD is extensible and the
contents understanding of USD will become more complete.

In literature, [5] presents an incremental approach to extract
schema. "Pay-as-you-go" or "best-effort" [6,7,1] are similar
ideas to accumulate the knowledge of schema. Unfortunately,
the up-to-date methods mainly solve the problems related to
unstructured text data. Lot of works have not been carried out
to build the metadata repository for other sorts of unstructured
data, such e-docs, xml data, video, audio, image and so on.

7. Optimization must NOT be neglected.
Effectiveness and efficiency are two elementary metrics to

evaluate whether an instance of BUD can manage its data as
required. Partly different from DBMS, some operators in
BUD are data-intensive and computational.

For example, version comparison for a large volume of
documents will take long time to execute in a naive way. The
computational cost, however, can be cut down dramatically if
change log is available. In this case, much more efficient
query will be executed on log instead of the whole document.

On the other hand, many contents and semantics cannot be
extracted exactly from unstructured data. User can only be
provided some approximate result. The effectiveness of the
query result, for instance, recognizing face of the wanted, will
significantly influence the user's decision. In general, BUD

has to trade off the effectiveness of result and the efficiency of
execution under different environment. Optimizer will cope
with this challenge.

8. Version Management.
Many applications involved in unstructured data are not

OLTP-oriented. Update generates the versioned data but not
the replacement of the previous ones. Probably, a new version
might be derived with more effectiveness and/or resulting in
the efficient execution.

Data versions can consume space remarkably, for example,
in summarization of video clips. Here, CEI service will extract
representative clips from videos based on different algorithm
and users' feedback. These versions are not same but relevant,
and some might be able to be derived from others while some
might be accessed frequently. So BUD should enhance the
version control mechanism to compress those redundant
versions and make the frequently used version able to be
accessed efficiently.

Additionally, version management is the basis of the multi-
version concurrency control policy in BUD.

To our knowledge, the problems mentioned above are very
limited for this research area and its list will definitely go on
and on. Much more efforts are required to find the solutions.
In this paper, for space reason, we mainly focus on the second
problem, i.e., modeling the data in BUD. We propose a novel
concept, Free-Table, as a universal data model used by BUD.
The next section will describe this model in details.

III. FREE-TABLE
In this section, we try to model unstructured data into a

free-table that is used to store not only the originally-captured
or extracted unstructured data but also the derived or
versioned.

Definition. 1. Free-table. A free-table is a table with one or
more attributes among which some may have symbolic type,
cell, devised for storing and accessing the unstructured data.

The distinguished characteristic of the Free-table is that the
cell type can be assigned to attributes. A free-table reduces to
a relation if there is no any celled attribute. We have the
definition of cell type as below:

Definition. 2. Cell Type. Cell is a variable by-instance
virtual interface type for modeling the unstructured data. Cell
is a symbolic type.

For an FT tuple, any cell-type attribute contains data that
can have no same internal structure for all of its instances.
Given a free-table, for example, newsitem, it has the following
schema:

 NewsItem(Title TEXT, Data DATETM, Comment CELL)
For all NewsItems, the column Comments is cell typed and

can have various forms, such as text, xml, e-docs, video or
audio, among different tuples and even in different versions of
a same tuple. It is a distinct feature that makes a table free
from rigid type constraints.

We will discuss some important issues related to the
implementation techniques on cell type next.

A. Properties of a Cell

TSM

Buffer Mgr Log Mgr Security Center Transaction Mgr

RDB

Relational
Data

VFS Data

XML Data

Universal Data Portal

MM Data

Portal Driver

VR

Portal Driver

CAD

Portal Driver

Text/e-Doc

Portal Driver
Portal Driver

443

In our proposal, cell type is represented as a quadplex as
 Cell=(byteData, rdfContent, pfOperator[], byteVersion)
First of all, a cell must be a container of unstructured data.

The first property, byteData, is the container of the
captured/extracted unstructured data w/wo transformation
from its original source. byteData can be a byte stream.

rdfContent is in form of RDF or other structured form. It
keeps the semantics and information for the current version.
Also, it does maintain full version of knowledge accumulated
from the first version.

The third one is pfOperator. pfOperator is a set of operators
applicable to byteData to access the unstructured data in this
cell. Meanwhile, this set includes the operators manipulating
the rdfContent and byteVersion. In general, it contains one
operator to show information of all operators in this set.

The last one is byteVersion property. Its values can be used
to keep track of the version history of the unstructured data
and its change log of its content or semantics information
extracted.

To meet the requirement of large volume of unstructured
data, the space limitation of a cell is up to the capacity of
storage media. The output of CEI can be stored in the
byteData and extracted information is saved in the rdfContent.
The byteVersion will be kept at same time.

B. User's View
Users can access the celled attributes as same as the others

with non-cell type, e.g., integer. In most case, the attribute
name stands for its value no matter whether it is virtual type or
a built-in data type. In BUD, we comply with this user's view
of the cell-type attribute.

Take the free-table NewsItem for example again, BUD
allows user to submit an SQL query like:

 SELECT title, comment FROM NewsItem;
QP parses it and executes it by transforming the comment

in the select-list into its appropriate internal form according to
the default rule(s). The default rule(s) can be used to
determine the default operator and which property of the cell
will be used to generate the query result. In particular, the
value of the comment column in a tuple will generate a NULL
value if no default operator assigned to this attribute.

The default operator belongs to the pfOperator set.

C. Operator Set
Operators are keys to unstructured data in a cell. Any

properties of a cell can be accessed through predefined and/or
user-defined operators if the appropriate privilege is granted.
Operator set contains elementary operators that are primitive
operators for all cell instances in a free-table. Minimally, the
set should provide functionality as below:

 Get/SetData: the most fundamental operators. They
are responsible for reading from and writing into
byteData respectively. Particularly, SetData must be
assigned to the cell before its data is loaded.

 Search: it is an entry-point operator to locate the
portion of byteData based on the search
argument(SARG). Search can also find the
information in rdfContend if user requests to do so.

 EvalCost: the basic operator is used to report the cost
prediction to optimize the query execution. It evaluate
the cost of a specific operation on the cell so that the
optimizer chooses an efficient plan.

 GetInfo: it retrieves the metadata repository to find the
description for the specific or all operators attached to
the cell instance or a cell attribute.

There are more useful operators not listed above, such as
Index, Match, etc. The elements of operator set can be created
and imported if necessary for enhancing its extensibility.

D. Extensibility
Cells in a free-table might have lots of unrecognized

information so that the functions for a cell can grow on and on.
It means that cell type have very high extensibility.

Any operator of a cell supports to overload its
implementation so as to extend its functionality. On the other
hand, BUD enables users to register the operator set for new
type of unstructured data, for example, type T and then type T
of data can be loaded into BUD after processing of CEI.

For a cell instance, its pfOperators[] is never fixed. Users
can easily add new element into it to meet new need.

Regarding storage, byteData can be organized with a more
complex internal storage structure so that it can receive large
volume of unstructured data and their versions. The internal
structure is understood by the Get/SetData and other operators.

E. Open Research Issues
Besides our comments above, some important research

issues must be paid more attentions
 Adaptive storage mechanism for a free-table

A cell-type attribute has no same built-in data type for all
instances, but all instances have the same or similar semantics,
e.g., comments for the free-table NewsItem. One FT can have
more cell attributes and/or be a wide sparse table [3]. These
cell attributes should be stored in BUD more efficiently. This
problem must be focused more intensively while designing
and implementing the TSM. The storage mechanism also
needs to be adaptive to the run-time environment or
infrastructure so as to fully exploit the available resources.

 Indexibility
It seems difficult to index the unstructured data, but it is

nearly impossible to improve the performance without any
index. BUD must build some indices to speed-up the access to
the desired byteData.

This is a challenging problem. One clue is there might be a
way while combining the unstructured data with structured
data including those metadata or extracted information.

 Version Purging
To restate the above opinion here, the first three properties

of a cell except the byteVersion can be involved into version
management. For example, a new content-understanding
method is implemented as a new version of an operator.
Consequently, a new version of rdfContent is generated and
probably some portions of derived byteData are spawned as
well. After a pretty long period, lots of versions will be
accumulated for a cell instance. The version purging needs
more research.

444

 Uncertain Data Management
Semantics, contents and even some metadata, e.g.,

information schema, of unstructured data are not pre-defined.
They can be automatically extracted from unstructured data
according to users' operations and feedbacks. These data are
uncertain while they are valuable for managing unstructured
data. So, management of uncertain data in BUD is a big issue.

As the basis of the BUD in this paper, there are more
research or implementation issues. We could not enumerate
all of them for space reason. We will present two use cases of
FT briefly in next section.

IV. CASE STUDIES
In this section, we discuss the possible solution to manage

two typical sorts of unstructured data in two cases. One is for
video data and the other is for XML data.

A. Case Study---Video Surveillance
Video is typical unstructured data used everyplace and

contains lots of information than a bundle of plain text. In this
case study, we will demonstrate how to manage the video
surveillance in a Video Management Platform (VMP).

VMP continues to capture surveillance video through
cameras installed in, for example, a retail store. One
interesting scenario is :

Some customers can be recognized if they had been the
store and bought something before. Once identifying them,
VMP alerts salespersons to provide them better shopping
experience, eg. special offers, discount or recommendation.
VMP uses a group of relations. One of them is a free-table

ftVideo maintaining video data and another is ftKeyframe used
to record the photos of the recognized customers in the store.

 ftVideo(title, date, length, vseg,...)
 ftKeyframe(id, keyframe, position,...)
In the above two FT, both attributes vseg and keyframe are

cell type and the others are annotations or descriptions related
to them. Its byteData is well organized and can be accessed
more easily by executing the affiliated operators.

 Storage Organization
Comparatively, it seems easier to store keyframe than vseg

because vseg consumes more space. We store the byteData of
both in LOB and split the large volume of LOB into smaller
segments (see Fig. 3) to improve the performance[9]. The
segmentation supports multi-granularity, such as shot, scene,
frame and so on.

cellId seg# byteData
110 1 <preprocessed>
110 2 <preprocessed>
...

Fig. 3 . Storage solution

For purpose of tracking people and locating a specific video
clip for a specific person or event, VMP allows user to create
the multi-summary index(MSI) on surveillance video based
on keyframe photo as in Fig. 4.

A MSI can be built on ftKeyframe by executing the
elementary operator Index for cell keyframe like:

 keyframe.Index(level,...)

Fig. 4 Multi-summary index on surveillance video

Where level indicates the levels of the summaries. It then
can be used to locate specific video clips on various levels
according to the parametric face image. For example,

 keyframe.Search(photo, level#,...)
The result is set of position-pointers to clips of vseg which

have index-entries on the level# MSI matching the photo.
For video and image in VMP, both Index and Search are

the elementary operators, we have more to list next.
 Elementary Operators

Elementary operators are users' utilities to access the cell
and extract more information in a "pay-as-you-go" manner.
VMP has several classes of elementary operators for different
purposes:

 Exactly Find
a) GetVal/SetVal: saves and retrieves byteData.
b) GetInfo: retrieves the metadata of the operators

and the extracted content as well.
c) Locate: finds the specific clip or image according

to timestamp and/or other comparable operators
for the non-cell attributes.

 Approximately Search
a) Search: searches video clips or images in IR-

style.
b) Index: builds the MSI based on face-recognition

and other machine-learning methods.
c) EvalCost: statistically reports the cost to run a

specific video-/image-related operation.
d) Match: reports whether two video/image match

each other probably.
 Viedo-oriented/Image-oriented

a) FeatureExtraction:extracts features of a keyframe.
b) Convert: converts one video clip from one

format to another one, e.g. from mpeg1 to mpeg4.
c) Split: splist a large segment into smaller clips.
d) Merge: merges a few clips into a larger segment.
e) Annotate: adds annotations for a video/image.

 Version Management
f) SetVer: sets the current data as a real version.
g) Purge: compresses the version history. Some

obsolete versions will be discarded.
More operators are not included here for space reason.

Furthermore, the set can be expanded if necessary.

445

VMP is designed and implemented based on PostgreSQL.
One main goal is to build a RDBMS-oriented instance of
BUD and enable the interplay of structured and unstructured
data[1]. In VMP, operators run in context of the RDBMS and
can easily or even smoothly be combined with the relational
structured data. Specially, the elementary operator EvalCost is
available to the optimizer of the SQL engine so that QP can
choose a more efficient plan. We call this cost-awared video
management. This is one of significant contributions of VMP.

The services in VMP are put into UIMA, an open source
architecture now. We will try to port it to cloud computing
environment in the future.

B. Case Study---XML Data with Relation Data
XML data is the semistructured data and its volume keeps

growing on and on no matter what arguments or even debates
about it. In this section, we will discuss our propsal on how to
manage both XML data and relational data universal. This
proposal is not to implement a complete instance of BUD now.

 Multi-tiered uniform integration
Integration can be implemented in different layers to

combine XML data with relation data referencing BUD.
Tier one: Language layer. We define and support a

cooperative query language mixing SQL and XQuery
language where SQL statement can invoke processiong of
XQuery and vice versa. For users' view, it is uniform.

Tier two: Optimizer and executor layer. A universal
optimization model is able to optimize query written in SQL,
XQuery or both. In particular, it can generate more efficient
plan if storage manager supports this integration.

Tier three: Adaptive storage manager. Storage manager can
adaptively select the efficient storage schema according to the
data content but not rigidly based on the data type.

We now mainly focus on how to adaptively store XML
data. Regarding, for example, a document customer.xml with
well-formed content much like a table, PXRDB then can store
it in a relation rather than in an XML document object.

In addition, the above three tiers is backward compatible,
i.e., Tier three integration supports both tier one and two.

 Keyword search over XML and relation Data
Keyword search is an important data service for non-expert

end user to search any data [10,1,3,5, 11]. In order to support
keyword search over XML and relation data in a same query,
the search engine is built at the QP level. Semantics might be
lost in part if it is up-moved to search service simply.

An ranking model is the key to search the meaningful result.
In this case, a novel evaluation model must be designed.

 Adaptive storage schema
Integration can be implemented in storage manager. It is an

interesting and challenging problem in PXRDB. The novel
storage policies are deployed to make XML data adaptively
stored according its content as mentioned above.

Indexing techniques and transaction management also need
to change to adapt to storage schema.

PXRDB is a Pure XML-Relational Datbase system. It is
RDBMS-oriented and implemented based on PostgreSQL, too.
We also want to manage more data besides relational data in
this system. The operations on XML data can be respecified

and implemented as operators affiliated to XML type.
Furthermore, XML type can be degraded to be cell type. In
this part, PXRDB is an instance of BUD, too.

V. CONCLUSIONS AND FUTRUE WORK
Data, especially the unstructured data, are becoming the

wealth for a person, community, society or the whole world.
Plenty of information can be extract from unstructured data
and stored in structured data. It is natural and necessary way
to manage both simultaneously. We propose a reference
framewrok, BUD, to address this basic issues in this paper.

Extensible architecture and data model are the first two
most important issues. The extensibility of BUD makes it
open to new formats, and to effectively manage all known
forms of data. As for data model, we present a new model,
Free-Table, which manages unstructured data by cell. Cell is
not same as traditional data type or object. It is a virtual by-
instance type, that is, any instance of an attribute in an FT has
peculiar format of its own, and operators. In addition, cell
supports data versioning.

Two cases, VMP and PXRDB, show that BUD with FT is
feasible. VMP is an instance of BUD to manage surveillance
video data while PXRDB is a DBMS adaptively managing
XML data. VMP supports various type of video and image
data stored in cells witch specific elementary operators. As to
PXRDB, its XML type can be as a cell, we believe PXRDB
can provide the capabilities of BUD.

As we said, BUD is reference framework based on FT.
More open issues will emerge and need more efforts to solve
them with FT technique maturing.

ACKNOWLEDGMENT
Thanks so many to our colleagues and students for

discussion with and explanation to them.

REFERENCES
[1] Rakesh Agrawal and etal,The Claremont Report on Database Research,

http://db.cs.berkeley.edu/claremont/claremontreport08.pdf, 2008
[2] A. Szalay and J. Gray. Science in an exponential world. Nature, 440,

March 23 2006.
[3] E. Chu, J. Beckmann, J. Naughton. The Case for a Wide-Table

Approach to Manage Sparse Relational Data Sets. SIGMOD 2007
[4] Fay Chang, Jeffrey Dean, et al. Bigtable: A Distributed Storage System

for Structured Data. Google. OSDI 2006
[5] E. Chu, J. Naughton, et al. A Relational Approach to Incrementally

Extracting and Querying Structure in Unstructured Data. VLDB 2007
[6] Shawn R. Jeffery, Michael J. Franklin, Alon Y. Halevy. Pay-as-you-go

user feedback for dataspace systems. SIGMOD 2008
[7] Warren Shen, Pedro DeRose, Robert McCann, AnHai Doan, Raghu

Ramakrishnan. Toward best-effort information extraction. SIGMOD
2008

[8] J. L. Beckmann, and J. F.Naughton, et al. Extending RDBMSs to
support sparse datasets using an interpreted attribute storage format.
ICDE 2006.

[9] Wenjing Zhou, Xiangwei Xie, Hui Li, Xiao Zhang, Shan Wang, A
Database Approach for Accelerating Video Data Access,
APWeb/WAIM WCMT Workshop 2009

[10] Gaurav Bhalotia, Arvind Hulgeri, et al. Keyword Searching and
Browsing in Databases using BANKS. ICDE 2002

[11] B. Yu, G. Li, B. Ooi, L. Zhou. One Table Stores All: Enabling Painless
Free-and-Easy Data Publishing and Sharing. CIDR 2007

[12] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, Evaluating
probabilistic queries over imprecise data, SIGMOD 2003

446

