
Efficient SPARQL Query Evaluation via

Automatic Data Partitioning
(Technical Report)

Tao Yang, Jinchuan Chen, Xiaoyan Wang, Yueguo Chen, and Xiaoyong Du

Key Labs of Data Engineering and Knowledge Engineering, Renmin University of
China

{yangtao2007,jcchen,wxy,chenyueguo,duyong}@ruc.edu.cn

Abstract. The volume of RDF data increases very fast within the last
five years, e.g. the Linked Open Data cloud grows from 2 billions to 50
billions of RDF triples. With its wonderful scalability, cloud computing
platform like Hadoop is a good choice for processing queries over large
data sets. Previous works on evaluating SPARQL queries with Hadoop
mainly focus on reducing the number of joins through careful split of
HDFS files and algorithms for generating Map/Reduce jobs. However,
the way of partitioning RDF data could also affect the performance.
Specifically, a good partitioning will greatly reduce or even totally avoid
cross-node joins and significantly reduce the cost of query evaluation.
Based on HadoopDB, this work processes SPARQL queries in a hybrid
architecture where Map/Reduce takes charge of the computing tasks
and an RDF query engine, RDF-3X, stores the data and evaluates join
operations over local data. Based on analysis of query work-loads, we
propose a novel algorithm for automatically partitioning RDF data. We
also present an approximate solution to physically place the partitions
in order to reduce data redundancy. All the proposed approaches are
evaluated by extensive experiments over large RDF data sets.

1 Introduction

RDF, an abbreviation for Resource Description Framework, is a model recom-
mended by W3C for data interchange on the Web. Basically, RDF represents
each fact as a triple < s, p, o >. RDF dataset is essentially a graph with each ver-
tex per entity and each edge per relationship between two entities. The SPARQL
query is a widely accepted query language for accessing RDF triples. A SPARQL
query contains a set of triple patterns, i.e. at least one element of s, p, and o is a
variable. It can also be represented as a graph, with some vertexes or edge labels
(predicates) as variables. The results of a SPARQL query are sub-graphs of the
RDF graph. Hence a SPARQL query is basically a sub-graph pattern matching
task. As a running example, Fig. 1 illustrates the statement and corresponding
query graph of a SPARQL query, which tries to find all the persons who obtained
his/her degree from the same university which he/she currently belongs to.



In recent years, with the quick proliferation of RDF data, it is often infea-
sible to store all RDF triples in a single node, which motivates the interests
of processing SPARQL queries in a distributed environment, especially within
the Hadoop platform [11, 13]. Benefiting from the Map/Reduce framework, these
works obtain high scalability of evaluating SPARQL queries over billions of RDF
triples. However, SPARQL queries usually contain multiple joins and these join
operations may be conducted in multiple worker nodes, which is not favored
by Map/Reduce because cross-node communications are not permitted in the
map phase. Thus a SPARQL query may need multiple M/R jobs which is quite
expensive since each such job requires several seconds to fire up, not to speak of
the time cost of communication between multiple nodes.

?X1

?X2

m
em

berO
fgr

ad
uat

eF
ro

m

subOrgOf

ty
pe

University
type

Department

SELECT ?X1, ?X2, ?X3,?X4

WHERE

{  ?X1 type ?X4

?X2 type Department

?X3 type University              

?X1 memberOf ?X3

?X2 subOrgOf ? X3

?X1 graduateFrom ?X2}

type
?X3

?X4

(a) Query Statement (b)  Query Graph

Fig. 1. An example of a SPARQL Query

In the distributed database community, a classical technique to reduce cross-
node communication is data partitioning. The basic idea is to put the tuples
which may be involved in a join in the same worker node [4, 15, 7]. For this pur-
pose, usually we need to analyze previous query workloads and identify which
tuples or rows are probably appear in the same queries [15, 7]. Taking this idea,
this work aims at facilitating scalable and efficient processing of SPARQL queries
via automatic data partitioning. Our work is based on the HadoopDB project [3],
which proposes a hybrid architecture by combining Map/Reduce and databases.
The principle idea is to execute M/R jobs over a database cluster. In this way, the
hybrid system could inherit the scalability and fault-tolerance from Map/Reduce
framework while obtaining high efficiency from the powerful capability of pro-
cessing complex operators like joins and aggregations in traditional databases.
In our work, each worker node is equipped with a RDF-3X query engine [14], a
state-of-art single-node system for processing SPARQL queries.

Our partitioning approach is inspired by the observation that in many ap-
plications there usually exist some frequent query patterns. A query pattern is
a special SPARQL query, which essentially defines a code such that a group
of similar SPARQL queries can be compiled according to it. For example, the
query shown in Fig. 1 can be regarded as a query pattern. The variable X4

can be replaced by different constants like Student, Professor, and Staff and
correspondingly generate different queries. The general idea of our partitioning



approach is to divide the RDF graph into twigs, or tiny sub-graphs, according
to the frequent query patterns1. We can then ensure that no cross-node joins
are needed when processing SPARQL queries complied with any query pattern.
What should also be mentioned is that, thanks to the powerful capability of
RDF-3X for processing triple joins, even for queries not in any identified pat-
terns, the query performance of our system would also defeat those works based
on Hadoop systems [11].

The work most similar to ours is [10], where the authors also propose to
evaluate SPARQL queries over HadoopDB. In [10], the whole RDF graph is
divided into several huge sub-graphs based on a graph partitioner METIS [2].
These sub-graphs would be stored at different worker-nodes, with triples near
the division boundaries replicated to multiple nodes. Based on this partitioning,
most queries could be answered based on the triples inside a single node.

Compared with [10], our solution has several significant advantages. First
of all, [10] does not consider the dynamic properties in query workloads, and
cannot guarantee that there are no cross-node joins for frequent query patterns.
Suppose a query pattern happens to involve the triples on the partition bound-
aries, querying the queries compiled with this pattern have to coordinate triples
in different nodes. Secondly, [10] may result in many duplicated triples and does
not mention how to alleviate this redundancy. In our solution, the partitioning
contains two steps. The first step is exactly a logical partitioning, i.e. it will di-
vide the original dataset into many small parts but does not really move them.
At the second step, we will place these partitions into different worker nodes.
During this placement phase, we will try to reduce the data redundancy by
putting partitions with large overlappings into the same worker node. Finally,
the partitioning in [10] is based on graph partitioning, a known NP-complete
problem [6], which will cost lots of computational efforts.

The contributions of our work are summarized as follows.

– We propose a query-driven data partitioning approach and based on it de-
velop an efficient solution for processing SPARQL queries over large scale
RDF data.

– We prove that the placement problem of reducing data redundancy is NP-
hard.

– We present an approximate algorithm for reducing data redundancy, which
is based on the LNS (Large Neighborhood Search) solution [5].

– We conduct extensive experiments over two large datasets, i.e. LUBM [9]
and BTC [1], to evaluate the efficiency and effectiveness of our proposed
approaches.

Next we will illustrate the architecture of our system in Sec. 2. We then
discuss the partition and placement approaches in Sec.3. Sec. 4 will report our
experimental results. We will discuss related works in Sec. 5 and conclude this
paper in Sec. 6.

1 The query patterns are assumed to be available, and the efforts of analyzing query
workloads and identifying frequent patterns exceed the scope of this paper.



2 System Architecture

RDF/XML

Query Pattern

SPARQL

QUERY

Fig. 2. System Architecture

Our system architecture is illustrated in Figure 2. This system contains three
modules including Data Pre-Processor, Query Engine and a hybrid platform
combining Map/Reduce and RDF-3X.

In the data pre-processor, RDF data are partitioned according to query pat-
terns. The data partition procedure guarantees that there are no cross-node joins
when evaluating any queries compiling to any registered pattern. Each query pat-
tern would have an independent partitioning. All the partitions generated by all
the frequent query patterns need to be put into the nodes, through the data

placement procedure. Note that a triple may appear in multiple partitions since
we perform an independent partitioning for each query pattern. Hence the major
concern of the placement procedure is to reduce the data redundancy. Once ob-
taining the partitions, the data loader procedure on each worker node will load
all triples to the RDF-3X database installed in that machine.

In the query engine, after receiving a SPARQL query, the pattern detector

figures out whether this query matches any query pattern. If YES, because the
triples of each sub-graph matching this query have been placed to a single worker,
we can pushdown the whole query to RDF-3X and simply generate one M/R job
to retrieve the results. For those queries matching no patterns, we just generate
M/R jobs according to the algorithm in [11]. In practice, we can design query
patterns to accomodate as many queries as possible, e.g. by replacing more con-
stants with variables. Finally, the query engine submits the jobs to MapReduce
framework.

Queries are executed using MapReduce with RDF-3X as a local engine.
MapReduce checks configuration files and locates data replications with job pa-
rameters. Then each task sends SPARQL queries to RDF-3X installed in each
worker node. Query results are returned back as the InputFormat of Mapper.



3 Data Partitioning

We now illustrate the data partitioning process, which contains two steps, i.e.
query-driven partitioning and placement.

3.1 Query-Driven Partitioning

Since each SPARQL query pattern can be regarded as a directed graph, we
will use “edge” and “triple pattern” interchangeably when the meaning is clear
from the context. For each such sub-graph matching a given query pattern, if
all triples in this sub-graph are placed into the same worker node, there would
be no cross-node joins when evaluating all queries within this pattern. This
property will be guaranteed by our partitioning algorithm. Before going into the
algorithm details, we first illustrate a framework to present the principle idea of
our partitioning algorithm.

Algorithm 1: PartitioningFramework(RDF dataset D, Query Q)

1 Q′ ← an empty graph;
2 Randomly choose an edge e0 from Q and insert it into Q′ ;
3 S ← all triples matching e0;
4 Randomly choose a partition for each triple in S;
5 Record the partition information;
6 while E(Q′) < E(Q) do
7 Select an edge e such that e ∈ E(Q) \ E(Q′) and e is connected to Q′;
8 Insert e into Q′;
9 S ← all triples matching e;

10 foreach triple t in S do

11 Find the set of triples S′ that can be joined with t according to Q
and have already been partitioned;

12 Put t in each of the partition containing at least one triple in S′;

13 Record the partition information;

Algorithm Framework Alg. 1 illustrates a framework of our partition algo-
rithm. We first initialize an empty graph Q′, which will be used to record the
progress of partitioning. Next, Step 2 tries to randomly choose an edge from Q
and add it to Q′. All triples matching this edge will be loaded by scanning the
whole dataset (Step 3), and each matched triple will be assigned to a random
partition (Step 4). We will store the partitioning informations, e.g. the partition
which a triple is assigned to, in a table (Step 5). After processing this initial
edge, we then add other edges in Q to Q′ one by one. Step 7 claims that the
edge which we choose at each step must be connected to Q′, which is a crit-
ical requirement to ensure the algorithm target. Again, we retrieve all triples



matching this new edge (Step 9). Now we need to decide the partitions for these
matched triples. For this purpose, we basically conduct a join according to the
structure of Q between these new coming triples and those have already been
partitioned (Step 11).

Lemma 1. For any query pattern Q, all sub-graphs matching Q will have their

triples assigned to the same partition if we divide the original dataset according

to Algorithm 1.

Proof. Without lose of generalization, suppose Q contains m edges. We change
the indices of these m edges and get e1, · · · , em such that ei is the ith edge in-
serted intoQ′ according to Algorithm 1. Any sub-graph matchingQ also contains
m triples. Again, we change the indices of the m triples in a specific sub-graph
to obtain t1, · · · , tm so that ti has ei as its corresponding triple pattern in Q.
It is not hard to see that ti must be placed into the same partition as ti−1 for
i = 2, · · · ,m. Thus all these m triples must appear in the same partition which
is initially decided by t1.

The Partition Algorithm The framework in Algorithm 1 cannot be directly
applied in practice. This algorithm requires a table or index to record the parti-
tioning decision for each processed triple, which is not feasible due to the large
volume of RDF dataset. Moreover, the RDF dataset is usually quite skew. Some
triple patterns may have huge number of matched triples. This skewness must
be handled carefully otherwise the performance could be very bad. We now illus-
trate several techniques utilized for overcoming these shortcomings and, based
on these techniques, present the partitioning algorithm.

A compact data structure for storing the partitioning results. In
Alg. 1, for each e chosen to be inserted into Q′, all the triples matching e should
be checked to see whether they could join with previous partitioned triples. This
triple-to-triple join is quite costly in terms of both computation and memory
with the existence of billions of triples. In order to improve the performance, we
now present a compact data structure to store the partitioning results.

This structure is based on the following observation. Any triple t which could
be joined with existing ones must satisfy the following two requirements: (1) its
corresponding triple pattern e must share at least one common variable with one
or more edges in Q′, and (2) there exists at least one partitioned triple t′ such
that both t and t′ are assigned with the same value for this common variable.
Therefore, instead of recording all the partitioned triples, we just need to keep all
the distinct values of each variable that have shown in any partitioned triples.
Specifically, we construct a Hash table for each variable v in Q′ containing a
set of (var key, pos) entries with one var key per distinct value of v, and the
corresponding pos be the identifier no. of the partition storing all the triples
having the same value, i.e. var key, to this variable v.

Thus every time we join a candidate triple with previous allocated ones,
our algorithm will first look up the Hash table with its value on the joined



variable and then assign this triple to the corresponding partition indicated by
the returned pos value. In the meanwhile, if this triple contains another variable,
its value should be added to the index for the follow-up operations.

Algorithm 2: Partitioning(TripleSet D, Query Q, Int n )

1 TP ← estimate(Q,D);
2 Q′ ← an empty graph;
3 while |E(Q′)| < |E(Q)| do
4 e← chooseEdge(Q,Q′, TP );
5 STemp ← loadTriples(D, e);
6 foreach t ∈ STemp do

7 if E(Q′)=0 then

8 i← a random value in [1, · · · , n];
9 foreach v in V ar(e) do

10 putIndex(Γ ,hash(t,e,v),i);

11 else

12 foreach v in V ar(e) ∩ V ar(Q′) do
13 i← readIndex(Γ ,hash(t,e,v));
14 if i < 0 then

15 continue;

16 else

17 add t into Si;

18 foreach v in V ar(e) ∩ (V ar(Q) \ V ar(Q′)) do
19 i← readIndex(Γ ,hash(t,e,V ar(e) \ v));
20 putIndex(Γ ,hash(t,e,v),i);

21 insert e to Q′;

Choosing edges based on selectivity estimation. In practice, the selec-
tivities of the triple patterns could be quite skew. For LUBM dataset containing
1 billion triples, if we first choose the edge ?X1 type ?X4 in the example query
in Fig.1, about 109 of records need to be retrieved and recorded in the index.
Clearly, not all the records can satisfy the query. Many retrieved triples have
no contributions to the query results. In this work, we adopt the selectivity es-

timation technique to improve the performance. As a classical method in the
database community, the principle of selectivity estimation is to evaluate predi-
cates with low selectivities first in order to reduce the number of tuples involved
in joins. We utilize a simple heuristic to estimate the selectivity of each triple
pattern. Suppose the number of triples contained in a predicate is nump, and
the number of distinct values of the variable in this triple pattern is numv, the
selectivity of this triple pattern is estimated by nump/numv. For details, please
refer to Appendix A.



The Algorithm Now, we are ready to present the partitioning algorithm, which
is listed in Alg. 2. Step 1 is to construct a list TP storing the selectivities of
each triple pattern by analyzing D. The chooseEdge function in Step 4 is to
select a new edge which should be connected to Q′. This selection is based on
the priorities stored in TP . Steps 7-10 is to process the first edge. Each triple
matching the first edge will be assigned to a random partition (Step 8). A hash

function computes a Hash code for the variable value of this triple with this
triple pattern, and this code would be used as the key to store the partition
result in an index Γ (Step 10). For subsequent edges, a variable on the edges
may be join variable, i.e. appearing in Q′, or non-joinable variable, i.e. not in
Q′. The partition of the current triple is decided by its join variables through
checking the index(Step 13). Note that a triple cannot be joined if we cannot find
its key in the index(Steps 14-15). We also store the partition information for the
non-joinable variables (Steps 18-20), which may be used to link with follow-up
edges. Note that there is at most one non-joinable variable for each edge.

3.2 Placement

According to the partitioning process shown in Sec. 3.1, each query pattern will
generate n partitions. We now discuss how to physically place these partitions
in different worker nodes. Note that when partitioning the original RDF dataset
according to a query pattern Q, those triples which could not satisfy this pattern
will not be assigned to any partition. Thus, after processing all the m query pat-
terns, there are still a large portion of triples satisfying no patterns and therefore
are not partitioned. In practice, such triples will be seldom accessed and we call
them cold triples. Each of these cold triples would be assigned to a randomly
chosen worker node. In this section, we focus on the placement of the hot triples,
i.e. those probably satisfying at least one query pattern. Since our partitioning
algorithm guarantees no cross-node joins for queries compiled to frequent pat-
terns, the major concern of placement is to reduce the data redundancy, i.e.
the number of replicated triples among different worker nodes. We will discuss
how to estimate data redundancy and give the definition of the placement prob-
lem. Then we will prove that the placement problem is NP-hard. Finally we will
illustrate an efficient approximate solution for this problem.

Problem Definition During the partitioning process, we totally generate m ·n
partitions. Hence each reasonable placement solution, denoted by P , needs to
arrange these m ·n partitions in a m ·n matrix such that: i) the ith column of P
contains all the partitions corresponding to the ith query pattern (i = 1, · · · ,m)
and, ii) all partitions in the jth row would be put into the jth worker node
(j = 1, · · · , n). Thus a placement solution is exactly a m · n matrix and there
could be nm different possible solutions. The data redundancy of a placement
solution P could be evaluated by the following equation.



γP =
∑

∀i,j(i6=j)

γi,j −

n∑

i=1

m∑

j=1

γi,j (1)

Here γi,j is the number of replicated triples in the ith and jth partitions, and
γP means the overall redundancy of this solution. The value of each γi,j can be
estimated based on the index described in Sec. 3.1. The details can be found at
Appendix B.

The first part on the right side is basically the total number of replicated
triples among all the m · n partitions. The value of

∑m

j=1 γi,j is the overall

redundancy among all partitions in the jth row. The second part is just to
compute the sum of all redundancy in each row. When evaluating γP , the row-
level redundancy should be subtracted since all partitions in a row would be put
in the same worker node. Note that the first part is a constant for all different
placement solutions. Hence in order to minimize γP , we just need to maximize
the value of the second part.

We now give a definition for the placement problem.

Definition 1. Given the partitioning results of the m query patterns, i.e. a set

of m·n partitions, the placement problem is to minimize the data redundancy

as defined in Equation 1 by arranging these m · n partitions into the n worker

nodes.

P=

p11,  p12,  p13, p14

p21,  p22,  p23, p24

p31,  p32,  p33, p34

p41,  p42,  p43, p44

P'=

p21,  p12,  p13, p14

p11,  p22,  p23, p24

p41,  p32,  p33, p34

p31,  p42,  p43, p44

C1

C3

C4

C2 C5

C6

C1

C2

C3

C4

C5

C6

C7

C8

C8

C7

Fig. 3. An example of placement solution

Complexity Analysis. The placement problem could be transformed to
the maximum weight independent set problem (MWIS in short). For any graph
where each vertex is attached with a positive weight, a maximum independent
set (MIS) is a set of vertexes in this graph which are pairwise disconnected and,
all other vertexes should have at least one neighbor in this set. A MWIS is just
the heaviest MIS. Let us define a reasonable combination, denoted as C, as a set
of m partitions each of which corresponds with a distinct query, i.e. a row in a
placement solution. Hence there could be totally nm reasonable combinations.
We then build a graph G by adding a node for each reasonable combination, and
adding an edge between two nodes if and only if their underlying combinations
contain overlapping partitions. Each node is attached with a weight which is
equal to the overall redundancy of this combination. Fig. 3.2 illustrates a simple



example for partitioning a dataset into four nodes according to four queries.
On the left part, there are two possible placement solutions, P and P ′. Each
element of the two matrixs, e.g. p11, is a partition generated in the partitioning
process. The difference between P and P ′ are highlighted in red color. Each row
represents a reasonable combination with their labels, i.e. C1, · · · , C8, listed on
the right. The graph on the right part of this figure contains eight nodes for these
combinations, with edges connecting combinations with overlapped elements. For
example, the nodes C1 and C6 are connected since both nodes contain the same
element p11.

Algorithm 3: Placement(Solution P )

1 SearchArray ← Relax(P );
2 best← Evaluate(P );
3 scoreOfOneSearch←LocalSearch(SearchArray, best);
4 while scoreOfOneSearch > best do
5 best← scoreOfOneSearch;
6 ideal← array stored in LocalSearch;
7 SearchArray ← Relax(ideal);
8 LocalSearch(SearchArray, best);

9 return ideal;

Note that in any placement solution, there will be no repeated partitions and
all the nm partitions should show up. Clearly, each maximum independent set
will constitute a solution P , and the optimal solution is exactly the one with the
largest sum-of-weight. The MWIS problem is known to be NP-hard [17], and we
have to resort to some approximate approaches.

A LNS-based Approximate Algorithm In this paper, we adopt the LNS(Large
Neighborhood Search) algorithm [15]. The principle of LNS is an iterative pro-
cess. Starting from an initial solution, each iteration will search the nearby so-
lutions of the previous optimal solution, and repeat this procedure if finding a
better solution. Otherwise, if no better solutions are found in the neighborhood,
the current optimal solution will be output as the result. The algorithm is illus-
trated in Algorithm 3. Firstly, we takes the output of the partitioning algorithm
as the initial solution. Then in relaxation part, some placed parts in the initial
solution will be selected to be relaxed according to proportion ratios given as
parameters (Step 2). In the core phrase of LNS, the LocalSearch function will
explore nearby solutions and try to find better solutions (Step 4,9). The process
will be repeated if a better solution is met during the local search process (Steps
5-9).



4 Experimental Analysis

4.1 Experiment Setup

Hardware We perform our experiments on a 8 node cluster. Each node has the
following configuration: two 2.4GHz Intel(R) Xeon(R) E5654 processors, 48GB
main memory and 250G disk space. We run the partitioning and placement
algorithms on one of the machine in cluster with an extra 4.5T hard disk.

Software. We modify the source codes of Hadoop-0.20.2 in order to adapt
with RDF storage. The version of the RDF-3X engine used in our experiments
is 0.3.7. In the pre-processor module, we parse each SPARQL query with jena-
2.6.2 together with arq-2.8.3 [18]. In comparison with the state-of-art, we also
implement the system in [11], called TKDE11 in this paper. We do not compare
the performance with the system in [10], since it usually evaluates SPARQL
queries over database clusters instead of the Map/Reduce platform.

DataSets and Queries. Throughout our experiments, we use one syn-
thetic dataset, the Lehigh University Benchmark(LUBM) [9] and one realistic
dataset, the Billion Triple Challenge 2010(BTC) [1]. LUBM generates synthetic
data about universities on a university domain ontology. Besides data generator,
LUBM also has 14 standard queries focusing on both scalability and inference
testing. In our experiments, we generate a dataset of 10,000 universities with
default parameters. The LUBM dataset contains around 1.1 billion triples. BTC
contains the triples from twelve sources such as Yago, DBPedia, and Freebase [8].
We choose BTC to test effectiveness and efficiency of our solutions on large scale
and real-life RDF data. After cleaning the noisy or duplicated data, we obtain
about 1.28 billion triples. Before the query execution, we also encode each field
of these triples into integers to facilitate the query processing.

Query patterns are obtained by rewriting the SPARQL queries. We simply
unbound some concrete values as variables in some triple patterns. For example,
in LUBM query1, we turn triple pattern ?X ub:takesCourse <http://www.

Department0.University0.edu/GraduateCourse0> into ?X ub:takesCourse

?Y to generate a query pattern. The complete list of all queries used in our
experiments can be found in Appendix C.

Table 1. Query running time in seconds of LUBM 10000 dataset

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Our Solution 16.3 235.2 16.3 16.3 16.3 255.4 22.4
TKDE11 116.3 687.6 174.4 757.8 371.1 342.8 289.2

Q8 Q9 Q10 Q11 Q12 Q13 Q14
Our Solution 28.3 165.2 16.4 15.3 17.5 74.5 213.3
TKDE11 1320.3 1371.8 184.5 103.3 56.0 91.0 325.9



4.2 Evaluation

Partitioning Time. In our system, the time for partitioning the LUBM dataset
is about 20 minutes. The RDF-3X needs about 40 minutes for loading these
triples and building the index.

Query Perfermance Next, we will compare the performance between our
solution and TKDE11, and evaluate the effectiveness of our placement algorithm
for reducing data redundancy.

Table 1 illustrates the query performance of our solution and TKDE11. We
can observe that our solution always performs better than TKDE11. Moreover,
for most queries such as Q1, Q3-Q5, and Q7-Q11, the performance of our solution
is about one order of magnitude faster than its competitor. These results validate
the principle idea that good data partitioning can significantly improve query
performance. Next we will analyze the results in detail.

1. For the queries with simple semantic and small result set like Q1, Q3-Q5,
Q7-Q8, Q10, and Q11-Q12, our solution performs about 10 times faster
than TKDE11. The reasons are two folds: 1) there are only one or two join
variables in those queries and their triple patterns usually contain constants,
which ensure RDF-3X to utilize its index for selecting candidate triples very
fast and, 2) their result sets are quite small, less than 103 triples, and little
time cost is needed in data transformation between the map and reduce
processes.

2. Q2 and Q9 are queries with complex structure, and small result set. Specif-
ically, there is a triangle relationship among three variables, say ?X ?Y and
?Z. When dealing with these queries, TKDE11 will generate two M/R jobs
with job1 evaluating two joins on ?X and ?Y separately, and job2 joining
the output of job1 with ?Z. The time cost is huge with large middle files
written to and read from HDFS files. On the contrast, our solution can ben-
efit from the powerful capabilities of RDF-3X for evaluating joins. Moreover,
our system needs only M/R job based on our partitioning approach.

3. The performance of our method is slightly better than TKDE11 in Q6, Q13
and Q14. These queries all have huge results, larger than 108 triples. Lots of
triples should be scanned and large amount of triples need to be transfered
between RDF-3X engine and Map/Reduce framework. Hence both the query
execution and result retrieval phases will cost a lot of time compared with
those queries in the above cases.

For the queries matching no frequent patterns, our method has similar per-
formance as TKDE11. The only difference between our solution and TKDE11
method for processing these queries is where the data comes from. We evaluate
this case using some queries in LUBM query set by processing each triple pattern
at a time. There are no evident difference in the time costs of both methods.
Thus we do not report the numbers here.

It should be noted that the queries above are tested using cold runs, which
means that the main memory and file system cache were cleared before execution.



Also, because RDF-3X does not support inferencing, we rewrite the reasoning-
needed queries in LUBM query set to equivalent ones using union operations
before query execution.

The time of query processing tested on BTC is presented in Table 2. Due to
the feature of large number of distinct predicates for BTC dataset, the result
set for queries over BTC is much smaller than that of the queries over LUBM.
Relatively simple query and smaller results explains the resemblance of the query
time for our solution in Table 2. It should be noted that there is predicate variable
in Q1 and Q4, in which case our solution performs far better than TKDE11
strategy because we do not need to scan the whole triples to get the result.

Table 2. Query running time in seconds of BTC dataset

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Our Solution 16.1 16.2 16.2 15.2 15.9 16.1 16.3
TKDE11 296.1 45.1 95.6 330.3 22.3 74.5 22.8

Placement We test the effectiveness of our placement algorithm with various
column adjust number K and row adjust number M , i.e. at each iteration of
Algorithm 3, K columns and M rows of the previous matrix are relaxed which
define a neighborhood containing (M !)K different solutions. The y-axis in Fig-
ure 4 and Figure 5 is the ratio of redundancy decrease, which is computed by
1 − γ′/γ with γ′ and γ are the redundancies of the final solution and initial
solution respectively.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  2  3  4  5  6  7

re
du

nd
an

cy
 d

ec
re

as
e 

ra
tio

row adjust number

k=1
k=2

Fig. 4. redundancy decrease

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5  6  7

re
du

nd
an

cy
 d

ec
re

as
e 

ra
tio

iteration times

k=2, m=5
k=2, m=6
k=1, m=5

Fig. 5. iteration

As illustrated in Figure 4, it is obvious that the higher K and M are, the
better performance is achieved. Figure 5 illustrates the redundancy decrease
ratio obtained after each iteration of searching neighborhood with different K
and M . Clearly, the redundancy becomes smaller after each iteration, and after
several runs the redundancy becomes stable.



5 Related Work

SPARQL query processing. Most previous works on evaluating SPARQL
queries over RDF data are based on a single node [14, 8, 18]. The RDF-3X [14]
is widely accepted as the state of art for SPARQL query engine, which stores
all triples in B+ tree, and builds exhausted indexes of all SPO permutations.
Due to the centralized mode, these works cannot scale to handle huge volume of
RDF triples which are still increasing in high velocity.

In order to process such huge RDF datasets, [13, 11, 12] suggest to store RDF
triples in HDFS files and evaluate SPARQL queries by rewriting them as a series
of Map/Reduce jobs. [11] presents a method for generating Map/Reduce jobs
and heuristics of dividing RDF triples into separate HDFS files. Myung et. al. [13]
propose an algorithm for basic graph pattern matching, and they will process a
SPARQL query by a sequence of Map/Reduce jobs. None of these works consider
to improve query performance through better data partitioning. The work in [10]
proposes to partition a RDF dataset according to its graphical features and
try to avoid cross-node communications by replicating some vertexes near the
boundaries of each partition. However, as illustrated in Sec.1, our solution has
several evident advantages compared with [10].

Data partitioning. In distributed databases, data partitioning is one of the
most important technologies for achieving platform scalability. The partitioning
solutions are realized mainly in horizontal partitioning or vertical partitioning [4].
In brief, horizontal partitioning, such as Hash, Round-robin, Range, etc., is to
divide a relational table into multiple groups of rows, whereas vertical partition-
ing is tries to divide a table into several clusters of columns. Recently, along with
the quick development of practical applications, researchers tend to use nested
horizontal or vertical partitioning methods [16], or even hybrid approaches [4], to
achieve better performance. The idea of improving performance through clever
partitioning gives us a good inspiration, but all of these works focus on relational
databases and cannot be applied directly to partition RDF datasets. The works
in [7] design partitioning based on elaborative analysis on query workloads such
that frequent queries could be answered more quickly, which is also adopted in
this paper in our data partitioning solution.

6 Conclusion and Future Works

In this paper, we propose a query-driven partitioning approach in order to im-
prove the performance of processing SPARQL queries in a Map/Reduce frame-
work. Compared with previous works, our system can completely avoid cross-
node joins for frequent queries and reduce data redundancy. According to the
simulation results, our method could accelerate the query processing time by up
to two orders of magnitude. The partitioning on RDF dataset still needs more
improvements. Our on-going and planned projects include how to perform up-
date or even migration when there are significant changes on the dataset and/or
workload, e.g. large number of new-coming tiples, new identified query patterns,
and skewed query accessing.



References

1. Btc 2010. http://www.hpi.uni-potsdam.de/naumann/sites/btc2010.
2. Metis. http://glaros.dtc.umn.edu/gkhome/views/metis/index.html/.
3. A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin.

Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for ana-
lytical workloads. PVLDB, v.2 n.1:p.992–933, August 2009.

4. S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical and horizontal par-
titioning into automated physical database design. Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, pages p.359–370, 2004.

5. R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Pinnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, v.123 n.1-3:p.75–
102, Novermber 2002.

6. K. Andreev and H. Räcke. Balanced graph partitioning. In SPAA, pages 120–124,
2004.

7. C. Chang, T. M. Kurç, A. Sussman, Ü. V. Çatalyürek, and J. H. Saltz. A
hypergraph-based workload partitioning strategy for parallel data aggregation. In
PPSC, 2001.

8. F. Du, Y. Chen, and X. Du. Partitioned indexes for entity search over rdf knowledge
bases. In DASFAA (1), pages 141–155, 2012.

9. Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web, v.3 n.2-
3:p.158–182, October, 2005.

10. J. Huang and D. J. K. Ren. Scalable sparql querying of large rdf graphs. Proceedings
of the VLDB Endowment, v.4 n.11:p.1123–1134, 2011.

11. M. Husain, J. McGlothlin, M. M. Masud, L. Khan, and B. Thuraisingham. Heuris-
tics based query processing for large rdf graphs using cloud computing. IEEE
TKDE, v.23 n.9:p.1312–1327, September 2011.

12. H. Kim, P. Ravindra, and K. Anyanwu. Scan-sharing for optimizing rdf graph
pattern matching on mapreduce. In IEEE CLOUD, pages 139–146, 2012.

13. J. Myung, J. Yeon, and S.-g. Lee. Sparql basic graph pattern processing with iter-
ative mapreduce. In Proceedings of the 2010 Workshop on Massive Data Analytics
on the Cloud, MDAC ’10, pages 6:1–6:6, 2010.

14. T. Neumann and G. Weikum. Rdf-3x: a risc-style engine for rdf. Proceedings of
the VLDB Endowment, v.1 n.1:p.647–659, August 2008.

15. A. Pavlo, V. Curino, and S. Zdonik. Skew-aware automatic database partitioning
in shared-nothing, parallel oltp systems. SIGMOD’12, pages p.61–72, 2012.

16. J. Rao, C. Zhang, N. Megiddo, and G. Lohman. Automating physical database
design in a parallel database. Proceedings of the ACM SIGMOD international
conference on Management of data, pages p.558–569, 2002.

17. S. Sanghavi, D. Shah, and A. S. Willsky. Message passing for maximum weight
independent set. IEEE Trans. on Information Theory, 55(11):4822–4834, 2009.

18. K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds. Efficient RDF Storage
and Retrieval in Jena2. In ISWC’03, pages 131–150, 2003.

A Estimating the Selectivity of Each Triple Pattern

We utilize a list TPi to store the selectivity of the ith edge, say e. Suppose tpi
is triple pattern the e represents, selectivity can be estimated in the following
situations.



1. tpi has bounded predicate with concrete value for either subject or object. In
this scenario, the initial estimated value of TPi is obtained by nump/numv,
with nump the number of triples contained in the predicate of tpi, and numv

the number of distinct values of the variable with concrete value. For exam-
ple, for an edge ?X ub:subOrganizationOf University0, its selectivity, i.e. the
number of sub-organizations in University0, could be estimated by the total
number of sub-organizations divided by the number of universities.

2. tpi has bounded predicate with both subject and object as variable. In this
case, selectivity of e is the total number of triples who has the same predicate
as tpi.

3. predicate of tpi is variable. Under this circumstance, triple number of whole
dataset denotes the selectivity of e.

B Estimating the Data Redundancy

We construct two tables, Lsi and Loi, for each partition. Both tables contain
two attributes, i.e. predicate and val. The Lsi (Loi) table stores the distinct
subject (object) values of all triples inside the ith partition (i = 1, · · · ,m ·n). For
any pair of worker nodes, we then estimate their redundancy with the following
equations.

Nsi,j(l) = |{titj |ti ∈ Lsi∧tj ∈ Lsj∧ti[predicate] = tj [predicate] = l∧ti[val] = tj [val]}|
(2)

Noi,j(l) = |{titj |ti ∈ Loi∧tj ∈ Loj∧ti[predicate] = tj [predicate] = l∧ti[val] = tj [val]}|
(3)

Here, l is a predicate. The value of Nsi,j(l) is the number of combinations
(ti,tj) from Lsi and Lsj repectively, with their predicates both equal to l and
their variable values are equal. The Noi,j(l) is defined in a similar way.

The data redundancy between the ith and the jth (i 6= j) partitions is:

γi,j =
∑

∀l

Nsi,j(l) ·Noi,j(l) (4)

Note that γi,i is defined as zero for i = 1, · · · ,m · n, also for all partitions
obtained from the same query, their pairwise redundancy would be zero.

C Queries

We use the following queries in experiment to test the effectiveness and efficiency
of our strategy. The fields highlighted in red is unbounded to variables in order
to turn normal queries into query patterns.



C.1 Lubm Queries

Prefix list :
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ub: <http://www.lehigh.edu/ zhp2/2004/0401/univ-bench.owl#>

Q1 : select ?X where {?X rdf:type ub:GraduateStudent. ?X ub:takesCourse
<http://www.Department0.University0.edu/GraduateCourse0>}

Q2 : select ?X ?Y ?Z where {?X rdf:type ub:GraduateStudent. ?Y rdf:type
ub:University. ?Z rdf:type ub:Department. ?X ub:memberOf ?Z. ?Z ub:subOrganizationOf
?Y. ?X ub:undergraduateDegreeFrom ?Y}

Q3 : select ?X where {?X rdf:type ub:Publication. ?X ub:publicationAuthor
<http://www.Department0.University0.edu/AssistantProfessor0>}

Q4 : select ?X ?Y1 ?Y2 ?Y3 where {?X rdf:type ub:Professor. ?X ub:worksFor
<http://www.Department0.University0.edu>. ?X ub:name ?Y1. ?X ub:emailAddress
?Y2. ?X ub:telephone ?Y3}

Q5 : select ?X where {?X rdf:type ub:Person. ?X ub:memberOf <http://www.
Department0.University0.edu>}

Q6 : select ?X where {?X rdf:type ub:Student}

Q7 : select ?X ?Y where {?X rdf:type ub:Student. ?Y rdf:type ub:Course. ?X
ub:takesCourse ?Y. }

Q8 : select ?X ?Y ?Z where {?X rdf:type ub:Student. ?Y rdf:type ub:Department.
?X ub:memberOf ?Y. ?Y ub:subOrganizationOf <http://www.University0.

edu>. ?X ub:emailAddress ?Z}

Q9 : select ?X ?Y ?Z where {?X rdf:type ub:Student. ?Y rdf:type ub:Faculty. ?Z
rdf:type ub:Course. ?X ub:advisor ?Y. ?Y ub:teacherOf ?Z. ?X ub:takesCourse
?Z}

Q10 : select ?X where {?X rdf:type Student. ?X ub:takesCourse <http://www.
Department0.University0.edu/GraduateCourse0>}

Q11 : select ?X where {?X rdf:type ub:ResearchGroup. ?X ub:subOrganizationOf
<http://www.University0.edu>}

Q12 : select ?X ?Y where {?X rdf:type ub:Chair. ?Y rdf:type ub:Department. ?X
ub:worksFor ?Y. ?Y ub:subOrganizationOf <http://www.University0.edu>}

Q13 : select ?X where {?X rdf:type ub:Person. <http://www.University0.
edu> ub:hasAlumnus ?X}

Q14 : select ?X where {?X rdf:type ub:UndergraduateStudent}

C.2 BTC Queries

Prefix list:
geo: <http://www.geonames.org/>



pos: <http://www.w3.org/2003/01/geo/wgs84 pos#>
property: <http://dbpedia.org/property>
resource: <http://dbpedia.org/resource>
rdf: <http://www.w3.org/1999/02/22-rdf-syntex-ns#>
rdfs: <http://www.w3.org/2000/02/rdf-schema#>
ontology: <http://dbpedia.org/ontology>
msc: <http://semantic-mediawiki.org/swivt/1.0#>
source: <http://www.mpii.de/yago/resource>

Q1 : select ?a ?lat ?long ?pop where{ ?a [] "Chevilly". ?a geo:ontology#inCountry
geo:countries#FR. ?a pos:lat ?lat. ?a pos:long ?long. ?a geo:ontology#population
?pop}

Q2 : select ?name ?lat ?long where{?a property:name ?name. ?a property:region
<http://dbpedia.org/resource/Nord-Pas-de-Calais>. ?a pos:lat ?lat. ?a pos:long
?long}

Q3 : select ?x ?y ?z where{<http://dbpedia.org/resource/Ulm> rdf:type ?x.
?x rdfs:label ?y. ?x rdfs:comment ?z}

Q4 : select ?x ?y ?z where{?a [] ”Luciano Puccini”. ?a property:placeOfBirth
?x. ?x pos:lat ?lat. ?x pos:long ?long}

Q5 : select ?x ?y where{?x ontology:birthPlace "Chile". ?x ontology:deathPlace
?y}

Q6 : select ?x ?y where{?x rdfs:label "AlbertEinstein". ?x smc:page ?y. ?x
rdf:type smc:Wikisite}

Q7 : select ?who ?bplace ?bdate ?dplace ?ddate ?prize where{?who source:bornIn
?bplace. ?who source:bornOnDate ?bdate. ?who source:diedIn ?dplace. ?who
source:diedOnDate ?ddate. ?who source:hasWonPrize ?prize}


