
Accelerating BLE Neighbor Discovery via Wi-Fi

Fingerprints

Tong Li†‡, Bowen Hu†, Guanjie Tu†, Jinwen Shuai†, Jiaxin Liang‡, Yukuan Ding§, Ziwei Li¶, and Ke Xu¶

Renmin University of China†, Huawei‡, HKUST§, Tsinghua University¶

Abstract—In this paper, we demonstrate the design of FiND, a
novel neighbor discovery protocol that accelerates BLE neighbor
discovery via Wi-Fi fingerprints without any hardware modifica-
tions. The design rationale of FiND is that the two modes of Wi-
Fi and BLE show complementarity in both wireless interference
and discovery pattern. When abstracting the neighbor discovery
problem, this demonstration provides validation for the approach
of reasoning-based presence detection in the real world.

I. INTRODUCTION

Bluetooth Low-Energy (BLE) neighbor discovery [1] acts

as the prerequisite stage of the widespread Proximity Bea-

con scenarios such as marketing activities (e.g., advertising,

promotions, and scheduling) and interactive applications (e.g.,

seamless access systems, robot navigation) [2]. BLE neighbor

discovery suffers from the trade-off between latency and power

consumption. As illustrated in Figure 1, the neighbor discovery

latency is mainly bounded by the broadcaster’s broadcast

interval (A), the scanner’s scan window (W), and scan interval

(T), where the scan duty cycle is computed by D = W

T
.

In general, power consumption is proportional to D and is

inversely proportional to A. Since most devices are power-

sensitive, a large A (e.g., > 1000 ms) and a low D (e.g.,

< 10%) are usually applied in modern neighbor discovery

applications [3]. However, a larger A or a lower D results

in an interleaved activity pattern between the broadcaster and

the scanner, which may induce unacceptably large discovery

latency (e.g., > 5 seconds) [1].

BLE neighbor discovery further suffers from wireless in-

terference. Today, BLE Beacons (iBeacon, Eddystone, Alt-

Beacon, aBeacon, HiBeacon, etc.) employing the 2.4 GHz

ISM frequency band are widely deployed in public places.

Moreover, with the advent of the Internet of Things, there is

a sharp increase in Bluetooth-equipped devices, especially in

wearable devices. It is anticipated that the wireless interference

will result from all these devices operating in the same

environment, this mutual interference leads to performance

degradation of BLE neighbor discovery. For example, more

than 50 Bluetooth signals may exist simultaneously in a

medium-sized mall. In this case, even with a small A and

a large D, the latency of neighbor discovery may be far from

satisfactory due to signal collisions (see §III).

This work is supported by the NSFC Projects (No. 62202473 and No.
61932016), the China National Funds for Distinguished Young Scientists
(No. 61825204), and the Beijing Outstanding Young Scientist Program (No.
BJJWZYJH01201910003011). Tong Li’s work is partially done at Huawei.

Scanner

Broadcaster

0t =

Discovered
Broadcast

Packet

Discovery Latency

Miss due to
interference

Broadcast interval (A)

Scan interval (T)

Scan window (W)

Fig. 1: The duty-cycling of BLE neighbor discovery.

Kindt et al. [1] have proposed the tight bounds on latency

that no prior neighbor discovery parameter setting approaches

can beat, and concluded there is no further potential to improve

the relationship between latency and duty cycle. However, we

argue that a huge room still exists for improvement with the

auxiliary of ubiquitous Wi-Fi APs in practical scenarios. First,

Wi-Fi and BLE show complementarity in wireless interfer-

ence. Although both BLE and Wi-Fi operate in the 2.4GHz

ISM band, the 3 channels (i.e., channels 37 (2402MHz),

38 (2426MHz), and 39 (2480MHz)) used by BLE neighbor

discovery are almost unaffected by Wi-Fi interference (e.g.,

channels 1-11 (2412-2472MHz)). Second, Wi-Fi and BLE

show complementarity in discovery patterns in two aspects:

(a) Wi-Fi not only supports BLE-like passive scanning (see

Figure 1) but also supports active scanning during which the

client radio transmits a probe request and listens for a probe

response from an AP. Generally, a passive scan takes more

time in neighbor discovery, since the client must listen and

wait for a beacon versus actively probing to find an AP. (b) Wi-

Fi always returns discovery results (although might be from a

previous scan if the current scan has not been completed or

succeeded) [4], while BLE may return nothing.

When abstracting the neighbor discovery problem as the

presence detection of the BLE Beacon in a certain space,

considering the ubiquity of Wi-Fi APs, we have seen the

possibilities of reasoning about the presence of BLE Beacon

from the presence of Wi-Fi fingerprints, which is denoted by

a list of Wi-Fi APs nearby the BLE Beacon. Thus we design

FiND, a Fingerprint-based Neighbor Discovery protocol that

makes full use of the complementarity between Wi-Fi and

BLE. In the case of a long BLE neighbor discovery latency,

FiND accelerates the discovery by deducing the presence

of the BLE Beacons according to the presence of Wi-Fi

fingerprints through the historical correlation between them.

We implement the proposed protocol FiND into the An-

droid platform with the assistance of a cloud server (see

!"#$%& '()*+,* ,*&-"./.*&01

2"#$%&3*435 6211*43557211*4358797211*435:;

2"#$%&3*438 6211*43857211*4388797211*438:;

9

!"#$%&

!"##$%&''("##$%&')(
*("##$%&'+,

'(%&"

!"##$%& '"()*

)*%+, -"./".

01231 4'5

"-./01&$%&'

"-./01&$%&'

!"##$%&''("##$%&')(
*("##$%&'+,

(++$,-..

(++$,-./

(++$,-.0
!

!

"

#

$

2 34-5 '6 7801- 9.$:# 40 9$1% 48- ;-./01 <$. ;=>?".#-% 1-$@8"0A %$#/0<-AB
C 34-5)6 7801- /0::-/4# 48- D$?E$ 9$1@-A5A$14 $1F$4# 0G1F#HAA0H1%$1@#
I 34-5 J6 7801- #-1%# . A-KH-#4 G$48 48- D$?E$ 9$1@-A5A$14 40 L:0H% 3-A<-A
M 34-5 N6 L:0H% 3-A<-A #-1%# . A-#501#- G$48 48- /0AA-#501%$1@ ;-./01 OP

Fig. 2: The basic workflow of FiND.

https://github.com/litonglab/find). We further showcase two

representative scenarios of different duty cycles and wireless

interference: (1) Employing FiND to accelerate BLE neighbor

discovery with a limited power budget (i.e., a low-duty cycle),

and (2) employing FiND to accelerate BLE neighbor discovery

with fierce interference. For both scenarios, FiND significantly

reduces the latency of neighbor discovery.

II. DESIGN

A. The Basic Workflow of FiND

Figure 2 illustrates an example of the basic workflow of

FiND where a Phone uses a Wi-Fi fingerprint to deduce the

Beacon ID with the help of a remote Cloud Server. Step 1:

The Phone starts BLE scanning for a certain period of time, if

it fails to find the Beacon, it goes to Step 2. Step 2: The Phone

collects the Wi-Fi fingerprint via Wi-Fi scanning or directly

reads the historical records readily available in the cache. Step

3: The Phone sends a request with the Wi-Fi fingerprint to the

Cloud Server. Step 4: Cloud Server then queries the Beacon

ID according to the Wi-Fi fingerprint in the Mapping Table,

and sends a response to the phone. The Phone then indirectly

discovers the BLE Beacon by applying the FiND system.

B. How to Build the Mapping Table?

As shown in Figure 2, a Mapping Table contains the

mapping between the Beacon IDs (e.g., beacon id 1, bea-

con id 2) and Wi-Fi Fingerprints (e.g., {bssid 11, bssid 12,

..., bssid 1k}, {bssid 21, bssid 22, ..., bssid 2k}). In the

case that the Mapping Table does not contain the historical

mapping between a specific Wi-Fi Fingerprint and a Beacon

ID, a.k.a, cold start, FiND does not provide acceleration but

just initializes a record into the Mapping Table for future use.

The Mapping Table can also be updated by other users (i.e.,

other Phones) in the case when Step 1 succeeds (i.e., the Phone

gets the Beacon ID directly via BLE scanning).

C. How to Match the Fingerprints

The instability of wireless signals leads to the dynamic

nature of Wi-Fi Fingerprints. Instead of the exact matching

of a list of Wi-Fi APs, we conduct fuzzy matching to improve

the robustness of FiND. Our demonstration simply adopts the

Jaccard index [5] to calculate the similarity coefficient between

fingerprints: J(A,B) = |A∩B|
|A∪B| . A and B are the sets of

(a) Little interference (b) Fierce interference

Fig. 3: Testbed results.

current and historical fingerprints, respectively. | · | denotes

the size of a set. In this paper, we define the fingerprints are

matched if J(A,B) ≥ α (e.g., α = 0.5).

III. DEMONSTRATION AND EVALUATION

To verify the feasibility of FiND, we set up a testbed by

running FiND on an Android phone (e.g., Huawei P40) that

connects to a remote cloud server (e.g., Amazon EC2) with

an average round-trip time (RTT) of 100 ms. The Beacon’s

broadcast interval is 1000 ms, and the phone considers two

BLE scan modes labeled as LOW POWER (D = 10%) and

LOW LATENCY (D = 100%) in Android system [6]. When

running FiND, the phone works in the LOW POWER scan

mode. Two representative scenarios are demonstrated.

Scenario 1: Little interference. We first deploy the BLE

Beacons and a phone in an open spot with little (no) Bluetooth

interference, where over 10 Wi-Fi APs can be discovered.

Figure 3(a) demonstrates that employing FiND significantly

accelerates BLE neighbor discovery with a low-duty cycle. For

example, when the phone runs in LOW POWER mode, FiND

reduces 91.3% and 65.9% of the 50th and 95th percentile

latency, respectively.

Scenario 2: Fierce interference. We then deploy the BLE

Beacons and the phone in an office with fierce interference

(20+ alive BLE signals are randomly deployed nearby), where

over 10 Wi-Fi APs can be discovered. Figures 3(a) and 3(b)

demonstrate that FiND achieves stable and low-latency neigh-

bor discovery while the legacy ways inevitably get worse in the

case of fierce interference. For example, even compared with

the way of using LOW LATENCY mode, FiND still reduces

73.9% and 46.3% of the 50th and 95th percentile latency,

respectively.

IV. CONCLUSION

Using the cloud-assisted deployment with the complemen-

tarity between BLE and Wi-Fi signals, testbed results verify

that the proposed FiND can achieve stable and low discovery

latency regardless of the power budget or wireless interference.

REFERENCES

[1] P. H. Kindt and S. Chakraborty, “On optimal neighbor discovery,” in ACM
SIGCOMM, 2019, pp. 441–457.

[2] “Proximity beacon,” https://altbeacon.org/, 2022.
[3] T. Li, J. Liang, D. Wang, Y. Ding, K. Zheng, X. Zhang, and K. Xu, “On

design and performance of offline finding network,” in IEEE INFOCOM,
2023, pp. 1–10.

[4] “Android wi-fi scan,” https://developer.android.com/guide/topics/
connectivity/wifi-scan, 2020.

[5] P. Jaccard, “The distribution of the flora in the alpine zone. 1,” New
phytologist, vol. 11, no. 2, pp. 37–50, 1912.

[6] “Android ble scan settings apis,” https://developer.android.com/
reference/android/bluetooth/le/ScanSettings.

