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ABSTRACT
In the widely used Bluetooth Low-Energy (BLE) neighbor discovery,

the parameter configuration of neighbor discovery directly decides

the results of the trade-off between discovery latency and power

consumption. Therefore, it requires evaluating whether any given

parameter configuration meets the demands. The existing solutions,

however, are far from satisfactory due to unsolved issues. In this

paper, we propose Blender, a simulation framework that produces

a determined and full probabilistic distribution of discovery latency

for a given parameter configuration. To capture the key features in

practice, Blender provides adaption to the stochastic factors such

as the channel collision and the random behavior of the advertiser.

Evaluation results show that, compared with the state-of-art simula-

tors, Blender converges closer to the traces from the Android-based

realistic estimations. Blender can be used to guide parameter con-

figuration for BLE neighbor discovery systems where the trade-off

between discovery latency and power consumption is of critical

importance.
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1 INTRODUCTION
Along with the increasing contacts among mobile devices, the idea

of Internet of Everything (IoE) is harvesting increasing attentions

and had been widely applied. Whether a connection for wireless

audio, portable devices, tracking assets or automating buildings,

Bluetooth Low-Energy (BLE)[1] is the innovative force that is ready

to be the ultimate solution for IoE over the next few decades. It

is reported that the number of BLE enabled devices has reached

over 5 billion by 2021, and increase rapidly every year [2]. As the

prerequisite stage of IoE, neighbor discovery is a process where

a device seeks to first contact neighbors in the BLE signal range.

The metrics of neighbor discovery, such as discovery latency and

power consumption, may significantly impact the performance of

applications. For example, low-latency neighbor discovery is the

essential control plane component that decides the delay of the data

transmission among wireless terminals [3]. Low-power neighbor

discovery is also a critical factor that must be considered in some

proximity tracing systems [4–6].

Generally, the neighbor discovery process involves the interac-

tions between an advertiser and a scanner. It is well studied that

the configuration of neighbor discovery parameters such as scan

interval, scan window, and advertise interval directly decide the

trade-off between power consumption and discovery performance.

For example, a larger advertise interval and lower scan duty cycle

(i.e.,
𝑠𝑐𝑎𝑛 𝑤𝑖𝑛𝑑𝑜𝑤
𝑠𝑐𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

) might get lower power consumption, but the

time to discovery (i.e., discovery latency) may also be unacceptably

large (see §3.1).

Compared with the studies that explore how to define neighbor

discovery protocols [7–9] or to set the discovery parameters[10–

14], much less focus has been cast on evaluating whether a given

parameter setting meets the demands. A straightforward way is

to repeatedly conduct real-world experiments which has a low ef-

ficiency and a high cost, much less the bias induced by wireless

interference. Another way is build a mathematical model that pro-

vides a function to obtain a deterministic discovery latency from a

certain set of parameters. However, the state-of-the-art modeling

work [15] only provides the lower bound of discovery latency, while

the modeling of distribution of all discovery latency values is still an

open issue. Alternatively, it is more controllable and reproducible

to build a simulator that simulates the behavior of advertiser and

scanner according to the parameter configurations.

In the previous decade, there exist various parameter evaluation

methodologies for BLE neighbor discovery [16–21]. However, these

solutions are far from satisfactory and face the following problems

which are never solved in this field. First of all, prior works are
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not consistent with the reality without considering the stochastic

factors in the neighbor discovery system (see §3.3). Second, some of

these solutions fall into the category of random sampling methods,

which have to trade off between precision and overhead (see §3.4).

Third, only providing the mean value or lower bound of the latency

cannot meet specific evaluation requirement (see §3.2).

In this paper, we propose Blender
1
as a further step towards

practical simulation framework for BLE neighbor discovery. First,

Blender includes the analysis of the impacts from channel collision

and the random behavior of the advertiser, which capture the key

features of nearby communication in BLE neighbor discovery (see

§5.3 and §5.4). Second, Blender adopts the discrete timing method-

ology in order to achieve simplified but accurate analysis (see §5.1).

Third, the discrete concept also allows Blender to traverse through

all possibilities and result in a determined output that cannot be

achieved through random sampling, where a method of Case Pro-
jection is designed to avoid a brute-force traverse (see §5.2). Finally,

Blender provides higher confidence to be applied as the parameter

selection tool when concerning the full distribution rather than

average/maximum.

Our evaluation results show that the CDF produced by Blender

converges closer to that of latency in practical scenarios. This can be

attributed to the integrated analysis of the stochastic factors. To the

best of our knowledge, Blender is the first practical framework that

simultaneously has the ability to provide precise, computationally

efficient, and complete simulation of the BLE neighbor discovery

systems.

The rest of the paper is organized as follows. §2 summarizes the

related work. §3 depicts the background of BLE neighbor discovery

and the motivation of this paper. §4 provides the simulation frame-

work of Blender and §5 gives the detailed design of Blender. We

evaluate Blender in §6 and conclude this paper in §7.

2 RELATEDWORK
In the previous decade since BLE neighbor discovery participated

in production scenarios, various optimal parameter selection strate-

gies have been proposed. For example, [10] suggests co-prime pa-

rameters to achieve a promised discovery. In [11–14], scan and

advertise intervals vary according to given sequences. There are

also schemes specifically designed for BLE neighbor discovery [16–

25]. These above approaches adopt different parameter evaluation

methods. A pragmatic idea is realistic measurement[22, 24]. How-

ever, significant amount of work can be required in analysis when

distinguishing the individual parameter’s impact on performance

[26]. Simultaneously, each of the sampling processes consumes

physical wall-clock time that is supposed to repeat for more than

thousands of times to alleviate the impact of randomness. To over-

come the disadvantages in real-world experiments, model-based

methodologies are proposed. Nevertheless, the existing modeling

approaches can only produce the average or maximum latency

values and cannot satisfy the need when the CDF of latency is

important (see 3.2). In addition, there lack models that can provide

parameter selection basis under more practical scenarios with sto-

chastic factors that can significantly increase modelling complexity.

Simulations, which focus on representing the discovery process and

1
The open-source implementation is maintained at https://github.com/litonglab/

blender-neighbor-discovery

often preserve simplified analysis, can be a suitable methodology

to cover these deficiencies.

While few studies have explored the development of simulation

tools for BLE neighbor discovery, a primitive way of simulation is

to randomly sample from all possible range-entrance cases, which

however has some deficiencies (see §3.4). An alternative strategy

based on discrete timing is proposed in [19]. We named it TMC17.

Although TMC17 can produce a fixed CDF of discovery latency val-

ues without random sampling, stochastic factors are excluded from

the simulation. This paper recuperates the above vulnerabilities.

With consideration of stochastic factors (i.e., the packet loss and

random advertising delay), Blender can produce the possibilities

of each possible latency value and therefore form a determined

latency CDF.

3 BACKGROUND AND MOTIVATION
3.1 Parameter Configuration Matters
In BLE neighbor discovery, there are interactions between an ad-

vertiser and a scanner. The advertiser broadcasts three consecutive

Protocol Data Unit (PDU) respectively in three channels (i.e., CH37,

CH38, CH39), which are referred to as an advertising event. The

discovery succeeds when a BLE scanner achieves to capture the

complete packet in an advertising event after the scanner enters

the radio range of the advertiser.

This ideally immediate success, however, can largely consume

the battery capacity. In practice, BLE-like discovery protocols adopt

duty-cycling in signal broadcasting and scanning. In other words,

the devices would periodically switch off their radio activities,

where the average ratio of the active time of a device is its duty-

cycle. Apparently, with duty-cycling, discovery often cannot be

completed as soon as the scanner enters the radio range of the ad-

vertiser, because the states (i.e., active or asleep) of the devices are

random at this range-entrance event 𝐸0 as the devices are equipped

with unsynchronized clocks. Therefore, a discovery latency 𝐿 is

defined as the period from 𝐸0 to the discovery.

Conceptually, more frequent advertising and scanningwith higher

energy consumption may lead to higher possibility for the adver-

tiser and scanner to be simultaneously activated [27]. However, in

BLE, high duty-cycle can also result in unwanted results, where

an obvious example is the destined failure (i.e., infinite discovery

latency) when the advertiser and scanner are running in parallel

and are never activated at the same time. Since energy-saving is

critical in mobile devices, parameter selection is of vital importance,

which helps to filter out the inefficient parameters that consume

high power but result in unacceptable discovery latency.

3.2 A Full Distribution of Latency Estimation is
Required

In previous parameter selection tools for BLE neighbor discovery,

the evaluation of the parameters focuses on the mean or the worst-

case latency (i.e., the longest discovery latency under a parameter

setting) [15]. However, a metric equipped with probabilistic features

can be required. In some services such as proximity tracing [4,

5] and assets tracking [28, 29], the accomplishment of discovery

becomes a expectation rather than a necessity due to the restriction

of the length of time reserved for discovery.
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Figure 1: (a) Success Rate vs. Latency Restriction via Random
Sampling (𝑇𝑎 = 1975𝑚𝑠,𝑇𝑑 = 600𝑚𝑠,𝑑𝑠 = 60𝑚𝑠). (b) Summary.

Specifically, there is an expected rate 𝑝% of successful discovery

within a given time 𝐿, where good parameters here are supposed

to reach this expectation. This quantified requirement is suitable to

be represented through a CDF. In a latency CDF, each probability

value 𝑝 corresponds to a latency value 𝐿, where 𝐿 is the 𝑝-percentile

latency. Here, reaching a success rate of no lower than 𝑝% in 𝐿 time

is equivalent to that, the 𝑝-percentile latency being smaller than

𝐿. A full distribution of latency values is therefore necessary to

provide any 𝑝-percentile latency.

3.3 Neighbor Discovery Simulation Suffers
From Stochastic Factors

Packet loss rate. Packet loss is a common unideality in networking

systems, especially in wireless networks [30, 31]. In BLE neighbor

discovery process, channel collision is one of the major sources of

packet loss. Despite the radio frequency interference, physical bar-

riers can also increase the packet loss rate [32]. With duty-cycling,

the opportunity of an advertise event occurring during an active

scan window become rare. However, if this opportunity occurs with

packet loss, the discovery that should be successful would fail. The

system will have to wait until the next such opportunity before

trying again to complete a discovery, which prolongs the discovery

latency.

Random advertising delay. In practical BLE neighbor discovery,

the interval between two consecutive advertise events is not a

constant, which is longer than the settled advertise interval by a

random period of time within 10𝑚𝑠 , called the 𝑎𝑑𝑣_𝑑𝑒𝑙𝑎𝑦. With

𝑎𝑑𝑣_𝑑𝑒𝑙𝑎𝑦, the advertise events are shifted from the original duty-

cycled positions. The consequence of this shift can be complex. The

scanner would be able to catch some advertise events that originally

are not covered by a scan window, and simultaneously fails some

other originally achievable discoveries.

While theoretical analysis is vulnerable to predict the impact of

𝑎𝑑𝑣_𝑑𝑒𝑙𝑎𝑦 on the CDF of discovery latency, simulation is a direct

and efficient way to quantify the significance of this influence. A

preliminary result from random sampling is shown in Figure 1(a),

where the CDF figure of the same scan and advertise setting can

be significantly changed by adopting 𝑎𝑑𝑣_𝑑𝑒𝑙𝑎𝑦. As summarized

in Figure 1(b), these changes result in different rates of successful

discovery with same latency restriction, which can mislead the

evaluation of the applied parameter set.

3.4 Random Sampling is Far From Satisfactory
Although random sampling enjoys convenience in implementation

through focusing on reproducing the discovery process and omit-

ting the analysis on the specific effects produced by the parameters

or stochastic factors, there are still drawbacks to this approach.

Misjudgment in Parameter Selection.With random sampling,

the results often vary in two simulations. This uncertainty of out-

put is the nature of random sampling, and can incorrectly rule

out some parameters. In production, parameters that cannot reach

the threshold of the given success rate would be excluded by au-

tomated scripts.However, deviation in the CDF can be caused by

random sampling and lead to fallacious drop of acceptable param-

eters, which is non-negligible especially when there are few can-

didate parameters. The only way to alleviate this deviation is to

expand the sample size, which nevertheless results in linear growth

of computation time.

Vulnerability in Distinguishing Individual Impacts. In the

discovery process, the discovery latency is affected by a pile of vari-

ables, including the range-entrance situation, the scan and advertise

duty-cycles, and the stochastic factors. While random sampling

works through imitating the advertiser and scanner’s consecutive

behaviors, all the impacts of these variables are mixed together. A

systematical analysis can help reveal individual variable’s impact,

which can further benefit the more precise modeling in practical

scenarios.

Based on the observations above, we present the practical simu-

lation framework, Blender, that simultaneously has the ability to

provide precise, computationally efficient, and full simulation of

the BLE neighbor discovery systems.

4 BLENDER OVERVIEW
4.1 Concept of Discrete Simulation
Due to the complexity of analysis based on wall-clock, which is a

continuous dimension, Blender adopts discrete modeling of time.

In other words, the timeline is split into timestamps of a minimum

unit and the advertise and scan actions only start and stop at these

discrete timestamps. When the time unit converges to zero, the

time system in Blender can represent the wall-clock. As in BLE

neighbor discovery the scan/advertise intervals are often parame-

terized in hundreds to thousands of milliseconds, 1ms is settled as

the default time unit, which preserves computational friendliness

with acceptable loss of simulation accuracy as shown in the later

realistic evaluation. The minimum time unit can shrink until it

reaches the value of 𝑑𝑎 , which is a period from dozens to hundreds

of microseconds[19].A further shrunk time unit would conceptually

reform a simulated advertise event as a period longer than single

time unit, which breaks the framework’s principle.

4.2 The Architecture of Blender
The architecture of Blender is displayed as a flow diagram in Figure

2, which contains the following essential modules.

Input and Output. In Blender, the input contains five parameters,

the scan interval length 𝑇𝑠 , scan window length 𝑑𝑠 , advertise inter-

val length 𝑇𝑎 , the packet loss rate 𝐹𝑝 , and the maximum 𝑎𝑑𝑣_𝑑𝑒𝑙𝑎𝑦

value 𝑅𝑑 settled for advertiser (10ms by default). The simulation’s
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Figure 2: Overview of Blender Architecture

output is a cumulative probability distribution of all possible dis-

covery latency values.

Base Case Simulation. The input parameters are first passed into

the base cases simulation module, which considers

𝑚𝑖𝑛(𝑇𝑎,𝑇𝑠 ) range-entrance cases (i.e., base cases) out of𝑇𝑎 ·𝑇𝑠 ones
(see §5.1). These base cases have either the first advertise event or

the (end of) first scan window fixed at the range-entrance event,

depending on the relationship between𝑇𝑎 and𝑇𝑠 . In each of the base

cases, a single discovery process produces either the corresponding

discovery latency, or a PDF of all possible latency values under

current case if stochastic factors are considered.

Case Projection. While the base cases simulation module only

considers a small partition of all possible range-entrance cases, the

relationships between the base cases and all other cases can be

analyzed. The case projection module can generate the latency PDF

of all cases by time-efficient calculation (e.g., single addition) from

the PDF produced by the base case simulation, from which the

desired output of Blender (i.e., the latency CDF) can be derived.

Packet Loss Adaptor.When 𝐹𝑝 > 0, each single discovery process

needs to be equipped with a packet loss adaptor. With the packet

loss adaptor, the result from each base case becomes a latency PDF

rather than a latency value.

RandomAdvertising Delay Adaptor. Similar to packet loss adap-

tor, the result from each base case is also converted to a latency

PDF when an 𝑎𝑑𝑣_𝑑𝑒𝑙𝑎𝑦 adaptor is active (i.e, 𝑅𝑑 > 0). In addition,

when packet loss is simultaneously considered, an integration of

the two adaptors is specifically designed (see Algorithm 2).

5 DESIGN DETAILS
This section presents the design details of specific modules in

Blender. We first introduce the base case simulation and the single

discovery process in §5.1. Then in §5.2, the case projection module

that can produce the complete CDF is illustrated, which is the key

to optimizing the simulation’s time complexity. Finally, the adap-

tion methods of the packet loss and the random advertise delay are

discussed in §5.3 and §5.4.

5.1 Base Case Simulation
Before diving into the base cases simulation, we introduce the

single discovery process as shown in Figure 3. In such a process,

two new attributes 𝜑𝑎 and 𝜑𝑠 that can describe a range-entrance

Range Entrance Time 𝒕𝟎

𝑻𝒔

𝑨𝟎 𝑨𝟏 𝑨𝟐

𝑤0

Advertise 
Sequence 𝑸𝑨

Scan Sequence 
𝑸𝑺

time

time

𝑤1
𝝋𝒔

𝑻𝒂𝝋𝒂

Figure 3: Attributes in a Single Discovery Process

case are introduced, which respectively annotate the time from the

range-entrance event to the first following advertise event and the

end of the first following scan window. With 𝑇𝑎 , 𝑇𝑠 , 𝜑𝑎 , and 𝜑𝑠 ,

an advertise sequence 𝑄𝐴 and a scan sequence 𝑄𝑆 can be formed,

where 𝑄𝐴 is a list containing the timestamps (relative to the range-

entrance event) of advertise events and 𝑄𝑆 is the one containing

the scan windows’ active time. A time sweeper similar to [19] will

then traverse through 𝑄𝐴 and 𝑄𝑆 from range-entrance, and the

time from range-entrance to an event covered in both 𝑄𝐴 and 𝑄𝑆

(when no packet loss considered) becomes the discovery latency

𝐿(𝜑𝑎, 𝜑𝑠 ).
The base cases simulation runs the single discovery process for

different (𝜑𝑎, 𝜑𝑠 ) pairs. Totally, there are 𝜑𝑎 · 𝜑𝑠 range-entrance

cases with 𝜑𝑎 ∈ [0,𝑇𝑎) and 𝜑𝑠 ∈ [0,𝑇𝑠 ). If 𝜑𝑎 overflows from this

range, the actual first advertise event will occur 𝑇𝑎 earlier than 𝐴0

and this 𝐴0 will be 𝐴1 (i.e., the second advertise event after range-

entrance). The deduction for 𝜑𝑠 is in the same way. In the base

cases simulation, either 𝜑𝑎 or 𝜑𝑠 will be fixed to be zero depending

on whether 𝑇𝑎 > 𝑇𝑠 (for case production in §5.2, where the unfixed

one keeps ranging and forms𝑚𝑖𝑛(𝜑𝑎, 𝜑𝑠 ) pairs of (𝜑𝑎, 𝜑𝑠 ), which
are the base cases.

5.2 Case Projection
Although a complete CDF of discovery latency can be generated

through considering all𝑇𝑎 ·𝑇𝑠 cases as base cases, it can often require
the time-consuming single discovery process to execute millions

of times. Considering the further time consumption when float

number calculations are introduced along with random factors, a

time reductionmethod is presented in this sectionwith the principle

to derive the latency values in the remaining cases through simple

calculations.
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Figure 4: Examples of the equivalence-relation-based Case
Projection.

We first discuss the condition when 𝑇𝑎 < 𝑇𝑠 . As an initial step,

𝜑𝑎 is fixed to 0, which is annotated as Ideal Range-Entrance and

infers that the first advertise event 𝐴0 in 𝑄𝐴 occurs immediately at

the range-entrance event. The first scan window𝑤0 has𝑇𝑠 possible

positions depending on the value of 𝜑𝑠 . Each of these positions is

alternatively described by 𝑡𝑤0
∈ (0,𝑇𝑠 ], where 𝑡𝑤0

is the closing

timestamp of 𝑤0 relative to range-entrance. By passing a 𝑡𝑤0
as

range-entrance situation into simulation, a corresponding times-

tamp𝐷𝑤0
(relative to 𝑡0, the timestamp of the range-entrance event)

where the discovery occurs can be produced. As 𝑇𝑎 < 𝑇𝑠 , there

must be a pair of 𝑡𝑤𝑖
0

and 𝑡𝑤𝑖+1
0

that are 𝑇𝑎 distance apart, whose

difference to 𝐴𝑖 and 𝐴𝑖+1 are the same. Thus, the 𝑄𝑆 represented

by 𝑡𝑤𝑖
0

has the same phase difference to 𝑄𝐴 as that represented

by 𝑡𝑤𝑖+1
0

. In other words, the wake-up and sleep schedule of scan-

ner and advertiser are identical after 𝑡𝑤𝑖
0

and 𝑡𝑤𝑖+1
0

, indicating that

𝐷𝑤𝑖
0

− 𝑡𝑤𝑖
0

= 𝐷𝑤𝑖+1
0

− 𝑡𝑤𝑖+1
0

. We can then have the following state-

ment.

Theorem 5.1. When 𝐴0 is fixed at the range-entrance event, for
every 𝑡𝑤𝑖

0

∈ (𝑇𝑎,𝑇𝑠 ], the discovery latency can be represented as

𝐿 (0, 𝑡
𝑤𝑖
0

) = 𝐷
𝑤𝑖
0

= 𝐷
𝑤𝑖−1
0

− 𝑡
𝑤𝑖−1
0

+ 𝑡
𝑤𝑖
0

= 𝐷
𝑤𝑖−1
0

+𝑇𝑎 = 𝐿 (0, 𝑡
𝑤𝑖−1
0

) +𝑇𝑎,
(1)

where 𝐿(𝑥,𝑦) is the discovery latency with 𝜑𝑎 = 𝑥 and 𝜑𝑠 = 𝑦.

Based on Equation (1), the latency of all Ideal Range-Entrance

cases 𝐿(0, 𝑡𝑤𝑖
0

) (𝑡𝑤𝑖
0

∈ (𝑇𝑎,𝑇𝑠 ]) can be derived from those of the

base cases 𝐿(0, 𝑡𝑤0

0

) (𝑡𝑤0

0

∈ (0,𝑇𝑎]) as shown in Figure 4(a) (the

Phase-Difference Projection):

𝐿 (0, 𝑡
𝑤𝑖
0

) = 𝐿 (0, 𝑡
𝑤0

0

) + 𝑖 · 𝑇𝑎 (𝑖 = ⌊
𝑡
𝑤𝑖
0

𝑇𝑎
⌋) (2)

After considering all phase differences between𝑄𝐴 and𝑄𝑆 with

fixing 𝜑𝑎 = 0, the next procedure is to involve the phase difference

between𝑄𝐴 and range-entrance by left-shifting the range-entrance

event. Cases with this shifted range-entrance event are referred

to as General Range-Entrance cases. After shifting 𝐴0 away from

range-entrance as shown in Figure ??, 𝑡𝑤0
∈ (0,𝑇𝑠 ] is still valid.

Compared to the original interval of 𝑡𝑤0
when 𝜑𝑎 = 0, this new

interval includes a new range (0, 𝜑𝑎] and excludes (𝑇𝑠 ,𝑇𝑠 + 𝜑𝑎].
For the other 𝑡𝑤0

∈ (𝜑𝑎,𝑇𝑠 ], the discovery latency can be directly

derived from those produced by (2). Also, each 𝑡𝑤0
∈ (0, 𝜑𝑎] can be

projected to the excluded range (𝑇𝑠 ,𝑇𝑠 + 𝜑𝑎], where the discovery
latency values have already been produced as well. Specifically, we

have the following statement as the Range-Entrance Projection:

Theorem 5.2. ∀𝑡𝑤𝑖
0

∈ (0,𝑇𝑠 ], 𝜑𝑎 ∈ (0,𝑇𝑎), the discovery latency
can be represented as

𝐿 (𝜑𝑎, 𝑡
𝜑𝑎
𝑤0
) = 𝐿 (0, 𝑡0𝑤0

) + 𝜑𝑎, (3)

where 𝑡0𝑤0

and 𝑡𝜑𝑎
𝑤0

are in the same 𝑄𝑆 on wall-clock time (In other
words, 𝑡0𝑤0

+ 𝜑𝑎 ≡ 𝑡𝜑𝑎
𝑤0

mod 𝑇𝑠 ).

Proof. For every 𝑡𝜑𝑎
𝑤0
∈ (𝜑𝑎,𝑇𝑠 ], the corresponding positions of the

first scan window relative to 𝑄𝐴 is the same as the positions repre-
sented by 𝑡0𝑤0

∈ (0,𝑇𝑠 −𝜑𝑎], which results in the same discovery time
from the window. While the discovery latency 𝐿(0, 𝑡0𝑤0

) is relative to
the original range-entrance (i.e., 𝐴0) when 𝜑𝑎 = 0, the new latency
𝐿(𝜑𝑎, 𝑡𝜑𝑎

𝑤0
) will be 𝜑𝑎 larger than the former one because of the 𝜑𝑎

left-shift of the range-entrance event. For 𝑡𝜑𝑎
𝑤0
∈ (0, 𝜑𝑎], a subsequent

𝑡
𝜑𝑎
𝑤1

= 𝑡
𝜑𝑎
𝑤0
+𝑇𝑠 can be found in (𝑇𝑠 ,𝑇𝑠 + 𝜑𝑎], which represents a 𝑤1

in the same 𝑄𝑆 as𝑤0. Since no advertise event occurs during [0, 𝜑𝑎),
it is certain that a successful discovery cannot occur in𝑊0. Hence
𝐿(𝜑𝑎, 𝑡𝜑𝑎

𝑤0
) is determined by subsequent scan windows in the same

𝑄𝑆 . Thus, we can derive that

𝐿(𝜑𝑎, 𝑡𝜑𝑎
𝑤0
) = 𝐿(𝜑𝑎, 𝑡𝜑𝑎

𝑤1
) = 𝐿(0, 𝑡0𝑤0

) + 𝜑𝑎 (4)

when 𝑡0𝑤0

∈ (𝑇𝑠 − 𝜑𝑎,𝑇𝑠 ].

By combining Equations (2) and (3), a formula is derived to get

all 𝑇𝑎 · 𝑇𝑠 discovery latency values from {𝐿(0, 𝑡𝑤𝑖
0

) |𝑡𝑤𝑖
0

∈ (0,𝑇𝑎]}.
Theoretically, the trivial case 𝑇𝑎 = 𝑇𝑠 can also cope with this for-

mula (and the precedent ones), which is however commonly not

suggested in parameter tuning because it can often lead to par-

allel advertising and scanning and a high probability of infinite

discovery latency.

Theorem 5.3. When𝑇𝑎 < 𝑇𝑠 , given𝑇𝑠 ,𝑇𝑎, 𝑑𝑠 , any case (𝜑𝑎, 𝜑𝑠 ) can
be projected to 𝑇𝑎 base cases and retrieve its discovery latency by:

𝐿𝑇𝑠 ,𝑇𝑎 ,𝑑𝑠 (𝜑𝑎, 𝜑𝑠 ) =
𝐿𝑇𝑠 ,𝑇𝑎 ,𝑑𝑠 (0, (𝜑𝑠 − 𝜑𝑎 +𝑇𝑠 ) 𝑚𝑜𝑑 𝑇𝑠 𝑚𝑜𝑑 𝑇𝑎)+

𝜑𝑎 + ⌊
(𝜑𝑠 − 𝜑𝑎 +𝑇𝑠 ) 𝑚𝑜𝑑 𝑇𝑠

𝑇𝑎
⌋ · 𝑇𝑎

(5)

When 𝑇𝑎 > 𝑇𝑠 , the simulation and latency value projection

procedures can be re-applied with switching roles of 𝑄𝐴 and 𝑄𝑆 .

For example, now 𝑡𝑤0
is initially fixed at the range-entrance, which

produces a function to project the cases𝐴0

0
∈ [0,𝑇𝑠 ) to𝐴𝑖

0
∈ [𝑇𝑠 ,𝑇𝑎)

similar to Equation (2) where the attributes for scan and advertise

are exchanged.

When the range-entrance starts to left-shift from𝑤0, a modifi-

cation is required to resolve a special case as shown in Figure 4(b).

When 𝑇𝑎 < 𝑇𝑠 for any 𝜑𝑎 , no discovery can occur in [𝑡0, 𝑡0 + 𝜑𝑎)
since no advertise event exists in this interval. When 𝑇𝑎 > 𝑇𝑠 , how-

ever, a scan window can cover a partition of [𝑡0, 𝑡0+𝜑𝑠 ). If𝐴0 occurs

in that time period, 𝐿(𝐴0, 𝜑𝑠 ) will not be equivalent to 𝐿(𝐴1, 𝜑𝑠 )
with𝐴1 as the subsequent advertise event in the same𝑄𝐴 as𝐴0, but

become 𝜑𝑎 instead. This affects Equation (3), which together with

the above reformed Equation (2) constructs the projection function

below.

Theorem 5.4. When 𝑇𝑎 > 𝑇𝑠 , given 𝑇𝑠 ,𝑇𝑎, 𝑑𝑠 , 𝜑𝑎, 𝜑𝑠 , the discovery
latency can be projected to 𝑇𝑠 pre-calculated latency values from
simulation by: 𝐿𝑇𝑠 ,𝑇𝑎,𝑑𝑠 (𝜑𝑎, 𝜑𝑠 ) =
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Figure 5: Running Time Comparison of Case Projection (CP)
with Random Sampling (RS) (n=50000){

𝜑𝑎, 𝜑𝑠 > 0 ∧ 0 < 𝜑𝑠 − 𝜑𝑎 < 𝑑𝑠

𝐿∗ + 𝜑𝑠 + ⌊ (𝜑𝑎−𝜑𝑠+𝑇𝑎) 𝑚𝑜𝑑 𝑇𝑎
𝑇𝑠

⌋ ·𝑇𝑠 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

where 𝐿∗ = 𝐿𝑇𝑠 ,𝑇𝑎,𝑑𝑠 ((𝜑𝑎 − 𝜑𝑎 +𝑇𝑎) 𝑚𝑜𝑑 𝑇𝑎 𝑚𝑜𝑑 𝑇𝑠 , 0).

To better understand the benefit of case projection, we conduct

experiments to compare the running time between random sam-

pling and case projection, in which 20 sets of scan and advertise

parameters are run using Python implementation. Figure 5 shows

the results. While the major drawbacks of random sampling in-

clude the long running time due to repetitive sampling before the

result resembles the theoretical CDF, case projection can reduce

the running time by 2-10 times.

5.3 Packet Loss Adaption
While the latency distribution under ideal conditions can be pro-

duced through the base cases simulation and case projection, the

impact of packet loss on the discovery latency distribution is not

considered. In this section, we make amendments to the ideal simu-

lation in order to provide a loss-involved probabilistic distribution

with a given packet loss rate 𝐹𝑝 .

When an advertise event is covered by a scan window but fails

to accomplish a discovery event due to packet loss, the discovery

latency will grow until the timewhen a scanwindow covers another

advertise event. This re-coverage is destined because𝑄𝐴 and𝑄𝑆 are

periodic sequences, which indicates a common recurrence period

of 𝑙𝑐𝑚(𝑇𝑎,𝑇𝑠 ). After that period, an advertise event relocates in the

same relative position 𝛿𝑑 in a scan window, which however may

not be the only situation for a re-coverage to occur. As the scan

window lasts for a period, the re-coverage can also occur when an

advertise event is located in another relative position in the scan

window. Therefore, the extent of growth of discovery latency at

every loss-induced discovery failure depends on 𝛿𝑑 . Through fixing

𝐴0 at 𝑡0 and running a ’modified’ (i.e., ignoring the discovery at

𝑡0) simulation with all 𝑑𝑠 possible 𝑤0 that can cover 𝐴0, an array

indexed by the relative position 𝛿𝑑 can be formed to contain the

corresponding latency growth values.

The next procedure is to add latency growth to the latency val-

ues in the original distribution of lossless situation. Through Equa-

tion (5) or (6), each of the 𝑇𝑎 · 𝑇𝑠 latency values are derived from

one of the initially produced𝑚𝑖𝑛(𝑇𝑎,𝑇𝑠 ) values and, preserves the
same 𝛿𝑑 . Therefore, it is appropriate to only add latency growth

to the 𝑚𝑖𝑛(𝑇𝑎,𝑇𝑠 ) values while the remaining values can be de-

rived through the original projection. Under 𝑇𝑎 < 𝑇𝑠 , the process

of latency addition is operated as follows.

First, retrieve the set of lossless latency values 𝑆𝑖𝑑𝑒𝑎𝑙 = {𝐿(0, 𝑡𝑤0
)

| 𝑡𝑤0
∈ (0,𝑇𝑎]}. This time the corresponding 𝛿𝑑 on discovery is

produced along with the latency values.

Second, through using the 𝑑𝑠 possible 𝑤0 candidates that can

cover an𝐴0 at 𝑡0, produce a set of discovery latency values ignoring

the coverage at 𝑡0 together with the corresponding 𝛿
′

𝑑
on discovery.

In other words, all possible intervals between two adjacent discov-

ery (without loss) and 𝛿𝑑 situations at the two sides are calculated

and stored in 𝐼 = {(𝐿(0, 𝛿𝑑 ), 𝛿
′

𝑑
) |𝛿𝑑 ∈ [0, 𝑑𝑠 )}.

Third, for each𝐿(0, 𝑡𝑤0
) in 𝑆 , the increased latency value𝐿1 (0, 𝑡𝑤0

)
caused by the failure of the first discovery can be calculated as

𝐿(0, 𝑡𝑤0
) + 𝐼𝐿 where 𝐼𝐿 is the latency value in a (𝐿(0, 𝛿𝑑 ), 𝛿

′

𝑑
) pair,

whose 𝛿𝑑 is identical to the corresponding 𝛿𝑑 of 𝐿(0, 𝑡𝑤0
). As the

success of discovery follows binary distribution and thus the prob-

ability of failing the 𝑖𝑡ℎ discovery is (1 − 𝐹𝑝 )𝑖−1𝐹𝑝 , the weight of
value 𝐿1 (0, 𝑡𝑤0

, 𝐹𝑝 ) in the result set is increased by 𝐹𝑝 . The other

values that can be derived from 𝐿1 (0, 𝑡𝑤0
) through (5) are also in-

creased in weight by 𝐹𝑝 . If the second discovery attempt fails again,

a new 𝐼𝐿 determined by current 𝛿𝑑 at the first discovery attempt

will be selected to grow the latency. This will be iterated until the

discovery latency reached a pre-settled limitation. Notice that un-

der 𝑇𝑎 > 𝑇𝑠 , the only amendment is to repeat the third step for the

special cases in Figure 4(b).

5.4 Random Advertising Delay Adaption
The 𝑎𝑑𝑣_𝑑𝑒𝑙𝑎𝑦 introduced in BLE brings randomness to the peri-

odic intervals of an advertiser. This randomness first affects 𝐴0,

where the range of 𝜑𝑎 expands to [0,𝑇𝑎 + 𝑅𝑑 ) as the largest pos-
sible advertise interval is now 𝑇𝑎 + 𝑅𝑑 . However, the probabilities
of 𝜑𝑎 being each value in its range are no longer identical. The

advertise interval 𝑇𝐴0
right before 𝐴0 now has 𝑅𝑑 candidate values

with equal possibilities. For each possible𝑇𝐴0
, 𝜑𝑎 follows a uniform

distribution in [0,𝑇𝐴0
), which can always cover [0,𝑇𝑎). Therefore,

the probability distribution of 𝜑𝑎 can be divided into two parts,

𝜑𝑎 ∈ [0,𝑇𝑎) and 𝜑𝑎 ∈ [𝑇𝑎,𝑇𝑎 + 𝑅𝑑 ). The total possibility of the

second part, produced by simple analysis, can be at a magnitude

of 10
−3
, indicating that ignoring these possibilities could reduce

computation time with negligible impact on the integrity of the

simulation result. Therefore, Blender mainly focuses on modeling

the effect of 𝑎𝑑𝑣_𝑑𝑒𝑙𝑎𝑦 on the advertiser’s time control after 𝑡0.

As there are various advertise intervals,𝑄𝐴 formed with a given

𝜑𝑎 no longer consists of determined timestamps but probabilistic

distributions for each advertise event in it. This uncertainty of the

advertise events’ position in time may result in various discovery

latency values following a specific PDF as an output of the latency

producer. Therefore, the latency producer is attached with a so-

called 𝑎𝑑𝑣_𝑑𝑒𝑙𝑎𝑦 Accumulation Module. We first focus at the new

form of 𝑄𝐴 . While 𝐴0 is at a determined timestamp, 𝐴1 would

occur inclusively between 𝐴0 + 𝑇𝑎 and 𝐴0 + 𝑇𝑎 + 𝑅𝑑 with each

discrete value having an occurrence possibility of
1

𝑅𝑑
. Each possible

timestamp of 𝐴1 can derive a range of possible timestamps of 𝐴2

in similar way, where each values is equipped with a probability of

1

𝑅2

𝑑

. By integrating all those ranges of 𝐴2, the PDF of 𝐴2’s possible
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Algorithm 1 The Summation Accumulator.

1: 𝑎𝑐𝑐𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠 ← [[1, 1, 1, ..(𝑡𝑜𝑡𝑎𝑙𝑙𝑦 𝑅𝑑 + 1 𝑜𝑛𝑒𝑠) .., 1] ]
2: 𝑙𝑎𝑦𝑒𝑟_𝑠𝑢𝑚𝑠 ← []
3: function GetProbability( )

4: Require: 𝑖 𝑜 𝑓 𝐴𝑖 , 𝑡𝑠_𝑝𝑜𝑠

5: Compute:
6: Run NextLayer() 𝑢𝑛𝑡𝑖𝑙 𝑖 > 𝑙𝑒𝑛𝑔𝑡ℎ (𝑎𝑐𝑐𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠)
7: 𝑐𝑢𝑟_𝑙𝑎𝑦𝑒𝑟 ← 𝑎𝑐𝑐𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠 [𝑖 − 1]
8: Return:
9: 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ← 𝑐𝑢𝑟_𝑙𝑎𝑦𝑒𝑟 [𝑡𝑠_𝑝𝑜𝑠 ]

𝑙𝑎𝑦𝑒𝑟_𝑠𝑢𝑚𝑠 [𝑖−1]
10: end function
11: function NextLayer( )

12: Compute:
13: 𝑙𝑎𝑠𝑡_𝑙𝑎𝑦𝑒𝑟 ← 𝑎𝑐𝑐𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠 [−1]
14: 𝑛𝑒𝑤_𝑙𝑎𝑦𝑒𝑟 ← empty array of length (𝑙𝑒𝑛𝑔𝑡ℎ (𝑙𝑎𝑠𝑡_𝑙𝑎𝑦𝑒𝑟 ) + 𝑅𝑑 )
15: 𝑛𝑒𝑤_𝑙𝑎𝑦𝑒𝑟 [ 𝑗 ] ← 𝑆𝑢𝑚 (𝑙𝑎𝑠𝑡_𝑙𝑎𝑦𝑒𝑟 [ 𝑗 : 𝑗 − 𝑅𝑑 ])
16: 𝑙𝑎𝑦𝑒𝑟_𝑠𝑢𝑚𝑠 𝑎𝑑𝑑 𝑙𝑎𝑦𝑒𝑟_𝑠𝑢𝑚𝑠 [−1] ∗ 𝑅𝑑
17: end function

Possible 
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time
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Figure 6: Probabilistic Discovery with 𝑎𝑑𝑣_𝑑𝑒𝑙𝑎𝑦

timestamps (ranging in [𝐴0 + 2 · 𝑇𝑎, 𝐴0 + 2 · (𝑇𝑎 + 𝑅𝑑 )]) can be

generated.

A difficulty in latency producing is that, as the probabilities

of 𝐴𝑖+1’s timestamps are determined by those of 𝐴𝑖 , it is hard to

produce a list of PDF for 𝐴0, 𝐴1, 𝐴2 ... and retrieve the required

probability from the list in each call of latency producer. The process

to generate the probabilities of 𝐴𝑖+1’s candidate timestamps can

be time consuming due to the exponential growth. We adopt a

so-called Summation Accumulator (see Algorithm 1) as a solution.

The algorithm stores the probability of possible positions for each

𝐴𝑖 as the 𝑖
𝑡ℎ

layer, and dynamically derives the 𝑖 + 1𝑡ℎ layer.

While the timestamps of advertise events become nondeterminis-

tic with a single 𝜑𝑎 , the discovery events also become probabilistic.

Figure 6 shows an example case of discovery judgement. An ad-

vertise event 𝐴𝑖 is able to be discovered only when the timestamp

range it belongs to has an intersection with a scan window. A dis-

covery latency value can be produced by each of the timestamps

in this intersection, and is attached with the same probability of

𝐴𝑖 being at that timestamp. This intersection is then considered to

be "discovered", probably leaving a range of 𝐴𝑖 outside of it. This

"undiscovered" range is then used to generate the probabilities of

𝐴𝑖+1’s candidate timestamps and the assignment of probability to

latency continues in the same way as for 𝐴𝑖 . A general procedure

of discovery judgement is shown in Algorithm 2, which can be

applied when loss is simultaneously considered. Specifically, line 6

and 7 process the situations without/with packet lost.

In addition, the case projection requires simple amendments

when 𝑎𝑑𝑣_𝑑𝑒𝑙𝑎𝑦 is involved. For 𝑇𝑎 < 𝑇𝑠 , the Phase-Difference

Projection (Equation 2 will no longer based on adding multiples

of 𝑇𝑎 , since the actual interval between the advertise events is

probabilistically ranging from𝑇𝑎 to𝑇𝑎 +𝑅𝑑 . Therefore, the value to
be added is a probabilistic one, whose probability can be calculated

Algorithm 2 Discovery with Loss and Delay.

1: Fetch 𝑐𝑢𝑟_𝑎𝑐𝑐𝑢𝑚_𝑙𝑎𝑦𝑒𝑟 and 𝑐𝑢𝑟_𝑙𝑎𝑦𝑒𝑟_𝑠𝑢𝑚 from current layer’s sta-

tus in Summation Accumulator

2: Require: 𝑡𝑠_𝑝𝑜𝑠 𝑜 𝑓 𝐴𝑖

3: Compute:
4: if 𝑡𝑠_𝑝𝑜𝑠 covered by scan window then
5: 𝑡𝑠_𝑝𝑟𝑜𝑏 ← 𝐺𝑒𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖, 𝑡𝑠_𝑝𝑜𝑠)
6: 𝑃 (𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐴𝑖 ) + = 𝑡𝑠_𝑝𝑟𝑜𝑏 ∗ (1 − 𝐹𝑝 )
7: 𝑐𝑢𝑟_𝑎𝑐𝑐𝑢𝑚_𝑙𝑎𝑦𝑒𝑟 [𝑡𝑠_𝑝𝑜𝑠 ] ∗ = 𝐹𝑝
8: end if
9: NextLayer()
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Figure 8: The CDFs of the case study in which the configura-
tions 𝑇𝑠 = 5120𝑚𝑠,𝑑𝑠 = 512𝑚𝑠, and two 𝑇𝑎 .

by the summation accumulator. Due to the same reason, the Range-

Entrance Projection for 𝑇𝑎 > 𝑇𝑠 also changes the addition of 𝑇𝑎 to

adding each value in 𝑇𝑎 + 𝑅𝑑 with the same probability.

6 EVALUATION
To validate Blender’s functionality, the simulation results are com-

pared with the real experiment traces. Meanwhile, the simulation

method TMC17 in [19] is also selected as the state-of-art approach

for comparison. Note that the simulation in TMC17 only considers

the ideal scenarios.

Setup. The practical testbed for real-world measurement consists

of two Android smartphones, which are installed with a controller

application that manipulates BLE signal broadcasting/scanning.

The application is developed based on an official example [33] with

an additional module. The module lets one phone advertise the BLE

packets 𝑁 times and another phone continuously scan the adver-

tising channel. In this way, the scanner can estimate the channel’s

packet loss rate by checking the percentage of successfully received

advertising packets over 𝑁 .

Overall Performance. The root-mean-square error (RMSE) is in-

troduced as themetric to quantify the CDFs of the simulation results

and the measured results of the real testbed. Figure 7 shows the re-

sults with growing advertise interval under the LOW_ENERGY scan

mode defined in [34]. When considering both stochastic factors,

Blender results in much smaller RMSE values than the simulation
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that only considers the ideal scenario (i.e., TMC17) in an environ-

ment with 5% − 45% packet loss rate, regardless of the selected

advertising interval.

Case Study. Based on the analysis in [16], the average/maximum

discovery latency values in BLE NDP have peaks and valleys with

different parameter configurations. Figure 8(a) depicts the CDFs of

several methods when an advertising interval that leads to a ‘valley’

is selected. While Figure 8(b) shows the CDFs when a ‘non-peak’

interval value is chosen.

Although the gap between the two advertising interval values is

less than 200𝑚𝑠 , their corresponding latency performances are

significantly different, where the valley results are better in 𝑝-

percentile latency (𝑝 > 50). For both examples where the packet

loss and the random advertising delay are considered, the simu-

lation result of Blender shows better convergence to the Android

measurement results than that of TMC17.

Note that we have also examine the caseswith other scan settings,

and the results remain similar. In conclusion, Blender achieves im-

provement on the ability to approach the representation of practical

BLE NDP situations in general cases compared to ideal simulation

methodologies.

7 CONCLUSION
This paper proposes Blender to produce a full distribution of la-

tency estimation, while avoiding the insufficiency of the legacy way

of random sampling. To better fit the realistic estimation, Blender

further takes into account packet loss rate and random advertis-

ing delay, which captures the key features of BLE-based neighbor

discovery in practice.

One of our ongoing work is applying Blender to the Offline

Finding Network (OFN) [29]. OFN is a recent application introduced

by industrial pioneers (e.g., Apple, Samsung, Tile, Nutspace and Nut

Technology, Gigaset, etc.) that utilizes the nearby crowd-sourcing

smartphones as scanners to conduct BLE neighbor discovery to

find offline and lost BLE-enabled devices (e.g., earphones, tags,

and watches). Blender acts as the simulation and evaluation tool

for broadcasting/scanning parameters configuration, which is of

critical importance in OFN services with the trade-off between

power consumption and discovery latency.
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