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Abstract—The widespread adoption of database middleware
for supporting distributed transaction processing is prevalent in
numerous applications, with heterogeneous data sources deployed
across national and international boundaries. However, transac-
tion processing performance significantly drops due to the high
network latency between the middleware and data sources and
the long lock contention span, where transactions may be blocked
while waiting for the locks held by concurrent transactions. In
this paper, we propose GeoTP, a latency-aware geo-distributed
transaction processing approach in database middleware. GeoTP
incorporates three key techniques to enhance performance in
geo-distributed scenarios. First, we propose a decentralized
prepare mechanism to reduce network round-trips for distributed
transactions. Second, we design a latency-aware scheduler to
minimize the lock contention span by strategically delaying the
lock acquisition. Third, heuristic optimizations are proposed
for the scheduler to reduce the lock contention span further.
We implemented GeoTP on Apache Shardingsphere, a state-
of-the-art middleware, and extended it into Apache ScalarDB.
Experimental results on YCSB and TPC-C demonstrate that
GeoTP achieves up to 17.7x performance improvement.

Index Terms—Transaction Processing, Geo-Distributed, Het-
erogeneous Databases

I. INTRODUCTION

Globalization of enterprises is an inevitable trend in eco-
nomic development. Critical global applications, such as cross-
border e-commerce [1] and e-banking [2], require data to be
stored in different regions for compliance with local govern-
ment regulations [3], while guaranteeing atomic transaction
processing among them. For instance, a global e-commerce
application might store its US user account data in the US
and the stock data in the warehouse location (Singapore).
Furthermore, these databases are often managed by different
departments, making them highly likely to be heterogeneous.
Consequently, a typical product purchase requires a geo-
distributed transaction that simultaneously updates two het-
erogeneous databases in different locations, ensuring the user
balance and current stock are updated atomically. To achieve
this, database middlewares, such as Shardingsphere [4] and
ScalarDB [5], become indispensable to connect heterogeneous
databases across different regions for unified data services.
Unlike distributed database systems [6]–[9] , which usu-
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Fig. 1: A motivating example

ally requires rebuilding databases and applications. Database
middleware can provide transaction processing capabilities
without modification. This facilitates easier global service con-
structions, leading to widespread adoption in enterprises [10],
[11].

Database middlewares (abbreviated as DMs) typically em-
ploy the eXtended Architecture (XA) Protocol, an extension of
the two-phase commit (2PC), to ensure the transaction’s atom-
icity. Databases, such as MySQL [12] and PostgreSQL [13],
serve as the data sources of DMs. Specifically, the DM
accepts the transactions submitted by the clients. We consider
transaction T as a centralized transaction if it involves a
single data source; otherwise, T is considered as a distributed
transaction. For a centralized transaction, the DM forwards
it to the relevant data source, which executes it and returns
the results. Upon receiving the commit or abort command,
the DM instructs the relevant data source to commit or abort
directly, requiring one wide-area network (WAN) round trip.
For a distributed transaction, whether interactive or stored
procedures, the typical transaction processing protocol first
executes read/write operations in the relevant data sources
during the execution phase. Upon receiving the commit or
abort command, the DM follows the 2PC [14], [15], including
a prepare phase and a commit phase, to ensure transaction
atomicity. This commit process requires two WAN round
trips. The WAN round trip time dominates transaction latency
and significantly degrades performance, particularly for dis-
tributed transactions, which requires two WAN round trips
for commitment. The impact is more pronounced in geo-
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distributed scenarios where network latencies between the DM
and data sources are high [16].

Data sources [12], [13], [17]–[19] typically use two-phase
locking (2PL) or its variants for concurrency control*. In addi-
tion to the overhead of WAN communications, long lock con-
tention span—the time span between the acquisition (before
reads or writes) and release (after the commitment) of a record
lock—is also a critical factor for performance degradation.
We explicitly design an experiment to show the impact of
lock contention span on transaction performance. Figure 1
illustrates two data sources, DS1 and DS2. with a 10 ms WAN
round-trip time (RTT) between the DM and DS1, and varying
latency between the DM and DS2 (10–100 ms). The workload
includes 80% centralized transactions accessing DS1 and
20% distributed transactions accessing both DS1 and DS2.
We evaluate the average latency of centralized transactions
(on DS1) with varying the network latency between DM
and DS2 under low-contention (LC) and medium-contention
(MC) workloads. As depicted in Figure 1b, network latency
between the DM and DS2 has a more substantial impact on
centralized transactions under medium contention than low
contention, even though these transactions do not access DS2.
This is because in medium-contention workloads, centralized
transactions are more likely to access shared records with
distributed transactions that access DS2. The lock contention
span of distributed transactions, significantly affected by the
network latency between the DM and DS2, impacts the latency
of centralized transactions due to shared record blocking. We
provide more details for this in §II.

Several works are proposed to reduce WAN round trips
in distributed transaction processing. Early Prepare [20]
and RedT [16] reduce the network round-trips by writing
logs during execution, thus eliminating the prepare phase.
Carousel [21], Natto [22] and Janus [23] reduce network round
trips by integrating consensus protocols with 2PC, assuming
knowing the read/write sets in advance. However, they require
rewriting the kernel-level protocol, making them difficult to
extend to heterogeneous data sources. Another line of work
has proposed delayed scheduling techniques to reduce lock
contention spans. QURO [24] preprocesses the application
code to reorder the read/write operations and delays the
acquisition of exclusive locks for writes. However, it lacks
consideration for network latency, limiting its effectiveness in
geo-distributed scenarios. Chiller [25] and DAST [26] address
latency differences in geo-distributed scenarios by scheduling
cross-region subtransactions to follow intra-region ones, as
hot records are often in the intra-region ones. However, these
methods are designed for stored procedures and overlook
the varied latency between cross-region nodes and execution
times, potentially differing by orders of magnitude, leaving
substantial room for optimizing the lock contention span.

In this paper, we present GeoTP, a latency-aware geo-
distributed transaction processing approach in database mid-
dleware. We propose three key techniques to mitigate the

*We focus on serializable isolation level in this work.
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Fig. 2: Distributed transaction processing in DMs

impact of network latency and lock contention while ensuring
that GeoTP continues to support general-purpose transactions,
including interactive and stored procedures. Our key tech-
niques and contributions are summarized as follows.

(1) Decentralized prepare mechanism that offloads the
coordination cost required for the prepare phase (§IV-A).
GeoTP triggers the prepare phase implicitly at the end of the
execution phase, effectively eliminating one WAN round trip
and reducing the latency of distributed transactions. However,
this process is challenging due to the different transaction
protocols used by various data sources. To address this, we
leverage annotations to mark the last statement and develop
an efficient component called geo-agent to abstract differences
between data sources, facilitating decentralized preparation in
GeoTP. Additionally, we design an early abort mechanism
that allows fault transactions to abort quickly, preventing such
transactions from degrading the performance.

(2) Latency-aware scheduling to minimize the lock
contention span (§IV-B). The lock contention span of a trans-
action is determined by the highest network latency involved,
resulting in unnecessary lock contention. To address this, we
propose a latency-aware scheduling mechanism that postpones
the lock request time point for the subtransactions accessing
data sources with lower network latency. Since the lock release
time point remains unchanged, the lock contention span of
these subtransactions is reduced. This approach minimizes the
impact of distributed transactions on transaction concurrency,
thereby improving the overall system performance.

(3) Optimized scheduling for high-contention work-
loads considering local execution latency (§IV-C). In high-
contention workloads, the lock contention span is influenced
not only by the highest network latency but also by the time
subtransactions spend waiting to acquire locks. For instance,
a subtransaction with lower network latency might still face
significant latency if it has to wait a long time for locks
on hotspots, causing its local execution latency to exceed
the longest network latency and become a bottleneck. To
enhance scheduling precision in such scenarios, we employ
heuristic optimization, including transaction admission and
local execution latency forecasting mechanisms. By doing this,
GeoTP can further reduce the lock contention span.

We implement GeoTP on Apache ShardingSphere and ex-
tend our optimizations on ScalarDB. Extensive evaluations on
YCSB and TPC-C show that GeoTP achieves a performance
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improvement of up to 17.7x over Shardingsphere and up to
3.2x over ScalarDB and offers comparable performance to
distributed databases.

II. MOTIVATION EXAMPLE

In this section, we use Figure 2 as an example to motivate
our work. The network latency between DM and DS1 is 10
ms, while the latency between DM and DS2 is 100 ms. There
are two transactions, T1 and T2, arriving DM at times t0
and t1, respectively. T1 is a distributed transaction accessing
records in DS1 and DS2, while T2 is a centralized transaction
accessing a shared record r with T1 in DS1. We denote the
subtransaction of Ti executed on data source DSj as Tij . Note
that in most scenarios, network latency outweighs execution
latency. For simplicity, we ignore the local execution time
required in each phase without loss of generality.

In a typical distributed transaction scenario, the DM acts as
a coordinator, while each data source serves as a participant.
The lifecycle of a distributed transaction, e.g., T1, can be
divided into three phases: 1) the execution phase, 2) the
prepare phase, and 3) the commit phase. During the execution
phase, the DM parses a transaction T1 into subtransactions
T11 and T12 and dispatches them to data sources DS1 and
DS2 based on data distribution. The data source, e.g., DS1,
then initiates a subtransaction T11, acquires locks on record r
before reads or writes, and sends the execution results back to
the DM. The client submits the commit request at t3, triggering
the prepare phase. The DM notifies DS1 and DS2 to verify
whether the subtransactions are ready for the commitment.
In response, data sources persist the transaction states and
write-ahead logs and then return the prepared result. The DM

collects all prepared results at t4 and determines whether to
commit or abort the transaction based on the return results
from the data sources. Finally, in the commit phase, the DM
dispatches the final decision to DS1 and DS2, which involves
another WAN round trip, and the transaction is completed at
t6. The lifecycle of T1 is from t0 to t6, involving three WAN
round trips, which dominate the transaction latency.

As evident from Figure 2, T11 acquires the lock on r at t1
and release it at t5. The lock contention span of T11 on record
r is around 200 ms (2 WAN round trips), determined by the
network latency between the DM and DS2. The subtransaction
T21 arrives DS1 at around t2 and is blocked by T11 until
t5 due to its prolonged lock contention span. The DM has
to await the execution results from T21, which are received
around t5+5 ms, significantly increasing the execution latency
of T2. Even worse, if T21 acquires locks on other records, the
lock contention span can transitively block other concurrent
transactions. Note that, even if transaction T2 is a centralized
transaction without accessing any record in DS2, the network
latency between DM and DS2 still affects the transaction
latency of T2 through the lock contention span of transaction
T1. This explains the experiment results in Figure 1b.

This motivation example highlights the substantial im-
pacts of network latency and long lock contention spans on
the transaction performance in geo-distributed scenarios.

III. OVERVIEW OF GEOTP

Figure 3 provides an overview of GeoTP, which operates
in the two-layer architecture. The first layer functions as the
DM [27]–[29], while the second layer comprises data sources
that can be geographically distributed and heterogeneous;
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for example, DS1 includes a PostgreSQL instance and DS2

includes a MySQL instance. For clarity, we assign a monotonic
identifier to each operation within a transaction T . We assume
that applications can use annotations, which are prefixes or
suffixes on SQL statements, to pass certain operations hints
to GeoTP. Given that SQL annotations are commonly used
to guide and influence database query optimization [30], [31]
manually, we consider this assumption reasonable.

A. Database Middleware Layer

In the first layer, similar to existing DMs, GeoTP is
equipped with the parser and rewriter, which accept trans-
actions submitted by the clients and transform them into
multiple subtransactions. Despite these components, GeoTP
is equipped with an enhanced transaction manager and a geo-
scheduler, which differ from existing DMs. The enhanced
transaction manager is responsible for coordinating the ex-
ecution and handling failure recovery. The geo-scheduler is
particularly crafted to calculate the optimal start time point for
subtransactions, minimizing the lock contention span. Next,
we use transaction T1 in Figure 3 as an example to explain
the transaction processing in GeoTP and our key techniques.
Suppose Alice submits transaction T1, which transfers $100
from her account to Bob’s account. Note that Bob’s account is
stored in a PostgreSQL instance (DS1), and Alice’s account
is stored in a MySQL instance (DS2).

Parser and rewriter. These components parse SQL statements
received from clients and then rewrite them according to the
grammar rules of target databases. For example, they translate
T1 into T11 and T12, which are executable for PostgreSQL and
MySQL, respectively. Operations T11.o1 and T12.o1 start an
XA transaction in each data source. Operation T11.o2 deposits
$100 into Bob’s account in PostgreSQL, while T12.o2 deducts
$100 from Alice’s account in MySQL. Subsequently, T11.o3
and T12.o3 attempt to commit the respective subtransactions.

Transaction manager. Unlike conventional transaction man-
agers, our enhanced transaction manager employs a decen-
tralized prepare mechanism to eliminate the prepare phase
from the critical path of XA protocol (§IV-A). In our design,
the prepare phase is no longer triggered by commit request
of clients. Instead, it is initiated after the last statement in
the execution phase, explicitly specified by the client (e.g.,
T1.o3). Upon identifying the last SQL statement, the transac-
tion manager combines the decentralized prepare phase with
the processing of this statement over the underlying data
sources. For example, since there is no dependency between
T1.o2 and T1.o3, we assume the client sends them together
to the DM. The transaction manager treats them as the last
SQL statement of each data source. Importantly, if some data
sources are involved in the transaction but not processing the
last SQL statement, the transaction manager directly notifies
those data sources to initiate the prepare phase. This approach
eliminates one WAN round trip required by the prepare phase
for distributed transactions.

Geo-scheduler. The geo-scheduler implements the latency-
aware scheduling of subtransactions by calculating each state-
ment’s optimal start time point based on the network latency
and predicted transaction execution latency. As is shown in
Figure 3, suppose the average network latency from the DM
to DS1 and DS2 is 10 ms and 100 ms. We show the schedule
produced by the geo-scheduler on the bottom-right of the
first layer. Specifically, T11.o1, and T12.o1 are first scheduled
to execute. Next, T12.o2 is scheduled without postponing,
while T11.o2 is scheduled and has been postponed 90 ms
for execution. Unlike traditional schedulers where T11.o2 and
T12.o2 are sent to data sources simultaneously, resulting in a
contention span of 100 ms for both operations; our scheduler
adopts a prioritized strategy (details in §IV-B & IV-C). This
strategy reduces the contention span of T11.o2 to 10 ms
without increasing the overall latency of T1. The scheduling of
T11.o3 and T12.o3 needs to wait for the prepare results from
data sources DS1 and DS2, respectively.

B. Geo-distributed Data Source Layer

In the second layer, each data source is equipped with a geo-
agent comprising two crucial components: a connection pool
and a local transaction manager. The connection pool manages
connections with the DM, the underlying database, and other
geo-agents. The local transaction manager receives/forwards
messages from/to the DM or database and notifies the database
to initiate the implicit decentralized prepare phase. Following
the running example, after the execution of T12.o2, which
is the last statement of T12, the geo-agent instructs DS2 to
execute T12.o3-1 and T12.o3-2 (shown in the bottom right
corner of Figure 3) to complete the prepare phase. Once T12.o3
is received, the geo-agent only needs to await the result of
T12.o3-2 and then instructs DS2 to commit T12. In the event
of an abort during execution, the geo-agent implements the
early abort mechanism to proactively notify other data sources
involved to pre-terminate other subtransactions without the
coordination of DM (§IV-A).

IV. DETAILED DESIGN

In this section, we introduce the key techniques of GeoTP,
including the decentralized prepare mechanism (§IV-A), the
latency-aware transaction scheduling mechanism (§IV-B), and
further optimizations for high-contention workloads (§IV-C).

A. Decentralized Prepare Mechanism

With the traditional 2PC protocol, the DM is responsible for
coordinating both the prepare and commit phases of distributed
transactions, incurring two WAN round trips and resulting
in expensive coordination costs. This issue often leads to
prolonged distributed transaction latency, significantly impact-
ing performance. In GeoTP, we propose (1) a decentralized
prepare mechanism to eliminate one WAN round trip time for
the prepare phase and (2) an early abort mechanism to pre-
terminate unnecessary execution of subtransactions.
Decentralized prepare mechanism. We propose a decen-
tralized preparation mechanism to offload the coordination
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cost associated with the prepare phase, i.e., one WAN round
trip from the DM to data sources. In GeoTP, the prepare
phase is initiated by the geo-agent, reducing the cost from
one WAN round trip (i.e., from the DM to the data source)
to one local-area network (LAN) round trip (i.e., from the
geo-agent to the data source). The design hint is that once a
subtransaction completes its execution phase, it can directly
enter the prepare phase without waiting for the “prepare”
messages from the DM. This approach does not compromise
transaction correctness and may incur minimal additional over-
head if a client proactively aborts the transaction. However,
this overhead is negligible compared to the reduction in WAN
round trip time. To enable decentralized preparation, we use
an annotation code to explicitly mark the last SQL statement
in a transaction. Upon completing the execution of the last
SQL statement, the geo-agent directly initiates an implicit
decentralized prepare phase. For example, if the data source is
MySQL, the geo-agent executes “XA end” and “XA prepare”
statements to initiate the prepare phase; for PostgreSQL, it
uses the “Prepared transaction” statement. Thus, the DM
only needs to await the results of this implicit prepare phase
before proceeding to the commit phase. Then, the DM flushes
the commit/abort log. If all prepared results are successful,
the DM notifies involved data sources to commit; otherwise,
the DM awaits the abort results from data sources. Unlike
existing works on reducing round trips [16], [21], [22], GeoTP
does not require modifications to the database kernel, making
it suitable for database middleware with heterogeneous data

Algorithm 1: Decentralized prepare mechanism
1 Function AsyncPrepare(Tij , conn):
2 result := conn.end(Tij .Xid)
3 if result is failure then
4 SendMsg(Tij , ROLLBACK_ONLY)
5 AsyncRollback(Ti, conn)
6 return ERROR;
7 if SizeOf(Tij .peers) is 0 then
8 SendMsg(Tij , IDLE) // centralized transaction
9 return SUCCESS;

10 result := conn.prepare(Tij .Xid)
11 if result is failure then
12 SendMsg(Tij , FAILURE)
13 AsyncRollback(Ti, conn)
14 return ERROR;
15 else
16 SendMsg(Tij , PREPARED)
17 return SUCCESS;

18 Function Commit(Ti):
19 readyForCommit := true
20 /* Block until all prepared results received */
21 WaitForPrepareResults()
22 for p ∈ Ti.participants do
23 if p.state is not IDLE or PREPARED then
24 readyForCommit := false

25 /* Flush commit/abort log for failure recovery (§V-A) */
26 FlushLog(readyForCommit)
27 if readyForCommit is true then
28 DispatchCommit(Ti.participants)
29 else
30 WaitForRollback()

31 Function AsyncRollback(Tij , conn):
32 /* Notify other data sources to rollback */
33 for p ∈ Tij .peers do
34 NotifyPeerRollback(p.Id, Tij .Xid)
35 conn.rollback(Tij .Xid)
36 SendMsg(Tij .Xid, ROLLBACKED)

sources.
As illustrated in Figure 4a, the decentralized prepare mech-

anism enables the completion of distributed transaction com-
mitments in a single WAN round trip, unlike the traditional
two-round trip process. The lock contention span for both
subtransactions within T1 is reduced from 200 ms (shown in
Figure 2) to 100 ms, which corresponds to the longest network
round trip time involved in T1.

Early abort mechanism. In conventional DMs, subtransac-
tions remain unaware of the execution status of their peer
subtransactions, such as failures due to the lock timeout, until
receiving the abort notification from the DM, resulting in
resource wastage. The challenge is introduced by the inability
of heterogeneous data sources to communicate directly with
each other. Inspired by Guerraoui et.al. [32], GeoTP proposes
the early abort mechanism to address this issue effectively.
In GeoTP, the geo-agent maintains connections to other data
sources in its connection pool. Once a subtransaction encoun-
ters an abort before commitment, the geo-agent proactively

5



notifies other data sources to abort the corresponding peer
subtransactions, bypassing the DM and thereby reducing half
of the WAN round trip. In the previous execution process,
when subtransaction T12 aborts in DS2, it requires one and a
half WAN round trips to abort transaction T11 —half a round
trip for DS2 to send the abort message to the DM and one
round trip for the DM to dispatch the abort command to DS1

and receive the abort result from DS1. In contrast, as shown
in Figure 4b, GeoTP uses the geo-agent in DS2 to proactively
notify DS1 directly to abort T11. The DM then waits for the
abort results from DS1 and DS2, completing the abort of the
transaction with only one WAN round trip.

Algorithm. Algorithm 1 details the transaction processing in
GeoTP. The geo-agent invokes AsyncPrepare() to initiate the
implicit prepare phase. After the preparation, the geo-agent
returns the prepare result to the DM (line 16). When receiving
a commit message from the client, the DM invokes Commit()
to initiate the commit phase. In the commit phase, the DM first
waits for all prepare results from data sources and then flushes
the commit/abort log (lines 20-26). If all prepare results are
successful, the DM invokes DispatchCommit() to notify all
data sources of the commit message (lines 27-28); otherwise,
it invokes WaitForRollback() to await the abort results from
involved data sources (line 30). Moreover, if a subtransaction
encounters an abort before the commitment, its corresponding
geo-agent invokes AsyncRollback() to perform the early abort.

B. Latency-Aware Scheduling Mechanism

In geo-distributed scenarios, significant differences in net-
work latencies often lead to unnecessary lock contention spans,
as we illustrated in the motivation example in Figure 2. To
address this issue, we propose a latency-aware scheduling ap-
proach to optimize the start time point for each subtransaction.
In this part, we assume that there is no data-conflict blocking,
allowing subtransactions to acquire locks and complete their
execution immediately, for the simplicity of illustration. We
will incorporate the transaction execution latency in §IV-C.

Lock request timing postponing. We first formulate the lock
contention span for subtransaction Tij as follows:

LCS(Tij) = ť
Tij

last − t̂
Tij

1st (1)

where t̂
Tij

1st and ť
Tij

last represent the first lock acquisition time
point and the last lock release time point of Tij , respectively.

The primary objective of the DM is to minimize each
subtransaction’s lock contention span defined in Eq.(1). We
achieve this by postponing the start time point tTij

start, which is
the time point when the DM dispatches subtransaction Tij

to the data source. For clarity and without generality, we
explain our formulas under the assumptions that (1) the time
point when the DM receives the transaction is 0ms, and (2)
subtransactions can acquire locks immediately, meaning the
first lock acquisition time point t̂Tij

1st , can be represented as the
time point the target data source receives Tij . Formally, t̂Tij

1st=

t
Tij
start+

1
2
τij , where τij denotes the RTT between the DM and

the data source where Tij executes.

Algorithm 2: Latency-aware scheduling mechanism
1 Function ScheduleTranscation(Ti):
2 lat max := 0, retry cnt := 0
3 time now := GetSystemClock()
4 for Tij ∈ Ti.subtxns do
5 node := GetNode(Tij)
6 /* τ between DM and targeted data source */
7 Tij .latency := GetNetworkLatency(node)

8 if adv opt is true then
9 /* Further optimization §IV-C */

10 for Tij ∈ Ti.subtxns do
11 p := 0, L̂EL(Tij) := 0
12 for rk ∈ Tij .records do
13 p := UpdatePossibility(rk, p) // Eq.(9)
14 L̂EL(Tij) := L̂EL(Tij) + w latrk

15 if p < rand() then
16 if retry cnt++ < 10 then
17 goto line 11

18 return None /* abort */

19 else
20 Tij .latency := Tij .latency + L̂EL(Tij)

21 lat max := GetMaxSubtransactionLatency(Ti)
22 for Tij ∈ Ti.sub txn do
23 t

Tij
start:= time now + (lat max - Tij .latency)

Since GeoTP eliminates the network round trip in the
prepare phase, the last lock release time point ť

Tij

last, can be
represented as the time point when the target data source
receives the “commit” message for Tij . Formally, ť

Tij

last=

max
∀Tis∈Ti

τis+
1
2
τij , with max

∀Tis∈Ti

τis representing the highest RTT
from the DM to the data sources involved in Ti. Furthermore,
to avoid increasing the overall transaction latency, there is
a constraint that the end time point of any subtransaction’s
execution and prepare phase must not exceed the original end
time point of the transaction’s entire execution and prepare
phase. Taking Tij as an example, its end time point of
execution and prepare phase can be represented as t

Tij
start+τij ,

the original end time point of Ti’s entire execution and prepare
phase is max

∀Tis∈Ti

τis. The objective function and constraint
(indicated after s.t. in Eq.(2)) for each subtransaction are
formally described as follows:

argmin

t
Tij
start

LCS(Tij) ⇒ argmin

t
Tij
start

( max
∀Tis∈Ti

τis − t
Tij
start)

s.t. t
Tij
start + τij ≤ max

∀Tis∈Ti

τis

(2)

We can derive the optimal subtransaction start time to mini-
mize each subtransaction’s lock contention span in Eq.(2) as:

t
Tij
start = max

∀Tis∈Ti

τis − τij (3)

Notably, for transactions with multiple rounds of interac-
tions, the optimal start time point is calculated for each round.
Algorithm. Algorithm 2 outlines the key function of the
latency-aware scheduling mechanism. ScheduleTransaction()
is invoked by the geo-scheduler and adjusts the start time
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point of each subtransaction. The DM iterates through each
subtransaction of the input transaction T and retrieves the net-
work latency between the DM and the target data source (lines
4-7). In this section, we assume the adv opt as false, with
further optimization introduced in §IV-C (lines 9-20). After
that, the DM records the latency of the slowest subtransaction
(line 21) and then calculates the optimal start time point for
each subtransaction based on Eq.(3) (lines 22-23).

Recall the example transaction in Figure 4a, the distributed
transaction T2 arrives at 5 ms in the DM and needs to access
the same record r on DS1 with transaction T1. Without
postponing the start time point of T11, T21 needs to wait until
105 ms, when T11 releases its locks. In GeoTP, as shown in
Figure 4c, our geo-scheduler postpones the start time point of
subtransactions T11 by 90 ms, T2 can acquire the locks ahead
of T11 and release locks before T11 arrives. Consequently,
the lock contention span for subtransactions T11 and T12 and
T21 are reduced to 10 ms, 100 ms and 10ms, respectively.
This postponing mechanism enhances transaction concurrency,
leading to an overall improvement in system performance.

C. High-Contention Workload Optimizations

The previous discussion assumed that the transactions are
under low-contention workloads. However, in high-contention
workloads, the lock contention span is influenced not only
by the longest RTT but also by the time required for sub-
transactions to acquire locks. In high-contention workloads,
subtransactions often cannot immediately acquire locks. Ad-
ditionally, frequent transaction waits or rollbacks due to the
contention waste system resources and significantly undermine
the effectiveness of predicting the time required for acquiring
locks. To address the aforementioned challenges, we propose
a heuristic local execution latency forecasting mechanism to
improve latency-aware scheduling using real-time statistical
information. Additionally, we introduce a late transaction
scheduling mechanism to manage access to hot records.

Hotspot statistics collecting. Since the local execution latency
forecasting and late transaction scheduling rely on real-time
hotspot statistics, we first introduce how GeoTP collects this
information. The geo-scheduler uses the hotspot footprint to
maintain statistics for hot records of data sources, includ-
ing four fields: (1) w latr, the weighted average latency of
subtransactions completing operations on the record r; (2)
t cntr, the total number of transactions that have accessed the
record r; (3) c cntr, the number of committed transactions
that have accessed the record r; (4) a cntr, the number of
transactions currently accessing the record r. We update these
fields after the completion of each subtransaction Tij within
transaction Ti. Specifically, to update the w latr for the record
r that Tij has accessed, the DM uses a weighted average
approach as formulated in Eq.(4). Since the latency of Tij

accessing a specific record r cannot be directly collected (due
to data record granularity), we calculate it using a weight
wr = w latr∑

∀rk∈Tij.records
w latrk

, the proportion of w latr relative
to the sum of access latency of all records accessed by Tij .

The latency of Tij accessing the record r is then estimated
by LEL(Tij) ·wr , with LEL(Tij) denoting the local execution
latency of Tij . Then we use this latency to update w latr, with
the weighted update coefficient α.

w latr = α · w latr + (1− α) · LEL(Tij) · wr (4)

To enhance efficiency, we organize these hot records using
an AVLTree in memory, which ensures that both point and
range access has a time complexity of O(log n). Additionally,
we implement an LRU list to evict cold data, allowing GeoTP
to dynamically update hot records during operation. This
approach not only reduces the memory overhead but also
minimizes the CPU overhead for latency estimation.

Local execution latency forecasting. As formulated in Eq.(5),
based on the collected statistical information on hot records,
we estimate the local execution latency of subtransaction Tij

by accumulating the value of w latr of each hot record
that Tij need to access. To distinguish from the actual local
execution latency of Tij , we use L̂EL(Tij) to represent the
forecasted local execution latency.

L̂EL(Tij) =
∑

∀rk∈Tij .records
w latrk (5)

Then we incorporate the forcasted local execution latency
into Eq.(1). The t̂

Tij

1st is updated by adding Req(r1st), the time
span from the lock request to the lock acquisition on Tij’s
first accessing record r1st. The ť

Tij

last is updated by adding
the forecasted local execution latency to the execution and
prepare phase of subtransactions. The updated t̂

Tij

1st and ť
Tij

last

are formulated in Eq.(6).

t̂
Tij

1st = t
Tij
start +

1
2
τij +Req(r1st)

ť
Tij

last = max
∀Tis∈Ti

(τis + L̂EL(Tis)) +
1
2
τij

(6)

Finally, we generate the new objective function and constraint
for the lock contention span using Eq.(6).

argmin

t
Tij
start

LCS(Tij)

⇒ argmin

t
Tij
start

[ max
∀Tis∈Ti

(τis + L̂EL(Tis))− (t
Tij
start +Req(r1st))]

s.t. t
Tij
start + τij + L̂EL(Tij) ≤ max

∀Tis∈Ti

(τis + L̂EL(Tis))

(7)

Since Req(r1st) is contained in L̂EL(Tij), it can be considered
as a constant without affecting the optimal solution. Therefore,
the optimal start time point can be formulated as follows:

t
Tij
start = max

∀Tis∈Ti

(τis + L̂EL(Tis))− (τij + L̂EL(Tij)) (8)

Moreover, discrepancies between predicted and actual la-
tency do not always degrade performance. According to
Eq.(8), if the predicted latency L̂EL(Tij) is lower than the
actual latency LEL(Tij), Eq.(7) may not achieve the minimal
value, but still perform better than execution without latency-
aware scheduling. However, if L̂EL(Tij) exceeds LEL(Tij),
performance may suffer if the delayed subtransaction becomes
the new bottleneck. In cases of inaccurate runtime predictions,
we can scale down the predicted latency before incorporating
it into calculations to mitigate any negative impact.
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Late transaction scheduling. To restrict the number of con-
current transactions on hot records and improve prediction
accuracy, the DM first predicts the abort rate of transactions
before distributing them to data sources, blocking those with
high abort rates. Specifically, a transaction will be aborted if it
cannot acquire locks on any of the records due to lock timeout.
Therefore, the transaction’s abort rate, denoted as Pr(Ti),
is equivalent to 1 minus the probability of the transaction
successfully acquiring locks on all required records. This
prediction is conducted with the hotspot footprint. We observe
that if a transaction is blocked by another transaction with
a high abort rate, other transactions waiting for the blocked
transactions are also likely to be aborted. Therefore, we predict
the probability that a transaction can successfully acquire
the lock on a record by calculating the probability that all
preceding transactions in the waiting queue can successfully
acquire locks. The number of transactions in the waiting queue
can be represented by a cntrk − 1 and each transaction has
a c cntrk

t cntrk
probability of successfully acquiring the lock on rk

without being blocked. Given that, we formalize the abort rate
for transaction Ti in Eq.(9):

Pr(Ti) = 1−
∏

∀rk∈Ti.records

(
c cntrk
t cntrk

)max {a cntrk−1,0} (9)

Algorithm. We integrate the late transaction scheduling and
local execution latency forecasting mechanisms for further
optimization, as illustrated in Algorithm 2. When the adv opt
is true, we consider the local execution latency via PredictLa-
tency(). Specifically, the DM traverses the keys accessed by the
subtransactions and predicts the abort rate and local execution
latency based on Eq.(5) and Eq.(9) (lines 13, 20). Transactions
with a high abort rate are blocked (line 17). Otherwise, the DM
calculates the optimal start time point for each subtransaction
based on the network latency and predicted local execution
latency (line 23). Additionally, the transactions that have been
blocked multiple times are aborted (line 18).

D. Discussion

The high-contention optimization estimates the local ex-
ecution latency. When a user specifies a predicate on the
primary key or a key from a secondary index, we can identify
hot records cached in the memory that match the predicate,
enabling us to estimate the local execution latency of subtrans-
actions. In certain cases, such as when there is no index on
the predicate key, inferring hot records from the statements
becomes challenging and inefficient, which may limit the
effectiveness of this technique. However, other optimizations
continue to enhance performance. Additionally, dependen-
cies between operations from different subtransactions may
necessitate multiple rounds of interactions. However, within
each round, the geo-scheduler can optimize the scheduling of
query execution. Furthermore, integrity constraints within
the database may exist. While deferring the execution of a
subtransaction that violates these constraints may not always
improve performance, it can delay the client’s perception of
the error, potentially hindering feedback regarding transaction

execution failure. From the perspective of overall system
performance, the benefits of latency awareness outweigh these
drawbacks. For scenarios where integrity errors occur fre-
quently, a heuristic algorithm could be developed to defer sub-
transactions involving those records with a small probability.
This intriguing problem, however, lies beyond the scope of
this paper and is left as a topic for future research.

V. CORRECTNESS AND RECOVERY

In this section, we first describe the failure recovery mech-
anism of GeoTP. Then, we provide proofs of the atomicity
and isolation correctness in GeoTP.

A. Failure Recovery

The failure recovery process of GeoTP includes three key
aspects: (1) identifying which transactions require recovery,
(2) determining where to collect the necessary information for
recovery, and (3) deciding how to recover these transactions.
We discuss the recovery process for both the DM failures and
data source failures. Note that our recovery process relies on
the following common settings in popular databases [12], [13]:
❶ if the DM fails and disconnects, the data sources abort all
subtransactions not completed the prepare phase; and ❷ if a
data source fails, it automatically aborts subtransactions that
have not completed the prepare phase after it restarts.
Recover from database middleware failure. When the DM
encounters a failure, GeoTP recovers all transactions that were
not committed before the failure. Particularly, the DM needs
to abort uncommitted transactions that have not entered the
commit phase and complete uncommitted transactions that
have entered the commit phase. Since the DM is stateless,
it retrieves the transaction information from the underlying
data sources after it restarts. First, the DM reconnects to data
sources and collects all prepared but uncommitted subtrans-
actions to identify all uncommitted distributed transactions.
Second, the DM uses the persisted commit/abort log entry
to check if transactions entered the commit phase. If a log
entry exists, indicating that this transaction has completed
the FlushLog() in Algorithm 1 and has entered the commit
phase, the DM instructs the data source to commit/abort the
corresponding subtransactions based on the log; If not, the DM
aborts the transaction.
Recover from data source failure. When a data source,
such as DSi, fails, the corresponding geo-agent also fails.
In this case, the DM is responsible for recovering all un-
committed distributed transactions that accessed this failed
data source. The DM will abort the distributed transaction
if its subtransaction in DSi has not completed the prepare
phase. Otherwise, the DM continues to execute the distributed
transaction after the data source is reconnected. Specifically,
the DM first traverses each distributed transaction involving
DSi to retrieve the transaction state. If the transaction has
reached the commit phase, indicating that it has completed
the prepare phase in DSi, the DM instructs DSi to either
commit or abort the corresponding subtransaction based on
the commit/abort log of this transaction. If the subtransaction
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is not in the commit phase, the DM communicates with the
geo-agent to verify whether the subtransaction in DSi has
been successfully prepared. If it has, the database middleware
processes the subtransaction as per the normal procedure.
Otherwise, the modification is lost in DSi and the DM will
notify all data sources involved in the distributed transaction
to abort the corresponding subtransactions.

B. Atomicity Correctness
To ensure atomicity, we must guarantee that the final state

of the transaction is either committed or aborted, with all
subtransactions achieving the same status. GeoTP guarantees
the atomicity correctness following two steps. First, GeoTP
initiates the decentralized prepare phase after the execution
phase. A transaction can be committed only if all subtransac-
tions complete the prepare phase and vote Yes; otherwise, the
transaction will be aborted. Second, once the final status of the
transaction is determined, GeoTP flushes the commit/abort log
into the disk, ensuring that the decision cannot be reversed. In
the case of failures, we ensure that the DM and the underlying
data sources eventually reach a unique and consistent decision
after failure recovery (§V-A).

We next prove atomicity of GeoTP, referring to [33], [34]
for five properties (AC1-5) that atomic commit protocols need
to fulfill.

AC1: All processes that reach a decision reach the same
one. In the commit phase, the DM determines the final state of
the transaction according to the prepared results and dispatches
the decision to each data source. The DM can commit only if
all data sources are ready to commit.

AC2: A process cannot reverse its decision after it
has reached one. Data sources can not reverse the decision
once it commits/aborts the transaction. For DM, it flushes the
commit/abort log after it determines the final state. GeoTP
would reuse this decision (if necessary) rather than reverse it.

AC3&4: The Commit decision can only be reached if
all processes voted Yes. If there are no failures and all
processes voted Yes, then the decision will be to Commit.
GeoTP adheres to the decision logic of the 2PC (details in
§IV-A), simply reducing the network overhead under WAN.
Therefore, it meets this property.

AC5: Consider any execution containing only failures
that the algorithm is designed to tolerate (i.e., crash fail-
ures). At any point in this execution, if all existing failures
are repaired and no new failures occur for sufficiently
long, then all processes will eventually reach a decision. In
the previous description, GeoTP ensures that the data sources
can accurately execute the decision made by the middleware.
§V-A will discuss how GeoTP handles failures at different
times in the middleware and data sources, thereby ensuring
that the data source applies the unique decision made by the
DM in the event of a failure.

C. Isolation Correctness
GeoTP is an effective distributed transaction processing

approach that can be applied to multiple middleware sys-
tems. GeoTP postpones the execution of subtransactions but

does not modify the concurrency control algorithm, thereby
maintaining the isolation properties of the original middleware
system. Take the 2PL algorithm as an example, latency-aware
scheduling postpones the acquisition of locks but still requires
the acquisition of a lock before its operation, as enforced
by the concurrency control mechanism of each data source.
The commit protocol of GeoTP ensures that a transaction can
release locks only after commitment, thereby preserving se-
rializability. Thus, GeoTP does not compromise the isolation
guarantees the original database middleware provided.

VI. IMPLEMENTATION
We implement GeoTP on the codebase of Apache

Shardingsphere-v5.0 [27], a popular open-source DM, involves
about 5k lines of Java code modifications and is avail-
able at [35]. Shardingsphere currently integrates 6 popular
databases and deploys a comprehensive SQL engine. GeoTP
does not require any modifications to data sources. As a result,
databases supported by Shardingsphere (possibly other DMs)
can leverage the capabilities of GeoTP.
Database middleware layer. First, we enhance the sqlParse()
to recognize the annotation code provided by the client and
convey this information via QueryContext. Then, we enhance
the statement handler to support latency-aware scheduling
facilitated by the geo-scheduler. The statistical data required
for scheduling is derived from two sources: (1) a dedicated
thread that continuously monitors the network latency between
the DM and data sources, utilizing the ping command at 10ms
intervals, and (2) the hotspot footprint is recorded by Lock-
MetaTable and updated by MultiStatementsHandler.feedback().
Lastly, we implement the decentralized prepare mechanism in
XAShardingSphereTransactionManager.commit() to eliminate
one WAN round trip for distributed transactions.
Data source layer. We have implemented the geo-agent
in the data source layer, which incorporates an enhanced
connection pool and a local transaction manager. The con-
nection pool is designed to interface with other geo-agents,
thereby supporting functionalities such as SendRollbackMsg()
and SendAsyncMsg(). The transaction information is system-
atically organized within the local transaction manager using a
ConcurrentHashMap. Before the return of CommandExecutor-
Task.run(). We invoke the AsyncPrepare() in an asynchronous
thread upon identifying that the ‘last’ flag is true and then start
the prepare phase of the corresponding subtransaction. In par-
ticular, the geo-agent autonomously performs FastRollback()
in failure cases without relying on instructions from the DM.

VII. PERFORMANCE EVALUATION

A. Experiment Setup

We conduct experiments on an in-house cluster of up to 6
separate machines, each equipped with 16 vCPUs and 32 GB
of DRAM, running CentOS 7.4.

1) Baselines: In our experiments, we compare GeoTP with
state-of-the-art DMs and a distributed database.
Database middlewares. ① Shardingsphere (abbreviated as
SSP) is a state-of-the-art DM that supports geo-distributed
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transaction processing over relational database systems via XA
protocol. ② SSP (local), a mode provided by SSP without
atomicity guarantees, which we employ to show the peak
performance of SSP. Succinctly, it employs a decentralized
commit protocol but allows transactions to be committed
when data sources return different votes. ③ ScalarDB [5], an-
other state-of-the-art DM, supports geo-distributed transaction
processing without specific requirements for underlying data
sources. ④ ScalarDB+, a variant of ScalarDB, we implemented
by integrating the latency-aware transaction scheduling mech-
anism and the heuristic optimization. We use ScalarDB+ to
study the scalability of our proposed approach.

Distributed databases. ⑤ YugaByteDB, an advanced dis-
tributed database that supports intelligent data partitioning and
geo-distributed transactions.

Transaction scheduling techniques. ⑥ QURO, a transaction
preprocessing technique, reorders write operations as late as
possible within the transaction. ⑦ Chiller, a distributed trans-
action protocol, eliminates the prepare phase and schedules
the cross-region subtransactions after the intra-region ones
are complete. For a fair comparison, we implemented both
techniques on the same platform as GeoTP.

2) Benchmarks: We adopt the following two benchmarks.
YCSB [36], [37] generates synthetic workloads that simulate
large-scale Internet applications. We use the YCSB transac-
tional variant adopted in related works [16], [38], where each
transaction has 5 operations by default, each with a 50%
probability of being a read or write. We run the workloads
on a table partitioned with 1 million records per data node.
Each record consumes 1KB, culminating in a total of 4GB
of data hosted by the table. We control the distribution of
accessed records using the parameter skew factor, where a
higher skew factor results in greater contention. We set the
skew factor to 0.3, 0.9, and 1.5 for low, medium, and high-
contention workloads.
TPC-C [39] is a popular OLTP benchmark modeling a ware-
house order processing application. The workloads consist
of 9 relations, with each warehouse being 100 MB in size.
By default, each data node hosts 16 warehouses. In our
experiments, we use the standard TPC-C with 5 types of
transactions by default. Following previous works [40], [41],
we exclude ‘think time’ and user data errors that cause 1% of
NewOrder transactions to abort.

3) Default Configuration: We use one machine to serve as
the client, generating transaction requests by Benchbase [42].
By default, we run 64 client terminals. For YCSB, we use the
medium contention by default. The default ratio of distributed
transactions is set to 0.2. For the remaining 5 machines, we
deploy database middleware on 1 machine, while the other
4 machines are data nodes. We emulate the default geo-
distributed network environment via tc command [43]. The
client, GeoTP, and a data node are located in Beijing, with
the other data nodes in Shanghai, Singapore, and London.
Based on the network evaluation conducted in the cloud, the
average latency between the corresponding data nodes and
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GeoTP are 0ms, 27ms, 73ms, and 251ms, respectively. Unless
otherwise specified, we use the default settings to conduct our
experiments. The remaining 4 nodes host MySQL v8.0.22 and
PostgreSQL v15.2 as data nodes. Except for §VII-F, where we
specify otherwise, all data nodes run MySQL v8.0.22 as data
sources. By default, we set the isolation level to serializable
for DMs and the data sources (MySQL/PostgreSQL) and con-
figure the buffer pool size to 24GB and the lock-wait timeout
to 5s. The rewriter in middleware will replace SELECT with
SELECT...FOR SHARE to add an explicitly shared lock for
PostgreSQL’s read operations. All other settings of DMs and
data sources are kept to their default values unless specifically
stated.

B. Overall Performance of GeoTP

We first compare GeoTP with state-of-the-art DMs using
YCSB and TPC-C benchmarks with varying numbers of
client terminals. As shown in Figure 5, GeoTP outperforms
SSP(Local), SSP, and ScalarDB by up to 2.65x, 5.14x, and
7.15x, respectively. This throughput improvement is attributed
to the latency-aware and late transaction scheduling of GeoTP,
which effectively reduces lock contention span and enhances
concurrency. ScalarDB, on the other hand, does not rely on
the transactional capabilities of underlying data sources but
solely on DM nodes for concurrency control, which limits
its scalability and performance. Moreover, we can observe
that ScalarDB+ achieves up to 3.16x and 3.22x throughput
gain over ScalarDB under YCSB and TPC-C, respectively.
This demonstrates the general applicability of the proposed
techniques in GeoTP. As the number of terminals increases,
all approaches experience a decline in performance. This
decline is attributed to system resource competition and lock
contention within the databases.

We analyze the overhead of GeoTP, with results shown in
Figure 6. Figure 6a presents CPU utilization, where GeoTP
achieves around 30% higher CPU efficiency due to network

10



SSP
SSP (Latency)

GeoTP
GeoTP (Latency)

Chiller
Chiller (Latency)

QURO
QURO (Latency)

0
100
200
300
400
500

Th
ro

ug
hp

ut
 (T

xn
/s

)

0.2 0.4 0.6 0.8 1.0
Low contention

0
1
2
3
4

Av
er

ag
e 

La
te

nc
y 

(s
)

0.2 0.4 0.6 0.8 1.0
Medium contention

0.2 0.4 0.6 0.8 1.0
High contention

Percentage of distributed transactions

Fig. 7: Impact of distributed transactions over YCSB

0.2 0.4 0.6 0.8 1.0100
101
102
103
104

La
te

nc
y 

(m
s)

0.2 0.4 0.6 0.8 1.0
Cumulative distribution function

0.2 0.4 0.6 0.8 1.0
0.98 1.00

5000
10000

SSP SSP(local) GeoTP
Low contention Medium contention High contention

Fig. 8: Analysis of latency CDF over YCSB

latency detection and latency-aware scheduling. Figure 6b
shows memory usage, with GeoTP requiring approximately
300MB more than SSP as it maintains metadata for hot
records in memory. Lastly, Figure 6c provides a breakdown of
module costs in a single transaction lifecycle. Here, analysis
overhead remains under 1 ms, with a 3.5 ms wait to enter
the commit phase, facilitated by the decentralized prepare
mechanism. Compared to the entire transaction latency, the
overhead incurred by GeoTP is negligible, while GeoTP
achieves 66.6% lower average latency compared to SSP.

C. Impact of Distributed Transactions

We now compare GeoTP against other baselines by varying
the percentage of distributed transactions.
YCSB: We control the ratio of distributed transactions by
generating keys assigned to different data nodes. We evaluate
GeoTP under three levels of contention as used in Figure 7.
GeoTP outperforms in all three scenarios. As the proportion
of distributed transactions increases, although the performance
of both systems declines, the advantages of GeoTP are still
pronounced. GeoTP outperforms Chiller up to 1.6x and other
baselines up to 8.9x. The evaluation results show that while
QURO performs better than SSP, it still falls short compared
to other methods because it doesn’t consider network latency,
making it unsuitable for geo-distributed scenarios. Chiller
merges the prepare phase with execution and executing inner-
region subtransactions after outer-region ones. This approach
reduces the lock contention span in low and medium work-
loads, allowing Chiller to achieve comparable performance.
However, GeoTP includes specific optimizations for high-
contention workloads, further enhancing its performance. It
is aligned with our findings discussed in § VII-E.

We further analyze the latency distribution of transactions
(with 60% of distributed transactions) in three scenarios using
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Cumulative Distribution Function (CDF) plots, as depicted
in Figure 8. GeoTP consistently reduces the latency of dis-
tributed transactions across all three scenarios. We use turning
point to describe the point where transaction latency experi-
ences a significant increase. In the low-contention workload,
with a turning point at 0.4, the latency of 40% centralized
transactions remains unaffected by distributed transactions.
As contention increases in the medium-contention workload,
the turning point of SSP and SSP(local) occurs at about 0.2,
which suggests that around 20% of the execution latency in
centralized transactions experiences an increase due to the
distributed transaction. In contrast, the turning point of GeoTP
remains around 0.4, with a 99th-percentile (p99) latency
lower than the baselines up to 35.9%. This improvement is
due to our latency-aware scheduling, which mitigates lock
contention and lessens the impact of distributed transactions
on centralized transactions. In high-contention workloads, SSP
and SSP(local) show a turning point near 0, reflecting severe
latency spikes in centralized transactions. However, GeoTP
exhibits no distinct turning point; instead, its latency rises
gradually and remains considerably lower overall. Although
GeoTP maintains lower p99 latency, its p99.9 advantage
diminishes due to the optimization in § IV-C, which can
increase latency by introducing blocks and aborts.
TPC-C: We control the ratio of distributed transactions in
Payment and NewOrder by generating warehouseIDs and
itemIDs in different data nodes. Figure 9 demonstrate that
GeoTP achieves 2.81x (2.04x) higher throughput and a 66.6%
(53%) reduction in latency for Payment (NewOrder) trans-
actions. It slightly outperforms Chiller due to the relatively
low contention levels in our TPC-C workloads. Compared to
other baselines, the performance improvement for NewOrder
transactions is less significant than for Payment transactions,
as Payment transactions tend to incur more contention. This
observation indicates the effectiveness of GeoTP’s heuristic
optimization for high-contention workloads.
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Fig. 11: Impact of random network latency over YCSB

D. Impact of Dynamic Network Latency

In this subsection, we evaluate GeoTP using YCSB under
various network configurations, simulating by adjusting the
network latency between the DM and data sources.
Mean and standard deviation: Figure 10 shows the result by
varying mean and variance of network latency. For example,
when the mean latency is set to 20ms, the latencies between
the middleware and three data nodes are 10ms, 20ms, and
30ms, respectively. First, by fixing the standard deviation of
network latency from DM to data sources, as the average
latency increases, both GeoTP and SSP throughputs decrease,
but the relative advantage of GeoTP over SSP becomes more
pronounced. Then, by fixing the network mean between nodes,
as the standard deviation increases, SSP performance remains
relatively unchanged, while GeoTP’s performance continues
to improve. This indicates that if only a few machines experi-
ence occasional latency spikes, it has a significant and severe
impact on SSP but has minimal impact on GeoTP.
Random latency: We conduct experiments to evaluate GeoTP
with random network latencies by YCSB. As shown in Fig-
ure 11a, the solid line represents the average performance of
running the experiment 20 times, while the portions filled with
the shadow indicate the performance variations under different
network environments. GeoTP outperforms SSP in all scenar-
ios with distributed transaction ratios ranging from 0.2 to 1.0.
Further, when the network latency randomly fluctuates by a
factor of 1.5 for some nodes, the performance jitter remains
within 22.5%. In the medium-contention workload, the average
performance gains range from 4.5x to 9.1x.
Online adaptivity: We evaluate GeoTP with an online dy-
namic network, adjusting the network latency every 40 seconds
over a 320-second period. In Figure 11b, GeoTP outperforms
SSP in all scenarios and exhibits less sensitivity to dynamic
network environments compared to SSP. This capability of
GeoTP is attributed to its real-time network monitoring and
latency-aware scheduling. In GeoTP, we utilize the exponen-
tial weighted moving average algorithm [44] when we update
the network latency. This helps GeoTP balance temporary im-
pacts and changes in trends. Over time, GeoTP demonstrates
performance improvements ranging from 1.1x to 10.5x.

E. Ablation Study

We now study the effectiveness of the three optimizations:
(1) O1: the decentralized prepare mechanism as detailed in
§IV-A, (2) O2: the latency-aware scheduling mechanism as
detailed in §IV-B, and (3) O3: the high-contention workload
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Fig. 12: Impact of optimizations over YCSB

optimization as elaborated in §IV-C. Then, we use both O1 and
O2 in GeoTP (O1 ∼ O2). Similarly in GeoTP (O1 ∼ O3), we
use O1, O2 and O3. We compare GeoTP and SSP with 50%
distributed transactions and a variety of skew factors (theta)
as shown in Figure 12. The x-axis is partitioned into three
segments denoting low (theta: 0.1 ∼ 0.5), medium (theta: 0.7
∼ 1.1), and high (theta: 1.3 ∼ 1.7) contention scenarios. On
the other hand, the y-axis illustrates throughput, p99 latency,
and abort rate. The results demonstrate that GeoTP achieves
significantly higher throughput, reaching up to 17.7x greater
than SSP. Meanwhile, GeoTP reduces the abort rate by up to
32.1% and p99 latency up to 84.3% when compared to SSP.

GeoTP outperforms SSP in all scenarios. However, the
effectiveness of each optimization varies across different con-
tentions. In low-contention workloads, the performance gains
from O1 ∼ O3 are not particularly advantageous compared to
O1 alone. In this case, the execution latency of a transaction
primarily consists of network latency. As the contention among
transactions is low, the benefits of scheduling subtransactions
are not significant. Meanwhile, the abort ratio and p99 latency
are low for all approaches. In medium-contention workloads,
both GeoTP (O1) and SSP decline. In this case, transactions
exhibit more data dependencies, and a transaction’s execution
latency comprises both network latency and local execution
latency. O2 reduces the contention span and improves the
concurrency. SSP’s abort rate rises due to prolonged blocking
time, resulting in lock wait timeouts. In high-contention work-
loads, the performance of all methods declines significantly
due to critical lock waits, highlighting the insufficiency to
consider only network latency when scheduling transactions.
However, the degradation of GeoTP (O1∼O3) is minimal,
with its p99 latency remaining the lowest, due to O3’s ability
to partially incorporate execution latency into scheduling while
restricting access to hot records. The abort rate for GeoTP
(O1∼O3) is lower than both SSP and GeoTP (O1) but slightly
higher than GeoTP (O1∼O2) because O3 mitigates lock
contention by selectively blocking or aborting transactions.
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TABLE I: Impact of heterogeneous deployments with various
distributed transaction ratios (dr) over YCSB – Throughput
(Txn/s) and Average latencies (ms)

dr=25% dr=75%
Throughput Average latency Throughput Average latency

S1 SSP 58.7 1441.8 33.3 1815.8
GeoTP 437.8 176.0 123.5 689.6

S2 SSP 74.0 1069.9 35.5 2192.9
GeoTP 340.7 220.8 131.8 650.1

S3 SSP 70.3 901.8 25.2 2112.6
GeoTP 425.5 198.8 116.6 632.3
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Fig. 13: Comparison with YugabyteDB over YCSB

F. Impact of Heterogeneous Databases

We now evaluate the performance of GeoTP when deployed
on heterogeneous data sources, i.e., either MySQL or Post-
greSQL. We denote those data nodes as N1 ∼ N4, respectively.
We consider three scenarios: (S1) MySQL is deployed on
nodes N1 ∼ N4; (S2) PostgreSQL is deployed on nodes N1

& N3, and MySQL is deployed on nodes N2 & N4; (S3)
PostgreSQL is deployed on nodes N1 ∼ N4. As observed in
Table I, GeoTP outperforms baselines in all deployments. The
throughput improvement ranges from 3.6x to 7.5x, with the
average latency reduction varying between 62% and 87.8%.
MySQL and PostgreSQL suffer from the long lock contention
span in geo-distributed scenarios, and GeoTP can improve the
performance in these deployments.

G. Comparison with YugabyteDB

We compare the performance of GeoTP with YugabyteDB,
an advanced distributed database. To ensure a fair comparison,
we deploy YugabyteDB across 4 data nodes and partition the
data into these nodes. We measure the throughput and average
latency over YCSB with varying contention levels and plot the
results in Figure 13. GeoTP achieves a 4.88x improvement
in the high-contention workload due to the proposed latency-
aware scheduling and heuristic optimization. In medium-
contention workloads, GeoTP is on par with YugabyteDB.
However, YugabyteDB outperforms GeoTP in low contention,
due to its ability to perform data updates asynchronously for
single-row/single-shard transactions after commitment. While
GeoTP does not directly modify the underlying data source,
thus typically lacking this optimization. In low-contention
workloads, where transaction contentions no longer dominate
performance, the performance gap due to these fundamental
codebase differences of GeoTP and YugabyteDB becomes
more apparent. However, GeoTP can benefit from the asyn-
chronous update if supported by the underlying data source,
making this technique orthogonal to our proposal.
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H. Impact of Transaction Length

We now study the impact of the transaction length and in-
teractive rounds. We evaluate GeoTP and baseline in medium
contention workloads with 20% distributed transaction. Fig-
ure 14 shows results for two settings. First, we examine the
performance of fixed one-interaction round transactions while
adjusting transaction length. As seen in Figure 14a, throughput
for both GeoTP and SSP decreases by 19.1% and 41.3% as
the length increases from 5 to 25. It remains relatively stable
compared to the number of interaction rounds. Next, we vary
the number of interaction rounds and evaluate GeoTP in both
low- and medium-contention workloads. As shown in Figure
14b and 14c, with 6 interaction rounds, GeoTP outperforms
SSP by 1.5x in low-contention and 3.4x in medium-contention
environments. This indicates that network round trip is the
primary bottleneck. As the number of rounds increases, the
advantages of the decentralized prepare mechanism decrease,
while latency-aware scheduling and high-contention optimiza-
tions continue to provide performance gains.

I. Multi-region Deployment

GeoTP obeys the deployment of previous database mid-
dleware such as Shardingsphere, where a database middle-
ware manages multiple underlying databases. Moreover, the
architecture can scale to deploy multiple middleware close to
clients in different regions, and the optimizations of GeoTP do
not rely on global centralized components. We have evaluated
the performance of GeoTP in different deployments, shown
in Figure 15. There are two database middleware, denoted
as DM1 and DM2, that connect to four data sources with
distinct network latencies. For DM1, the latencies to each
data source are 0, 27 ms, 73 ms, and 251 ms, while for DM2,
they are 251 ms, 226 ms, 175 ms, and 0, respectively. Each
DM is co-located with a client on the same server. GeoTP
achieves up to 6.7x higher performance than SSP. The results
demonstrate that GeoTP can efficiently extend to multi-region
deployment.
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VIII. RELATED WORK

Database middleware techniques. Substantial efforts have
been dedicated to enhancing transactional capability across
heterogeneous databases. For example, Skeena [45] efficiently
integrates different engines within the same database system,
and each engine operates autonomously. It identifies disparities
in engine processing capabilities and employs a snapshot map
in shared memory to ensure isolation. In contrast, Cherry Gar-
ica [46], Epoxy [34], and ScalarDB [5] implement transaction
management and concurrency control over the abstractions
of underlying engines, making it an extendable to more
kinds of engines, including NoSQLs. Other solutions focus
on managing connections between databases and clients [47],
[48]. These solutions enable the routing of statements to one
or multiple database servers, thereby offering scalability and
high performance. GeoTP is designed for database middle-
ware with geo-distributed data sources. These techniques are
orthogonal to our contributions.
Other distributed transaction processing techniques. Ex-
cept for the studies [24]–[26] in § IV-A, there are some
works explore the scheduling and locking techniques in
geo-distributed scenarios. Some approaches focus on reduc-
ing network round trips in conventional networks [14]–[16],
[49], [50]. For instance, Multi-level 2PC [51] reduces costly
WAN communication by organizing participants hierarchi-
cally, though it incurs higher LAN coordination overhead.
Another line of research aims to reduce lock contention by
enforcing partial or full determinism in concurrency control.
Calvin [52] and Detock [53] use a global agreement scheme to
sequence lock requests deterministically. Deterministic tech-
niques require a priori knowledge of read-set and write-set.
Moreover, the methods mentioned above involve significant
modifications to the database system or kernel-level trans-
action protocol, which limits their applicability in database
middleware. In contrast, GeoTP is a lightweight approach that
reduces WAN communication cost and locks contention by
accounting for differential network latency—an aspect often
overlooked by the above approaches.

IX. CONCLUSION

In this paper, we present GeoTP, a latency-aware geo-
distributed transaction processing in database middlewares
without modifying the database kernels. The core idea of
GeoTP is to minimize latency and reduce the lock contention
span of distributed transactions. To achieve this, we introduce a
decentralized prepare mechanism, which eliminates one WAN
round trip for each distributed transaction. Furthermore, we
present a latency-aware scheduling approach that postpones
the lock acquisition time for some subtransactions. Lastly,
we enhance latency-aware scheduling with heuristic optimiza-
tions for high-contention workloads. Extensive experiments on
YCSB and TPC-C show that GeoTP outperforms baselines.
Compared to other distributed databases, GeoTP performs
comparably in medium-contention workloads and excels in
high-contention workloads.
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