
Volume 2, Number 1, June 2011 Journal of Convergence

 Copyright ⓒ 2011 Future Technology Research Association International 61

Trusted Computing Dynamic Attestation

Using a Static Analysis based Behaviour Model

Tong Li
[1]

,Fajiang Yu
[1] [2]

, Yang Lin*
[1]

, Xueyuan Kong
[1]

, Yue Yu
[1]

[1] School of Computer Science, Wuhan University,

Wuhan, Hubei, P.R.C. 430072

[2] Key Laboratory of Aerospace Information Security and Trusted Computing,

Ministry of Education in China

e-mail: linyang1117@xnmsn.cn/litong662008@163.com

Abstract—Current technology in trusted computing cannot

comply with the requirement of trusted behaviour. One method

for trusted computing dynamic attestation is proposed in this

paper. This method uses a behaviour model based on the static

analysis of binary code. One same source code may have several

different binary versions, therefore one method is proposed for

building almost the same core function model for different binary

versions. This research also overcame the difficulty where some

dynamic behaviours could not be obtained by static analysis. The

paper also provides solutions for dynamic attestation of some

complex programs, such as recursion, library link and multi

threads programs.

Keywords- trusted computing; dynamic attestation; behaviour

model; static analysis

I. Introduction

Trusted computing is an information system security
solution for basic computing security problems [1] [2]. The
technology which trusted computing platforms currently
adopts guarantees the integrity of its feature code. Its
configuration data is the same as expected, before the
components of the computing platform take control of the
main CPU, which is called trusted computing static attestation,
but which does not comply with the requirements that the
behaviours are trusted [3]. We need to verify the dynamic
behaviour of components as well, which is termed trusted
computing dynamic attestation.

The related research mainly includes MCC (Model
Carrying Code), PCC (Proof Carrying Code), semantic remote
attestation, etc.

MCC [4] [5] was proposed by Sekar et al., its key idea is:
The code producer generates behaviour information about the
program security (model), a consumer receives both the model
and the program from the producer. The consumer checks
whether the model satisfies the consumer’s security policy by
formal reasoning. References [6] and [7] have carried out
some implementations of MCC on a JVM (Java Virtual
Machine). The MCC developer should know the program’s
source code, but this assumption is not always true, and many

applications on trusted computing platform do not open their
source code.

PCC [8] was proposed by Necula et al., its key idea is: The
producer carries out analysis on the code and generates formal
safety proofs, which are based on the consumer’s policy. In
addition, the proofs are bound to the source code, which
usually is implemented by the compiler. The consumer uses
type-based logic to automatically check the program, which is
based on the same policy and refers to the safety proofs. The
implementation of PCC also needs to know the program’s
source code.

Reference [9] proposed one semantic remote attestation
(SRA) framework. SRA is based on a trusted Java virtual
machine (Trusted VM) on the client side, and a server attests
the Java program’s hierarchies, restricted interfaces, runtime
state, input information, etc. But there are no good solutions
for building the semantic model from one program.

This paper mainly makes the following contributions: 1)
The behaviour model is built based on the static analysis of
binary code, which can cover all possible program execution
paths. 2) Due to the availability of different compilers and
different compiling options, one same source code may have
several different binary versions, this paper proposed one
method for building almost the same core function model for
different binary versions. 3) By referring to the dynamic
behaviour of an “empty program”, this paper also overcame
the difficulty that some dynamic behaviour cannot be obtained
by static analysis. 4) The paper also provided the solutions for
the dynamic attestation of some complex programs, such as
recursion, link library using and multi-thread programs.

II. STATIC ANALYSIS-BASED

PROGRAM BEHAVIOUR MODEL

BUILDING

Program runtime behaviour attestation is the main feature
of trusted computing dynamic attestation. The first step of
program behaviour attestation is the building of the program
behaviour model. Generally, there are two methods for
program behaviour model building: dynamic training and
static analysis. Dynamic training means it is hard to build a
training set which can cover all possible program execution
paths. This paper uses a behaviour model based on the static
analysis of binary code, which can cover all possible program

This work is supported by the National Natural Science Foundation of

China (Grant Nos. 60673071, 60970115, 91018008), the Fundamental

Research Funds for the Central Universities in China (Grant No. 3101044),

and the Open Foundation of the Zhejiang Key Laboratory of Information
Security in China.

Journal of Convergence Volume 2, Number 1, June 2011

62 Copyright ⓒ 2011 Future Technology Research Association International

execution paths. It can be generated by the platform
manufacturer or an administration centre.

A. Model Building Procedures

The process of constructing a static analysis-based
program trusted behaviour model includes the following seven
stages (see Fig. 1):

1) CFG building from binary

code

2) FSA constructing from

CFG

3) Deleting ε run

circuit

4) Deleting non-circuit ε

transition

5) Constructing Deterministic

FSA

6) Deleting empty

DFA

7) Building Global

PDA

Has empty DFA?

Y N

Figure 1. Flow of constructing a static analysis-based behaviour model

1) CFG building from binary code

We use one Interactive Dissembler (IDA) plug-in, named

“wingraph32”, to generate a Control Flow Graph (CFG) for

every sub-function of the PE file. CFG is a directed graph,

which can be represented by EVG , , where V is a finite

set, element of V is vertex Vv , which is a linear sequence

of instructions, and E is a sub set of VE ,

 VEE , VvuvuVE ,, .

2) FSA constructing from CFG

After being preprocessed, the original CFG is changed to

','' EVG . Every '' Vv is one of the following two vertex

types: One where there are no instructions in it, the other is

one in which there is only one call instruction. The exit of 'G

has no instruction. And thus we translate the CFG 'G into a

FSA (Finite State Automata) FSQM ,,,, .

3) Deleting ε run circuit

If there is a state transition function ', 'u v in M,

we call it the “ε transition”. Multiple ε transitions may form ε

run circuits. An ε run circuit can lead to the failure of trust

attestation. The FSA whose ε run circuits have been deleted

is denoted as ' ', ', ', ', 'M Q S F .

4) Deleting non-circuit ε transition

After ε run circuits are deleted, there are still some

non-circuit ε transitions in M', which may have an influence

on the efficiency of trust attestation execution. The FSA

whose all non-circuit ε transitions have been deleted is

denoted as '' '', '', '', '', ''M Q S F .

5) Constructing Deterministic FSA

M'' may be a NFA (Non-deterministic FSA). We can

translate M'' into an equivalent DFA to improve the

efficiency of the trust attestation, which is denoted

as (, , , ,)D D D D D DM Q S F .

6) Deleting empty DFA

If
DM has only one vertex { }DQ q , which is a start

state and also a final state (the transition function set
D)

then
DM is an empty DFA. It is absolutely useless for trust

attestation. When we remove one empty DFA, the

corresponding sub function name should be deleted from the

input alphabet of other non-empty DFAs, and the state

transition whose input symbol is the function name should

also be changed as an ε transition. The process of deleting

empty DFA can lead to new ε run circuits appearing in other

DFAs, we need to repeat the procedures in stages 3), 4), 5)

and 6) until there are no empty DFAs in the model.

7) Building Global PDA

The object of trusted computing and dynamic

attestation is one entire application program, we must

construct one global DFA from all local sub-function DFAs.

Since one sub function may be called in multiple positions, in

order to ensure the sub-function can return correctly, the

global DFA must be a PDA (Push down Automata),

otherwise there may be some “impossible paths” [10] [11].

Information on the detailed stages and algorithms for

building a trusted behaviour model based on the static

analysis of a PE binary file can be seen in our previous work

[12] [13].

B. Variance between Debug and Release Version

The same code is compiled with same compiler, but by

choosing different compiling options different binary

versions can be obtained, among which the most typical is

the Debug and Release versions. Program behaviour model

construction should not only support static analysis of the

Release version, but also the Debug version.

We use Visual C++ 6.0 for compiling one instance to a

Debug version, and then disassemble it using IDA. It can be

observed that the program entry point is

_mainCRTStratup, and the forms of API for calling in

some sub-functions are of the form:

We use Visual C++ 6.0 to compile the same code to a

Release version. It can be observed that the disassembled

code’s entry point is start, and the API calling of the sub-

functions is very intuitionistic：

Thus, when we start constructing a program behaviour

model for the Debug version, we need carry out some

call ds:__imp__GetVersion@0;

call ds:__imp__OpenFile@12;

call ds: GetVersion;

call ds: GetCommandLineA;

call esi: OpenFile;

Volume 2, Number 1, June 2011 Journal of Convergence

 Copyright ⓒ 2011 Future Technology Research Association International 63

preprocessing, such as removing prefixes like __imp__ and

suffixes like @*.

In addition, there is also a big difference in the number of

sub-functions between the Debug and Release versions.

Both Debug and Release versions have a quite large

number of sub-functions in the disassembled result of the

corresponding binary program. The main cause is that the

compiler will add some essential additional codes. The reason

why the Debug version has more sub-functions than Release is

that the Debug version contains a lot of debug information,

and must include more API calling, such as DebugBreak,

InterlockedIncrement, etc.

Although there is a big difference, the core function

behaviour model based on the Debug version should be fairly

consistent with the Release version.

C. Variance between Different Compilers

The same code is compiled with a different compiler, and

different binary versions could be obtained. We use one empty

Win32 console program as an instance (Example 1). This

program is compiled with Visual C++ 6.0, Visual Studio 2005

and Visual Studio 2010. We then disassemble these versions,

and the sub-function numbers in the disassembled results of

the corresponding binary versions are shown in Table I.

Example 1: empty.c

Table I

SUB-FUNCTION NUMBER OF EXAMPLE 1’S MULTI-

BINARY VERSIONS

 Numbers of

sub-function

Numbers of sub-

function in optimised

model

Visual C++ 6.0 Release 55 30

Visual Studio 2005 Release 180 146

Visual Studio 2010 Release 145 109

Different compilers cover API in different wraps. VS2010

covers most API in wraps as sub-functions, all

implementations are based on sub-function calling, such as

sub_401E83 only wrap one API EncodePointer,
sub_401E83 only wrap one API TlsAlloc. So the

behaviour models of different binary versions have a different

number of sub-functions.

To ensure the program runs safely some compilers place

more emphases on initialisation, which also leads to the

variance of sub-function number in different binary versions’

behaviour models. For example, VS2010 invokes

HeapSetInformation to set stack information, while

VS2005 and VC6 do not. VS2005 invokes

__security_init_cookie to initialise Cookies for

preventing buffer overflow. VS2010 wraps the following API

sequence into a sub-function sub_40250F, to accomplish

the same initialisation of __security_init_cookie.

However, VC6 does not carry out this work.

Besides which there are some different API callings in

different program versions from different compilers. This is

because some of the same functions are implemented by

different APIs. Such as VC6 and VS2005 using

GetStartupInfoA to obtain the information in the

initialising stage, while VS2010 uses GetStartupInfoW.

Some new compilers use extended API to replace the old ones,

such as the GetVersion used by VC6 has already been

replaced by GetVersionEx.

D. Modeling Management for Different Binary

Versions

Although there is a large variance between different binary

versions of the same code, their core function is the same.

We obtain the corresponding binary program (cdrB
) with a

specific compiler and compiling options to the compiler

“empty program” (P , see Example 1), its program behaviour

model is denoted by cdrM
, which can act as a reference

template when we construct the model for other normal

programs with the same compiler and compiling options.

At the time of behavioural modelling of a certain normal

binary program (
nB), we can get the specific compiler name

and determine that
nB is a Release version or Debug version

by performing a static analysis of
nB , and then

nB can be

specified as cdr

nB . We follow the procedures in subsection II-A

and obtain the optimised model of $ cdr

nB , denoted as cdr

nM .

Referring to the corresponding “empty program” behaviour

model cdrM
, we can remove the relevant parts about the

initialisation and exit operations in cdr

nM , the core function

behaviour model cdr cdr cdr

nc nM M M . Then the different

binary versions of the same
nP could have a fairly similar core

function behaviour model.

We use Visual C++ 6.0 for compiling Example 1’s code

into a Release version. After the model construction and

optimisation, there are 30 sub-functions in the optimised

model, which can be seen as the reference template of a VC6

Release version program (6RM
).

III. PROGRAM DYNAMIC

BEHAVIOUR ATTESTATION

The framework of the program dynamic behaviour
attestation using a static analysis based model is shown in Fig.
2. After building a model of the program’s expected behaviour,
we also need to monitor the program’s running behaviour. We
use the library of Microsoft Detours to monitor the program’s
behaviour, and monitor 311 core API functions in Ntdll.dll.

A. Preprocessing Program Behaviour

When one program runs on the operating system, certain
Win32 APIs called by the program cannot be obtained by
static analysis of the program. We need to conduct some
program behaviour preprocessing, then we can use the static
analysis-based program behaviour model to do the attestation.

void main(int argc, char* argv[])

{ return; }

GetSystemTimeAsFileTime->GetCurrentProcessId-

>GetCurrentThreadId->GetTickCount-

>QueryPerformanceCounter

Journal of Convergence Volume 2, Number 1, June 2011

64 Copyright ⓒ 2011 Future Technology Research Association International

Program

Monitor

Center

Program

Execution

Body

Dynamic

Attestation

Center

Program

Control

Center

Program

Behavior

Model

Continue

Dynamic

Monitoring

Attestation

Result

Control

Execution

Static Analysis based

Model Building

Binary

PE File

Exit

End

Program

Execution

Figure 2. Framework of program dynamic behaviour attestation using a
static analysis-based model

1) Preprocessing program initialisation and exit behavior
When running the console program which is compiled

from Example 1 on Windows XP SP3, we can monitor the
following API sequence:

The API LockResource cannot be obtained by static
analysis of the corresponding binary program.

When we run the same program on Windows 7, the
monitored API sequence is:

Obviously, the same program runs on different operating
systems, some Win32 APIs called by the program are also
different.

We take the API sequence called by “empty program” as a
standard, which is used to verify the program’s actual API
sequence during the process of initialisation and exit. And
then the other API sequences left can be verified by using a
static analysis-based program behaviour model.

2) Preprocessing complicated Win32 API behaviour
When one program calls some complicated Win32 APIs,

the system will call other relevant APIs to complete the
complicated function. These relevant APIs also cannot be
obtained by static analysis of the program.

For example, when running the console program which is
compiled from Example 1, we can monitor the following API
sequence:

While carrying out a static analysis of the corresponding

binary program, we can only obtain the API of OpenFile.
So we firstly need to preprocess the relevant APIs, then we
can use the static analysis-based program behaviour model to
conduct attestation.

3) Preprocessing Unicode API behaviour
On the Windows NT-based operating system, the Win32

API calling related char operation (including ANSI char and
Unicode char) will ultimately call Unicode API. For example,

if the API is GetModuleHandleA in the static analysis
based behaviour model of one program, then when running the

program, we can monitor the two APIs:

GetModuleHandleA and GetModuleHandleW. So we
need to preprocess the program behaviour of Unicode API,
then we can use the static analysis-based program behaviour
model to conduct attestation.

B. General Program Dynamic Attestation

The preprocessed program behaviour is denoted as

1 2 nw a a a , where (1,2, ,)ia i n is the name as the Win32

API. Now we can use the static analysis-based program
behaviour model to verify w , just to see whether the

constructed global PDA
0 0(, , , , , ,)G G G G G G G GM Q q Z F

(
0GZ) can accept w .

Whether
GM can accept w depends on whether

GM can

be transformed from the initial Instantaneous Description

0ID(, ,)Gq w to ID(, ,)Gp (
G Gp F) by making some

moves, which is denoted as:

 denotes that makes a move, including move

and non- move.

If , then
GM can make a non-

move, which is denoted as:

This idicates that when is in state and the symbol

of the stack top is , reads , transforms its state to ,

pops out , and pushes in .

If , then can make an move,

which is denoted as:

This represents that when is in state and the

symbol of the stack top is , reads nothing, transforms

its state to , pops out , and pushes in .

C. Single Thread Program Attestation

On Window XP SP3, we use VC6 to compile the code in

Example 2, and then build the behaviour model of the

corresponding binary program. After being simplified by

following the procedures described in subsection II-D, we get

the core function model of Example 2’s program,

, which is shown in Fig. 3.

 Example 2: file.c

GetFileType->LockResource->GetCommandLineA

GetFileType->SetHandleCount->GetCommandLineA

OpenFile->SearchPathA->SearchPathW->CreateFileA-

>CreateFileW->GetFileTime->FileTimeToDosDateTime
void main(int argc, char* argv[]) {

 pf1 = (HANDLE)OpenFile(fn1,&of,OF_READWRITE);

 if(pf1) {

 rt=ReadFile(pf1,bf1,sizeof(bf1),&rsize, NULL);

 if (rt) {

 pf2=(HANDLE)OpenFile(fn2,&of,OF_READWRITE);

 if(pf2) {

 rt=WriteFile(pf2,bf2,strlen(bf2),&wsize,NULL);

 CloseHandle(pf2);

 }}

 CloseHandle(pf1);

 }}

Volume 2, Number 1, June 2011 Journal of Convergence

 Copyright ⓒ 2011 Future Technology Research Association International 65

_main

-6

OpenFile

_main

-2

CloseHandle

_main

-0

_main-

3

OpenFile

_main-

5
WriteFile

CloseHandle

CloseHandle

ReadFile

CloseHandle

 , Push 0001

_main-

1

_main

-4

 , Pop 0001

 , Pop 0001

Start-

10

Start-

8

Figure 3. Core function behaviour model of Example 2

We run the console program which is compiled from

Example 2 on Windows XP SP3, and preprocess the

monitored Win32 API sequence by following the procedures

described in subsection III-A. The preprocessed API sequence

() is:

The initial instantaneous description of is

. Let us see whether can accept :

Start-10 is one final state, so can be accepted by

. It means that the program behaviour during this run time

passed the dynamic attestation.

D. Recursion Program Attestation

We use one instance to illustrate how to conduct dynamic

attestation for a recursion program, whose source code is

shown in Example 3.

Example 3: Recursion.c

We build the behaviour model of the corresponding binary

program by following the procedures described in section II,

and obtain the core function model of the recursion program,

 , which is shown as Fig. 4.

1

WriteFile

ReadFile0

ReadFile

 , Push 0002 , Pop 0002

32

Figure 4. Core function model of recursion program

We run the recursion program which is compiled from

Example 3, and preprocess the monitored Win32 API

sequence by following the procedures described in subsection

III-A. The preprocessed API sequence () is:

The first API OpenFile and the last API

CloseHandle are called by main(). We only use the

model of recursion function to verify the API sequence ()

between the first API OpenFile and the last API

CloseHandle.

The initial instantaneous description of is .

Let us see whether can accept :

2 is one final state, so can be accepted by . This

means that the program behaviour during this run time passed

the dynamic attestation. This shows our method can solve the

difficulty of dynamic attestation for a recursion program.

E. Library Link Program Attestation

We use one link library instance (source code is in
Example 4) to illustrate how to conduct dynamic attestation
for a library link program.

Example 4: Export function FOp in one link library

One program uses one link library in two ways: static link
and dynamic link. The source code of one program is bound
with the static link library (Example 4), as is shown in
Example 5.

Example 5: Bounding with a static link library

Openfile->ReadFile->OpenFile->WriteFile->CloseHandle-

>CloseHandle

int Recu(int i , HANDLE pfile , DWORD rsize);

void main(int argc, char* argv[]) {

 pfile=(HANDLE)OpenFile(FPATH, &of,

OF_READWRITE);

 if(pfile) {

 Recu(i, pfile, rsize);

 CloseHandle(pfile);

 }

}

int Recu(int i, HANDLE pfile, DWORD rsize) {

 if(i<=0) { ... }

 else {

 WriteFile(pfile,buf,strlen(buf),&rsize,NULL);

 Recursion (i-1, pfile, rsize);

 ReadFile(pfile, buf, sizeof(buf), &rsize, NULL);

 }

 return 0;

}

OpenFile->WriteFile->WriteFile->WriteFile->ReadFile-

>ReadFile->ReadFile

->CloseHandle

void FOp(char *PathS , char *PathD) {

 pfS=(HANDLE)OpenFile(PathS,&of,OF_READWRITE);

 if(pfS) {

 rt=ReadFile(pfS,tmp,sizeof(tmp),&rsize,NULL);

 if(rt) {

pfD=(HANDLE)OpenFile(PathDt,&of,OF_READWRITE);

 if(pfD) {

 WriteFile(pfD,tmp,sizeof(tmp),&rsize, NULL);

 CloseHandle(pfD);

 } }

 CloseHandle(pfS);

 }}

Journal of Convergence Volume 2, Number 1, June 2011

66 Copyright ⓒ 2011 Future Technology Research Association International

We build the behaviour model of the corresponding binary
program from Example 4 and Example 5 by following the
procedures described in section II, and obtain the core function
model, , which is

shown in Fig. 5.

FOp-

6

OpenFile

FOp

-2

CloseHandle

FOp

-0

FOp

-3OpenFile

FOp

-5

WriteFile

CloseHandle

CloseHandle
ReadFile

CloseHandle

 , Push 0001

FOp

-1

FOp

-4

 , Pop 0002

_main

-0

 , Push 0002

_main

-1
 , Pop 0002

 , Pop 0001
Start-

10

Start-

8

Figure 5. Behavior model of static link library program

We run the program which is compiled from Example 5,
and preprocess the monitored Win32 API sequence by
following the procedures described in subsection III-A. The
preprocessed API sequence () is:

The initial instantaneous description of is

. Let us see whether can accept :

Start-10 is one final state, so can be accepted by

. This shows our method can solve the difficulty of

dynamic attestation for a static link library program.

The source code of one program bound with the dynamic
link library (Example 4}) is shown in Example 6.

Example 6: Dynamic link library program

Due to the act that the link library is dynamically loaded to
the program space, the actual address of the export functions
in the library cannot be obtained by static analysis. We build
the behaviour model of the corresponding binary program

from Example 6 by following the procedures described in
section II, and obtain the core function model,

, which is shown as

Fig. 6.

LoadLibraryA

GetProcAddres

s

0

FreeLibrar

y

1 3
2

Figure 6. Behaviour model of dynamic link library program

Based only on , it is impossible to conduct behaviour

validation for a dynamic link library program. In our future
work, we will obtain the name of the export function in the
link library by carrying out an analysis of Win32 API

arguments (such as FOp, the argument of GetProcAddress

in Example 6). Then the behaviour model of FOp can be

embedded into , and the attestation for the dynamic link

library program can be completed.

F. Multi-thread Program Attestation

We build the behaviour model of one multi-thread binary
program by following the procedures described in section II,
and obtain the core function model,

, which is shown in

Fig. 7.

The current behavioural model does not include API
argument value, so there is no way to embed the automaton of
each sub-thread into that of the main thread in order to form a
complete global automaton.

Due to the irregularity of parallel program execution in the
operating system, the API calls for each thread to appear
alternately, and the appearance order of the API is also
different at each run-time. In addition to recording the API
name, we should also record the thread ID who calls the
corresponding API when monitoring the dynamic behaviour of
a multi-thread program.

1
OpenFile

WriteFile

0

2

3

CloseHandle

4
CreateThread

(a)_main

ReadFile

CloseHandle

0

5 CloseHandle

4 WriteFile

1
2

3

OpenFile

6

CreateThread

(b) Thread_1

WriteFile

CloseHandle

0

5

CloseHandle

1 2

3

OpenFile

4 WriteFileCloseHandle

(c) Thread_2

Figure 7. Behaviour model of multi-thread program

#pragma comment(lib, "verDll.lib")

_declspec(dllimport)void FOp(char *ps,char *pd);

void main(int argc, char* argv[]) {

 FileOp(Src,Des);

 return;

}

OpenFile->ReadFile->OpenFile->WriteFile->CloseHandle-

>CloseHandle

typedef void (FOp)(char *PS, char *PD);

void main(int argc, char* argv[]) {

 hDLLDrv=LoadLibrary("verDll.dll");

 if(hDLLDrv) {

 file=(FOp *)GetProcAddress(hDLLDrv,"FOp");

 if(file) file(Src, Des);

 FreeLibrary(hDLLDrv);

 }

 return;

}

Volume 2, Number 1, June 2011 Journal of Convergence

 Copyright ⓒ 2011 Future Technology Research Association International 67

We independently conduct the dynamic attestation for
every sub-thread’s behaviour. The specific method is similar
to single thread program attestation (see III-C). The difference
from the single thread program is that we need to try to
determine the corresponding relationship between the actual
behaviour and sub-function’s behavioural model of a certain
thread by making multiple attempts.

In our future work, we will obtain the name of the sub-
thread function by carrying out ab analysis of the arguments in

CreateThread, and then the behaviour model of the sub-
thread function can be embedded into the model of the main
thread.

IV. ANTI-ATTACK EXPERIMENT

We use two typical attacking experiments to prove that the
method of dynamic attestation proposed in this paper is
effective.

A. DLL Hijacking

When one Windows program calls the API in one system
DLL, the system will search the corresponding DLL in the
system directory. This experiment uses one pseudo DLL in the
system directory to launch the attack.

The object being attacked is a socket program (). We

build the behaviour model of the corresponding binary file of
 by following the procedures described in section II, and

obtain its function model, .

Valid API sequence in is as follow:

Since the socket program has to call the APIs from

ws2_32.dll, we use one “malicious” DLL to replace the

original ws2_32.dll. Except for send(), all other
functions in the pseudo DLL are completely the same as the

original ws2_32.dll. send() is modified using the
following API sequence to steal sensitive information.

We run the program () on the platform with the

malicious ws2_32.dll, and preprocess the monitored
Win32 API sequence by following the procedures described in
subsection III-A. The preprocessed API sequence () is:

Let us see whether can accept . When reads in

OpenFile, there is no path to complete the transition,
denoted as:

At this time, . This

means that cannot accept , and ’s run behaviour

cannot pass dynamic attestation. We can see our method can
protect the system against a DLL Hijacking attack.

B. Buffer Overflow

The object being attacked is program () for file content

copy. reads some data from the first file, and writes the

data into the second file. We build the behaviour model of

by following the procedures described in section II, and obtain
its function model, . Valid

API sequence in is as follow:

We build a piece of Shell Code, which will call

MessageBox, and then write the Shell Code to the first file.

When uses strcpy, the Shell Code will be called. We run

program () on the platform with the Shell Code file, and

preprocess the monitored Win32 API sequence by following
the procedures described in subsection III-A. The
preprocessed API sequence () is:

Let us see whether can accept . When reads in

MessageBoxA, there is no path to complete the transition,
denoted as:

At this time, , , .This

means that cannot accept , and ’s run behaviour

cannot pass dynamic attestation. We can thus see our method
can protect the system against a buffer overflow attack.

Although the experiments carried by us are well known,
our methods are also effective against other unknown attacks.

V. CONCLUSION AND FUTURE

WORK

Our method for trusted computing dynamic attestation uses
a behaviour model based on the static analysis of binary code,
which can cover all possible program execution paths. One
source code may have several different binary versions, this
paper proposed one method of building almost the same core
function model for different versions. This paper also
overcame the difficulty that some dynamic behaviours cannot
be obtained by static analysis, by referring to the dynamic
behaviour of an “empty program”. The paper also gave some
solutions for the dynamic attestation of some complex
programs, such as recursion, link library using and multi-
thread programs.

Our current method cannot protect programs against
mimicry attack [14] [15]. Some researchers have proposed
methods to protect programs against mimicry attack. Based on
this research, we will build program behaviour models using
EFSA (Extended FSA) to describe the argument values. This
needs to combine static analysis and dynamic training,
because some specific argument values can only be obtained
during run time. The behaviour model including arguments

WSAStartup->socket->htons->bind->listen->accept->send-

>recv->closesocket

WSAStartup->socket->htons->bind->listen->accept-

>OpenFile->WriteFile->CloseHandle->send->recv-

>closesocket

Openfile->ReadFile->OpenFile->sprintf->strcpy-

>WriteFile->CloseHandle->CloseHandle

Openfile->ReadFile->OpenFile->sprintf->strcpy-

>MessageBoxA->WriteFile->CloseHandle->CloseHandle

Journal of Convergence Volume 2, Number 1, June 2011

68 Copyright ⓒ 2011 Future Technology Research Association International

also can help solve the difficulty of the dynamic link library
program’s behaviour attestation.

The method used in this paper cannot ensure the security
of mobile code programs (such as Web script), which can only
ensure the security of the script execution host program (such
as Browser). We will carry out further research on the
dynamic attestation of mobile code programs and parallel
programs.

Acknowledgment

The authors wish to thank the reviewers for their useful
comments.

References

[1] C. Shen, H. Zhang, H. Wang, J. Wang, B. Zhao, et al., “Research on
trusted computing and its development,” Science in China Series F:
Information Sciences, vol. 40, no. 2, pp. 405–433, 2010.[online]
available at: http://www.springerlink.com/content/a44nt6xg44801533/.
accessed:2010.9 .

[2] C. Shen, H. Zhang, D. Feng, Z. Cao and J. Huang., “Survey of
information security,” Science in China Series F: Information Sciences,
vol. 50, no. 3, pp. 273–298, 2007.

[3] Trusted Computing Group, “TCG specification: Architecture overview:
Specification,” revision 1.4, June 2010, [online] available at:
http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-
1D09-3519-
ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf,
accessed:2010.9 .

[4] R. Sekar, V. N. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C.
DuVarney, “Model-carrying code: A practical approach for safe
execution of untrusted applications,” Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles ACM, Bolton
Landing, New York, USA: ACM Press, 2003, pp. 15–28.

[5] R. Sekar, C. R. Ramakrishnan, I. V. Ramakrishnan, and S.A. Smolka,
“Model-carrying code (MCC): A new paradigm for mobile-code
security,” Proceedings of the 2001 Workshop on New Security

Paradigms, Cloudcroft, New Mexico, USA: ACM Press, 2001, pp. 23–
30.

[6] WEI Da, JIN Ying, ZHANG Jing, ZHENG Xiao-juan, LI Zhuo, et al.,
“Enforcing Security Policies in Open Source JVM,” ACTA Electronica
Sinica, vol. 37, no. 4A, pp. 36–41, 2009 (in Chinese).

[7] JIN Ying, LI Ze-Peng, ZHANG Jing, LIU Lei., “Static Checking of
Security Related Behavior Model for Multithreaded Java Programs,”
Chinese Journal of Computers, vol. 32, no. 9, pp. 1856–1868, 2009 (in
Chinese).

[8] G. C. Necula, “Proof-carrying code,” Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Paris, France, pp. 106–119, 1997.

[9] V. Haldar, D. Chandra, M. Franz, “Semantic remote attestation: A
virtual machine directed approach to trusted computing,” Proceedings of
the 3rd Conference on USENIX Virtual Machine Research and
Technology Symposium, San Jose, California, USA, pp. 29–41, 2004.

[10] Jonathon T. Giffin, David Dagon, Somesh Jha, Wenke Lee, and Barton
P. Miller .et al., Environment-sensitive intrusion detection. Lecture
Notes in Computer Science 3858, Proceedings of the 8th International
Symposium on Recent Advances in Intrusion Detection, RAID 2005,
Seattle, Washington, USA, pp. 185–206, 2005.

[11] Feng, H.H., Giffin, J.T., Yong Huang, Jha, S., Wenke Lee, et al.,
“Formalizing sensitivity in static analysis for intrusion detection,”
Proceedings of the 2004 IEEE Symposium on Security and Privacy,
Oakland, California, USA, pp. 194–208, 2004.

[12] Y. Fajiang and Y. Yue, “Static analysis-based behavior model building
for trusted computing dynamic verification,” Wuhan University Journal
of Natural Sciences, vol. 15, no. 3, pp. 195–200, 2010.

[13] Y. Yue, Y. Fajiang, and K. Yanan, “Optimizing Behavior Model
Building for Trusted Computing Dynamic Verification,” Wuhan
University Journal of Natural Sciences, vol. 32, no. 20, pp. 121–125,
2010 (in Chinese).

[14] D. Wagner and P. Soto, “Mimicry attacks on host based intrusion
detection systems,” Proceedings of the 9th ACM Conference on
Computer and Communications Security, Washington, DC, USA, pp.
255–264, 2002.

[15] W. Li, Y. Dai, Y. Lian, and P. Feng, “Context sensitive host-based IDS
using hybrid automaton,” Journal of Software, vol. 20, no. 1, pp. 138–
151, 2009 (in Chinese).

.

