
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Revisiting Acknowledgment Mechanism for
Transport Control: Modeling, Analysis,

and Implementation
Tong Li , Member, IEEE, Kai Zheng, Senior Member, IEEE, Ke Xu , Senior Member, IEEE, Member, ACM,

Rahul Arvind Jadhav, Tao Xiong, Keith Winstein, and Kun Tan

Abstract— The shared nature of the wireless medium induces
contention between data transport and backward signaling, such
as acknowledgment. The current way of TCP acknowledgment
induces control overhead which is counter-productive for TCP
performance especially in wireless local area network (WLAN)
scenarios. In this paper, we present a new acknowledgment
called TACK (“Tame ACK”), as well as its TCP implementation
TCP-TACK. TACK seeks to minimize ACK frequency, which
is exactly what is required by transport. TCP-TACK works on
top of commodity WLAN, delivering high wireless transport
goodput with minimal control overhead in the form of ACKs,
without any hardware modification. Evaluation results show that
TCP-TACK achieves significant advantages over legacy TCP in
WLAN scenarios due to less contention between data packets
and ACKs. Specifically, TCP-TACK reduces over 90% of ACKs
and also obtains an improvement of up to 28% on goodput.
A TACK-based protocol is a good replacement of the legacy TCP
to compensate for scenarios where the acknowledgment overhead
is non-negligible.

Index Terms— Wireless local area network, ACK frequency,
Tame ACK, instant ACK.

I. INTRODUCTION

W IRELESS local area networks (WLANs) are ubiquitous
and readily getting employed in scenarios such as

ultra-high-definition (UHD) streaming, VR/AR interactive
gaming, and UHD IP video. The implications of video
growth raise significant bandwidth demands with the video
application requirements. Particularly, the peak bandwidth
requirement might reach 206.9 Mbps for a 8K video [1].

Manuscript received December 6, 2020; revised April 29, 2021; accepted
July 7, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor M. Schapira. This work was supported in part by Feng Gao. The
work of Ke Xu was supported by the China National Funds for Distinguished
Young Scientists under Grant 61825204, in part by the NSFC Project under
Grant 61932016, and in part by the Beijing Outstanding Young Scientist Pro-
gram under Grant BJJWZYJH01201910003011. The work of Keith Winstein
was supported in part by the NSF under Grant CNS-1909212 and Grant
CNS-1763256 and in part by the Sloan Research Fellowship. (Corresponding
author: Ke Xu.)

Tong Li, Kai Zheng, Rahul Arvind Jadhav, Tao Xiong, and Kun
Tan are with Huawei Technologies, Shengzhen 518129, China (e-mail:
li.tong@huawei.com).

Ke Xu is with the Department of Computer Science, Tsinghua University,
Beijing 100084, China (e-mail: xuke@tsinghua.edu.cn).

Keith Winstein is with the Department of Computer Science, Stanford
University, Stanford, CA 94305 USA.

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2021.3101011, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3101011

However, the average WLAN connection speed worldwide
(e.g., 30.3 Mbps in 2018 and predicted to be 92 Mbps by
2023 [2]) is far from satisfactory for these UHD-video-based
applications (see § III-A).

It is well-studied that medium acquisition overhead in
WLAN based on the IEEE 802.11 medium access con-
trol (MAC) protocol [3] can severely hamper TCP throughput,
and TCP’s many small ACKs are one reason [4], [5]. Basically,
TCP sends an ACK for every one or two packets [6], [7].
ACKs share the same medium route with data packets, causing
similar medium access overhead despite the much smaller size
of the ACKs [8]–[12]. Contentions and collisions, as well as
the wasted wireless resources by ACKs, lead to significant
throughput decline on the data path (see § III-B).

The WLAN bandwidth can be expanded by hardware mod-
ifications, such as 802.11ac and 802.11ax, in which channel
binding is extended, or more spatial streams and high-density
modulation are used. However, a faster physical (PHY) rate
makes the MAC overhead problem even worse. This is because
delay associated with medium acquisition wastes time and a
higher PHY rate also proportionally increases ACK frequency
for legacy TCP. There also exist some prior works that increase
medium efficiency by modifying hardwares. For example,
Bhartia et al. proposed FastACK [13] to enable the access
point (AP) proactively generates fake TCP ACKs on behalf
of the TCP receiver, eliminating the delay variation induced
by medium contention. In contrast, this paper seeks to solve
the issues without any hardware modification. We believe
that rethinking the way of TCP acknowledgment that reduces
medium acquisition overhead on the transport layer, so as to
improve transport performance in WLAN, would be a relevant
contribution.

The ACK frequency can be decreased by sending an ACK
for every L (L ≥ 2) incoming packets [9], [10], [12], [14] (i.e.,
byte-counting ACK) or by sending an ACK for every large time
interval (i.e., periodic ACK). However, simply reducing ACK
frequency not only impacts the packet clocking algorithms
(e.g., send pattern, send window update and loss detection)
and round-trip timing [15], but also impairs the feedback
robustness (e.g., more sensitive to ACK loss). The challenge
here is that legacy TCP couples the high ACK frequency with
transport controls such as robust loss recovery, accurate round-
trip timing, and effective send rate control (see § IV-B).

This paper presents TACK (“Tame ACK”), a type of ACK
that minimizes ACK frequency by balancing byte-counting
ACK and periodic ACK. To decouple the high ACK frequency
from transport requirement, we propose the TACK-based

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6805-9565
https://orcid.org/0000-0003-2587-8517

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

acknowledgment mechanism, in which we use TACKs to sync
the statistics (such as receipts, losses, available bandwidth,
delays, etc.) between endpoints, and we also introduce Instant
ACK (IACK), driven by instant events (e.g., loss, state update,
etc.), to assure timely signaling. For example, on detecting
loss, an IACK will be sent to proactively pull missing packets
at the receiver’s buffer. TACKs and IACKs are complementary,
as IACKs assure rapid feedback while TACKs assure feedback
robustness (see § IV-C).

We further design TCP-TACK, the TACK-based TCP works
on top of WLAN. TCP-TACK revisits the current division
of labor between senders and receivers. It compensates for
sending fewer ACKs by integrating the receiver-based loss
detection, round-trip timing and send rate control. These com-
ponents are not exactly new but are co-designed expressly to
be part of the TACK-based protocol design. This cooperation
between TACK and receiver-based paradigm not only mini-
mizes the ACK frequency required, but also assures effective
transport control under network dynamics (see § V and § VI).

Experiments demonstrate TACK’s significant advantages
over legacy way of acknowledgments in WLAN scenarios.
Goodput improvement is attributed to the reduction of con-
tention between data packets and ACKs. Furthermore, reduc-
ing ACK frequency without impacting transport performance
validates the idea of decoupling high ACK frequency from
transport requirement (The table in Figure 1 gives a preview
of the results).

This paper is an extension of our previous conference
paper [16]. In this paper, we give more details on how to
implement TACK upon TCP. We also try to answer the
question of how to modify the existing congestion controller
(e.g., BBR [17]) when applying TACK. In addition, we add the
discussion on the work-in-progress IETF drafts related to the
modification of ACK mechanism. We also report our progress
on the roadmap of standardizing TACK in the IETF working
groups. Finally, we go deeper into some discussions such as
deployment issues and experience.

II. RELATED WORK

Reducing ACK frequency. In order to improve
transport performance over IEEE 802.11 wireless links,
Salameh et al. [5] proposed HACK by changing Wi-Fi
MAC to carry TCP ACKs inside link-layer ACKs, this
eliminates TCP ACK medium acquisitions and thus improves
TCP goodput. We clarify the differences between TACK
and HACK in three aspects. (1) TACK reduces the ACKs
end-to-end while HACK only reduces the ACKs over wireless
links. TACK is more general in this aspect and can be used to
solve problems in asymmetric networks where the ACK path
is congested [18]–[22]. (2) HACK requires network interface
card (NIC) changes but no TCP changes while TACK requires
TCP changes but no NIC changes. (3) Since the trigger time
of the link-layer ACK and the transport-layer ACK is usually
asynchronous, HACK is likely to result in ACK delays.
However, HACK does not solve the transport challenges such
as enlarged delay in loss recovery, biased round-trip timing,
burst send pattern, and delayed send window update.

Apart from the link-layer solutions, the study of delaying
more than two ACKs was first carried out by Altman and
Jiménez [12], followed by a line of ACK thinning technolo-
gies [8], [9], [14], [23]–[27] on the transport layer. Among
them, some studies reduce ACK frequency by dropping

Fig. 1. Percentage of goodput improvement of TCP-TACK over TCP-BBR
in WLAN. Full results are in § VII-C.

selected ACKs on an intermediate node (e.g., a wireless AP
or gateway). Due to information asymmetry, this intermediate
management unavoidably makes endpoints take untimely or
wrong actions. Under these circumstances, some studies adopt
the end-to-end solutions, which fall into two categories: (1)
Byte-counting ACK that sends an ACK for every L (L ≥ 2)
incoming full-sized packets. (2) Periodic ACK that sends
an ACK for each time interval (or send window). However,
both of them are far from satisfactory in the network with
time-varying data rate, we will discuss this in § IV-A. This
paper proposes TACK that combines these two approaches,
achieving a controlled ACK frequency under different network
scenarios.

Compensating for sending fewer ACKs. Compared with
the studies that explore how to reduce the ACK frequency,
much fewer studies explore how to compensate for sending
fewer ACKs. To overcome the hurdles created by excessive
ACK decrease, Allman [28] proposed the appropriate byte
counting (ABC) algorithm and limited the number of packets
sent (i.e. two) in response to each incoming ACK to deal
with feedback lags and traffic bursts. Landström et al. [10]
integrated a modified fast recovery scheme and a form of
the ABC algorithm to improve the TCP bandwidth utilization
when ACK frequency is reduced to two or four per send
window. The limitation of these algorithms, however, is that
they only solve part of the problems. For example, Allman’s
solution did not consider the feedback robustness under exces-
sive ACK losses. Landström’s solution resulted in large router
buffer occupation without smoothing the traffic bursts. Both
solutions did not address the interference on the round-trip
timing caused by the delayed ACKs. This paper aims to
provide a complete framework that defines more types of
ACKs and carries more information in ACKs, to minimize the
ACK frequency required but still achieve effective feedback.
In the context of TACK, this paper co-designs the receiver-
based transport control to address the challenges caused by
sending fewer ACKs. The receiver-based paradigm is also
validated by the recent work such as pHost [29], RCC [30],
ExpressPass [31], NDP [32] and Homa [33] in datacenter
environments.

TACK vs delayed ACK. Transport protocols, such as TCP
and QUIC [34], also alternatively adopt delayed ACK [6], [7],
[35]. Delayed ACK falls into the category of byte-counting
ACK except that an extra timer prevents ACK from being
excessively delayed. For full-sized data packets, it turns to
byte-counting ACK when bw is large and falls back to periodic
ACK when bw is small (see Equation (3)). TACK differs from
delayed ACK by mandatorily sending ACKs periodically when
bw is large (see Equation (4)). In particular, TACK applies
periodic ACK when bandwidth-delay product (bdp) is large
and falls back to byte-counting ACK when bdp is small.

Both TACK and delayed ACK reduce sending ACKs. Some
of the proposed ideas for compensating sending fewer ACKs in
this paper, such as the advancements in round-trip timing (see
§ V-B), are also applicable to the delayed ACK mechanism

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: REVISITING ACKNOWLEDGMENT MECHANISM FOR TRANSPORT CONTROL 3

Fig. 2. Average bit rate of applications [2].

in the case, called “stretch ACK violation” [36], where ACKs
are excessively delayed.

IETF works in progress. Some work-in-progress drafts
have paid great attention to modifying the delayed ACK
mechanism in the IETF QUIC working groups. For exam-
ple, Fairhurst et al. [37] recommended reducing the ACK
frequency of QUIC by sending an ACK for at least every
10 received packets and Kuhn et al. [38] recommended an
ACK frequency of four ACKs every round-trip time (RTT),
aiming to reduce link transmission costs for asymmetric paths.
Instead of using an empirical value of ACK frequency, Iyengar
et al. [39] recommended an extension of sender controlled
ACK-FREQUENCY frame in QUIC to make it tunable for
the frequency of the delayed ACK mechanism. In contrast
to the delayed ACK mechanism that adopts the maximum
value between byte-counting and a timer, TACK adopts the
minimum one [40].

In [41] we have given a detailed discussion on the roadmap
of standardizing TACK that seeks to minimize ACK fre-
quency with corresponding improvements in transport con-
trol to compensate for sending much fewer ACKs. First,
the standardization of TACK will be mainly discussed in
the IETF QUIC working group since QUIC is much easier
to extend. Second, instead of sending an ACK for every
10 received packets, we also recommend that QUIC adopts an
adaptive ACK frequency as specified in Equation (4). Third,
we recommend QUIC adopts the advanced way of calculating
the minimum RTT using the relative one-way delay (OWD),
reducing the information sent to the network without affecting
the performance. Finally, TACK implementation in QUIC can
reuse the current extensions in the QUIC working group such
as Iyengar’s sender controlled ACK-FREQUENCY frame to
update ACK frequency.

III. MOTIVATION

A. WLAN Demands High Throughput

It is predicted that, by 2022, the video-based applications
will make up 82% of all IP traffic [42]. It is also reported that
the video effect on the traffic is mainly because of the intro-
duction of UHD video streaming [2], [43], [44]. As illustrated
in the table of Figure 2, the average bit rate for UHD video
at about 16 Mbps is more than 2x the high-definition (HD)
video bit rate and 8x more than standard-definition (SD) video
bit rate. By 2022, nearly 62% of the installed flat-panel TV
sets will be UHD, up from 23% in 2017. And UHD video
streaming will account for 22% of global IP video traffic.
Moreover, VR/AR gaming has become increasingly popular,
and the traffic will increase 12-fold, about 65% compound
average growth rate per year.

It is reported that the average WLAN connection speed
in 2018 was 30.3 Mbps and will be more than triple (92 Mbps)
by 2023 [2]. Which, however, is still far from satisfactory for
UHD-video-based applications. This is because UHD video
usually requires a peak bandwidth that is multiple times of
its average bit rate (e.g., a video with 100 Mbps average bit
rate may require over 200 Mbps peak bit rate [1]). Wireless
projection is a representative UHD-video-based application.

Fig. 3. Examples for contention between data packets and ACKs over
802.11n wireless links.

A smartphone connects a TV using Wi-Fi Direct and streams
videos on top of Miracast [45]. Our deployment experiences
(see the table in Figure 16) show that UDP-based solution
achieves high throughput but suffers from 5 ∼ 6 times of
macroblocking artifacts due to unreliable transport, and legacy
TCP-based solutions assure zero macroblocking but result in
an over 30% of video rebuffering ratio [46] due to bandwidth
under-utilization. Reliable and high-throughput transport over
WLAN turns out to be a challenging requirement.

B. WLAN Can Be Improved on the Transport Layer

Most modern WLANs are based on the IEEE 802.11 stan-
dards. It has been well studied that the key challenge of TCP is
its poor bandwidth utilization and performance when interact-
ing with the IEEE 802.11 wireless MAC protocol [4], [5]. This
can be attributed to the extensive number of medium access
carried out by TCP. Basically, TCP sends an ACK every one or
two packets [6], [7], which is frequent. Although the length of
an ACK is usually smaller than the data packet (e.g., 64 bytes
for an ACK vs. 1518 bytes for a data packet), ACKs cause
similar medium access overhead on the MAC layer. By sharing
the same medium path for ACKs and data packets, frequent
ACKs create competitions and collisions [4], [5], wasting
wireless resources. As a result, the wastage leads to data rate
decline on the data path. Note that although improvements
in 802.11 standards (e.g., 802.11ac and 802.11ax) result in
data rate increase, they also cause proportionally increased
number of ACKs, which makes the MAC overhead problem
even worse.

To explain the problem of collision more clearly, we gen-
erated emulated traffic over the 802.11n wireless links with
a PHY rate of 300 Mbps (see the table in Figure 11). It can
be demonstrated that TCP’s packet clocking algorithms are
highly dependent on the ACK arrival pattern, and sending
fewer ACKs has a negative effect on TCP throughput (see
Figure 14(b)). We did not want our results to be biased because
of such dependency, and hence we chose to develop our own
UDP-based tool [47] that runs on two wireless laptops con-
nected to a commercial wireless router (TL-WDR7500) with
negligible external interferences. The sender keeps sending
1518-byte packets at a fixed sending rate (100 Mbps), and the
receiver counts the received bytes, and then sends one 64-byte
packet that act as an ACK. L emulates the byte-counting
parameter that limits the amount of data to be counted before
sending an ACK, e.g., L = 1 denotes acknowledging every
packet (1:1) and L = 2 denotes acknowledging every second
packet (2:1), which are being used today and supported by
IETF standards [6], [7].

As shown in Figure 3, although the throughput on
the acknowledgment path is quite low (below 1.5 Mbps),
the throughput on the data path decreases significantly with

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. A table of notation summary.

the increase of the ACK frequency. This demonstrates that
ACKs cause significant medium access overhead, degrading
data transmission performance dramatically if frequent ACKs
are sent. It is also observed that the ACK throughput fails
to double when we raise the number of ACKs by changing
the proportion between data packets and ACKs from 4:1 to
2:1. We believe that it is the result of the fierce collisions
between data packets and ACKs, based on the observation of
a higher bidirectional loss rate when L ≤ 2. We also tested
802.11b/g/ac links, the insights of which remain similar.

Based on these observations, the legacy WLAN transport
can be improved on the transport layer by reducing the ACK
frequency required.

IV. DESIGN RATIONALE

The table in Figure 4 summarizes the used notations and
their meanings in this section.

A. ACK Frequency Modeling

ACK frequency can be denoted by f with the unit of Hz,
i.e., the number of ACKs per second. It can be reduced in two
fundamental ways: byte-counting ACK and periodic ACK.

Byte-counting ACK. There exist a number of studies that
reduce ACK frequency by sending an ACK for every L
(L ≥ 2) incoming full-sized packets (packet size equals
to the maximum segment size (MSS)) [9], [10], [12], [14].
The frequency of byte-counting ACK is proportional to data
throughput (bw):

fb =
bw

L · MSS
(1)

where L indicates the number of full-sized data packets
counted before sending an ACK. In general, fb can be reduced
by setting a large value of L. However, for a given L, fb

increases with bw. This means when bw is extremely high,
ACK frequency might still be comparatively large. In other
words, the frequency of byte-counting ACK is unbounded
under bandwidth change.

Periodic ACK. Byte-counting ACK’s unbounded frequency
can be attributed to the coupling between ACK sending
and packet arrivals. We therefore propose periodic ACK that
decouples ACK frequency from packet arrivals, achieving a
bounded ACK frequency when bw is high. The frequency of
periodic ACK can be computed as

fp =
1
α

(2)

where α is the time interval between two ACKs. However,
when bw is extremely low, fp is always as high as that in
the case of high throughput. In other words, the frequency of
periodic ACK is unadaptable to bandwidth change.

Delayed ACK. By default, the current transport protocols
such as TCP and QUIC specify a simple delayed ACK
mechanism [6], [7], [35] where a receiver can send an ACK for
every other packet (i.e., byte-counting), or when the maximum
ACK delay (α) timer expires. The frequency of the delayed
ACK mechanism (fdelayed) is given as follow:

fdelayed = max{ bw

L · MSS
,
1
α
} (3)

In practice, the delayed ACK mechanism can only reduce
limited number of ACKs. As described in RFC 1122 [6] and
updated in RFC 5681 [7], L is strictly limited up to 2, and
α is tens to hundreds of milliseconds and varies in different
Linux distributions.

Even when L is allowed to be set larger than 2, the delayed
ACK mechanism is far from being optimal. According to
Equation (3), when bw meets bw

L·MSS > 1
α , then fdelayed =

bw
L·MSS , the higher data throughput, the higher ACK frequency,
which might be unnecessary. On the other hand, when bw
meets bw

L·MSS < 1
α , then fdelayed = 1

α , ACK frequency cannot
decrease proportionally with the decrease of bw, which wastes
resources. This reveals that the frequency of the delayed ACK
mechanism is not bounded or not minimized under bandwidth
change.

Tame ACK (TACK). TACK aims to minimize ACK fre-
quency in the context of network dynamics. In contrast to
the delayed ACK mechanism that adopts the maximum value
between byte-counting and a timer, TACK adopts the mini-
mum one. That is, ftack = min{ bw

L·MSS , 1
α}. In practice, α can

be set to a fraction of RTT (RFC 4341 [9]), i.e., α = RTTmin

β .
RTTmin is the minimum RTT observed over a long period
of time, and β indicates the number of ACKs per RTTmin.
As a consequence, the frequency of TACK is in reality given
as follow:

ftack = min{ bw

L · MSS
,

β

RTTmin
} (4)

The frequency of TACK is decided by the bdp, where bdp =
bw×RTTmin. When bdp is large (bdp ≥ β ·L ·MSS), ACK
frequency is bounded by RTT. On the other hand, when bdp
is small (bdp < β · L · MSS), ACK frequency is reduced
proportionally to data throughput. β indicates the number of
ACKs per RTT, and L indicates the number of full-sized data
packets counted before sending an ACK. Appendices B.1 ∼
B.2 have discussed the TACK frequency minimization in terms
of the lower bound of β and the upper bound of L. By default,
this paper sets β = 4 and L = 2 which we have found to be
robust in practice (see Appendix B.3).

According to Equations (3) and (4), we summarize three
insights as follows. First, given an L, the frequency of TACK
is always no more than that of delayed ACK mechanism, i.e.,
ftack ≤ fdelayed. Second, the higher bit rate of the connection,
the more number of ACKs are reduced by applying TACK.
Meanwhile, the larger latency between endpoints, the more
number of ACKs are reduced by applying TACK.

B. Challenges for Applying TACK

To apply TACK without decreasing transport performance,
we list several major challenges that need to be overcome.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: REVISITING ACKNOWLEDGMENT MECHANISM FOR TRANSPORT CONTROL 5

Enlarged delay in loss recovery. For ordered and byte-
stream transport, when a loss occurs and a packet has to be
retransmitted, packets that have already arrived but that appear
later in the bytestream must await delivery of the missing
packet so the bytestream can be reassembled in order. Known
as head-of-line blocking (HoLB [48]), this incurs high delay
of packet reassembling and thus can be detrimental to the
transport performance. Applying TACK will further enlarge
this delay incurred by HoLB.

We define the TACK delay as the delay incurred between
when the packet is received and when the TACK is sent.
According to Equation (4), with a large RTTmin, TACK
might be excessively delayed. When loss occurs during the
TACK interval, the excessive TACK delay might disturb
loss detection, resulting in costly retransmission timeouts.
TACK loss further aggravates this problem. For example,
RTTmin = 200 ms, bw = 10 Mbps, and L = 1, then ftack =
20 Hz. Compared with per-packet ACK, TACK can cause the
feedback delay up to 50 ms upon loss event. If the TACK is
lost or the retransmission is lost again, then the delay doubles.

Biased round-trip timing. The initial RTT can be com-
puted during handshakes (Figure 5 (a)), after that, the sender
calculates an RTT sample upon receiving a TACK. For exam-
ple in Figure 5 (b), a packet is sent at time t0 and arrives
at time t2. Assume that the TACK is generated and sent at
time t3, the receiver computes the TACK delay Δt = t3 − t2.
The sender therefore computes the RTT according to Δt, t0
and the TACK arrival time (t1), i.e., RTT = t1 − t0 − Δt.
By measuring Δt at the receiver, TACK assures an explicit
correction for a more accurate RTT estimate.

The problem here is that multiple data packets might be
received during the TACK interval, as shown in Figure 5 (c),
generating only one RTT sample among multiple packets is
likely to result in biases. For example, a larger minimum RTT
estimate or a smaller maximum RTT estimate. In general,
the higher the throughput, the larger the biases. One alternative
way to reduce biases can be that, each TACK carries the per-
packet Δt (specific TACK delays for each data packet) for
the sender to generate more RTT samples. However, (1) the
overhead is high, which is unacceptable especially under high-
bandwidth transport. Also, (2) the number of data packets
might be far more than the maximum number of Δt that a
TACK is capable to carry.

Apart from loss recovery and round-trip timing, applying
TACK also falls short of send rate control with regard to send
pattern and send window update.

Burst send pattern. A burst of packets can be sent in
response to a single delayed ACK. Legacy TCP usually sends
micro bursts of one to three packets, which are bounded by
L ≤ 2 according to definition of TCP’s delayed ACK [7].
However, the fewer ACKs sent, the larger the bursts of packets
released. Since TACK might be excessively delayed, the burst
send pattern is non-negligible as it may have a larger buffer
requirement, higher loss rate and longer queueing delay if not
carefully handled.

Delayed send window update. Send window update
requires ACKs to update the largest acknowledged packet and
the receive window (RWND). With a small frequency, TACK
probably delays acknowledging packet receipts and reporting
the RWND, resulting in feedback lags and bandwidth under-
utilization. For example, ftack = 20 Hz, then TACK is sent
every 50 ms. Assume a TACK notifies RWND = 0 due to
receive buffer runs out at t = 0 ms, upon receiving this TACK,

Fig. 5. TACK-based round-trip timing: a case study.

the sender stops sending data. In the case that the receive
buffer is released at t = 5 ms due to loss recovery, the sender
continues to be blocked for another 45 ms until a subsequent
TACK is sent at t = 50 ms, and thus wastes opportunity of
sending data. TACK loss further aggravates this issue.

C. TACK-Based Acknowledgment Mechanism

Applying TACK significantly reduces ACK frequency.
However, as discussed above, independently using TACK
probably falls short of robust loss recovery, accurate round-
trip timing, and effective send rate control. What we really
want, for WLAN, is a full TACK-based acknowledgment
mechanism that overcomes the hurdles for applying TACK,
using a controlled frequency of ACKs to support efficient
transport.

There are some notable features of the TACK-based
acknowledgment mechanism which are important for reason-
ing about the differences from legacy TCP. We briefly describe
these features below.

More types of ACKs. Apart from the ACK type of TACK,
we also introduce the ACK type of IACK (“Instant ACK”) to
assure timely feedback upon instant events. For example, (1)
when loss occurs, the receiver sends an IACK to timely pull
the desired range of lost packets from the sender. This loss-
event-driven IACK enables the rapid response to loss event,
effectively avoiding timeouts. (2) An IACK may be sent in
the case that the receive buffer nearly runs out, which assures
timely send window update. In addition, (3) the sender might
send an IACK to sync an updated TACK frequency with the
receiver for adjusting TACK interval.

IACK and TACK are complementary. IACK assures timely
and deterministic signaling while TACK acts as the last resort
mechanism in the case of ACK loss (§ V-A). Note that both
sender and receiver can send IACKs on demand.

More information carried in ACKs. First of all, reducing
ACK frequency may require extending TACK to carry more
information if the link has deteriorated. For example, to reduce
feedback delay under excessive ACK loss, TACK is expected
to report as many blocks as possible, in which each block
reports a contiguous range of lost or received packets (see
§ V-A). It is worth mentioning that this rich information can
be carried on demand. Specifically, only when the loss rate on
the ACK path has reached a critical level (see Equation (5))
will carrying more information be profitable.

TACK might also be required to carry the TACK delay for
accurate RTT estimation and might carry timestamps if latency
such as one-way delay is computed at the sender. Furthermore,
although the sender can achieve an approximate computation
accuracy of some transport states, such as delivery rate, con-
gestion window and loss rate, the receiver-based computation
is more straightforward in the context of a reduced ACK
frequency. Optionally, by shifting these functionalities from
sender to receiver and syncing results through TACKs, the total

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

CPU and memory usages at both endpoints might be reduced
at the cost of the larger size of TACKs.

Note that carrying more information in TACK does not
introduce excessive overhead over WLAN, as it only increases
the size of ACK rather than increasing the number of ACKs.
We believe the improved feedback robustness will more than
pay for the TACK extension overhead.

Less number of ACKs. Although adopting more types of
ACKs, we still have the advantages of significantly reducing
ACK frequency in most cases. This is because the event-driven
IACK is rarely triggered, whose frequency is usually low and
negligible. For example, with a packet loss rate (ρ), the highest
frequency of the loss-event-driven IACK is ρ·bw

MSS , this type of
IACK only adds a small number of ACKs on the return path
in practice. First, the frequency of IACK is much lower than
ρ·bw
MSS because packets are usually lost consecutively. Second,
ρ is usually a small percentage (e.g., < 10%).

V. TACK-BASED PROTOCOL DESIGN

This section introduces the detailed design of TACK-based
protocols, in which the advancements in loss recovery, round-
trip timing, and send rate control are the most key reasons that
the dependence on frequent ACKs has decreased.

A. Advancements in Loss Recovery

Instead of the traditional reactive approach where the
sender counts duplicate ACKs or analyzes packet timestamps,
a TACK-based protocol adopts a receiver-based loss detection,
in which the packet number, the IACK, and the TACK play
different roles.

Packet number enables receiver-based loss detection.
First of all, we must overcome the so-called “retransmission
ambiguity”, which refers to the fact that the receiver cannot
accurately identify the number of retransmission losses when
employing the TCP sequence numbering scheme [35]. In this
paper, we introduce a monotonically increasing number for
each packet, i.e., the packet number (PKT.SEQ). Therefore,
a data packet contains both sequence number (SEQ) and
packet number. SEQ is the existing data sequence number
used in legacy TCP to assure bytestream can be reassembled
in order. PKT.SEQ directly encodes the transmission order.
In other words, a packet sent later owns a higher PKT.SEQ
than the packet sent earlier. When a packet is being retrans-
mitted, both of its payload and SEQ remain the same while its
PKT.SEQ is updated. PKT.SEQ removes the ambiguity about
which packet is lost when losses are detected.

To explain this clearly, we give an example where 5 packets
with bytestream range [0 ∼ 5999] are sent (MSS=1500 bytes).
Assume packet [1500 ∼ 2999] with PKT.SEQ = 2 is
dropped, when subsequent packet [3000 ∼ 4499] with
PKT.SEQ = 3 arrives, the receiver detects loss and informs
the sender to retransmit [1500 ∼ 2999] with PKT.SEQ = 4.
Assume the retransmitted packet with PKT.SEQ = 4 is
dropped again, when subsequent packet [4500 ∼ 5999] with
PKT.SEQ = 5 arrives, the receiver is still able to detect
the retransmission loss. However, without packet number,
receiver-based loss detection can hardly detect the exact num-
ber of lost retransmissions.

We note that, for the TACK-based protocol, the sender has
to maintain a two-tuples (SEQ, PKT.SEQ) for each packet.
Although retransmissions will have different PKT.SEQs, for
implementation it is recommended the PKT.SEQ of a packet

in the tuples be always replaced and updated by the latest
PKT.SEQ of the retransmitted packet. This is reasonable
since the packet with a smaller PKT.SEQ has already been
retransmitted, the sender does not need to maintain extra state
to check on whether this packet has been received. In this case,
the extra overhead by introducing the packet number turns out
to be negligible. The packet number in TACK is semantically
similar to the packet number as specified in QUIC [34].

IACK speeds up loss recovery on lossy data path. The
legacy TCP sends per-packet ACK when loss occurs, in con-
trast, our design only sends a single IACK. Loss-event-driven
IACK is a supplemental method for TACK to assure rapid
reaction to loss events, significantly reducing feedback delay
of TACK. The IACK determines losses according to the out-of-
order packets in the PKT.SEQ space.1 Specifically, the IACK
integrates two fields, the largest PKT.SEQ and the second
largest PKT.SEQ of the received packets, to indicate the
most recent range of lost packets, with which the sender can
retransmit lost packets timely upon IACK arrivals. Considering
the above example, assume packet with PKT.SEQ = 1 is
received and PKT.SEQ = 2 is dropped, upon packet with
PKT.SEQ = 3 arrives, an IACK contains PKT.SEQ = 1 and
PKT.SEQ = 3 is constructed according to the out-of-order
delivery, notifying the sender of the loss of PKT.SEQ = 2.

To investigate how the loss-event-driven IACK impacts loss
recovery, we randomly sample the packet loss rate between
0 and 3% on data path, and the RTT between 1 and 200 ms.
We report the amount of data blocked in the receiver’s buffer
at the time when a TACK is sent. Figure 6(a) shows the results.
It is demonstrated that IACK decreases the delay incurred
by HoLB, as a result, the memory pressure is significantly
reduced at the receiver.

It is worth noting that the loss-event-driven IACK shares the
same idea as the “negative ACK” (NACK or NAK), which
has been widely used in error-control mechanisms for data
transmission (e.g., WebRTC [49], UDT [50], RBUDP [51],
NACK Option [52], and NORM [53]). However, the proposed
IACK in this paper is a novel concept of acknowledgment
whose formation is triggered by an instant event. These instant
events can be not only an event of packet loss, but also an event
that buffer runs out, an event of RTT update request and so on.

TACK assures loss recovery robustness on bidirection-
ally lossy path. When losses are only on the data path,
the delay incurred by HoLB can be decreased by timely
sending loss-event-driven IACKs. However, on a bidirection-
ally lossy path, loss notification of IACK might also be lost.
To bound the delay incurred by HoLB, proactively and peri-
odically, TACK carries rich information to pull lost packets
and also acknowledges packet receipts.

Specifically, the information carried in TACK contains
ranges of packets which are alternately in the “acked list” and
in the “unacked list”. The “acked list” is a list of the blocks
of contiguous packets that have been received and queued
at the receiver, and the “unacked list” is a list of the gaps
between the non-contiguous blocks of data that have been
received and queued at the receiver. For example, packets 1 to
10 are sent and packets 1, 4, 5, 6, 10 are received. In this
case, the “acked list” can be the blocks of {1}, {4, 6}, and
{10}, and the “unacked list” can be the blocks of {2, 3},
{7,9}. Limited by MSS, a TACK might not be able to carry

1An IACK is sent right away by default, however, it should be slightly
delayed in the case of reordering. We will discuss this in § VIII.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: REVISITING ACKNOWLEDGMENT MECHANISM FOR TRANSPORT CONTROL 7

Fig. 6. Loss recovery in the context of TACK. (a) IACK reduces memory
pressure at the receiver. (b) Carrying rich information in TACK assures high
bandwidth utilization.

all blocks. In principle, TACK should preferentially carry the
blocks with the largest serial number in the “acked list” (e.g.,
{10}), or the blocks with the smallest serial number in the
“unacked list” (e.g., {2, 3}).

One of the high level idea of reducing the ACK frequency is
using more informative ACK. ρ denotes the packet loss rate on
the data path, and Q denotes the primary number of blocks in
the “unacked list” that a TACK has reported. It can be derived
that more information should be carried when the loss rate
(ρ′) on the ACK path follows:

ρ′ >

⎧⎪⎨
⎪⎩

Q · MSS

ρ · bdp
, bdp ≥ β · L · MSS

Q

ρ · L, bdp < β · L · MSS
(5)

Furthermore, the additional number of blocks (�Q) in the
“unacked list” that the TACK should report is given by �Q =
ρ·ρ′·bdp
MSS −Q when bdp ≥ β ·L·MSS, and �Q = ρ · ρ′ · L−Q

when bdp < β · L · MSS. Please refer to Appendix A for
detailed derivation.

To investigate how the rich information in TACK improves
performance, we transmit a long-lived flow on a bidirectionally
lossy path with the RTT of 200 ms (refer to § VII-A for testbed
setup). “TACK-poor” refers to the TACK-based TCP imple-
mentation (§ VI) that only acknowledges the largest ordered
packets accumulatively and reports the smallest out-of-order
packets in the receive buffer (i.e., Q = 1), and “TACK-rich”
refers to the version that reports as many losses and receipts as
possible in each TACK. Both employ BBR [17] as congestion
controller. We set a constant loss rate (1%) on the data path,
and varying loss rates on the ACK path. Figure 6 shows
the results. “TACK-poor” suffers from throughput decline in
the case of ACK loss. It also demonstrates that TCP BBR’s
margin benefits from the SACK option [54] and RACK [55]
decrease with the increase of the ACK loss rate. In contrast,
“TACK-rich” repeatedly carries rich information in TACK to
improve loss recovery robustness, making transport insensitive
to bidirectional losses. Note that the utilization of “TACK-
rich” is barely decreased with the high ACK loss (10%), this
can be attributed to the more number of blocks (> 4) reported
by a TACK, while TCP’s SACK option only reports 3 or
4 blocks per ACK [54].

Note that in order to avoid unnecessary retransmission,
TACK only reports missing packets that have been reported
by loss-event-driven IACKs, while the sender only retransmits
a specific packet once per RTT when the loss is repeatedly
notified by both IACKs and TACKs.

B. Advancements in Round-Trip Timing

As discussed above, legacy way of round-trip timing adopts
simple RTT sampling (§ IV-B), introducing either large biases
or high overhead for large bdp transport. Without loss of
generality, this section takes the minimum RTT estimation as
an example.2 Aiming to reduce TACK’s overhead of accurate
round-trip timing, we propose a receiver-based way to estimate
the minimum RTT indirectly without maintaining too many
connection states.

The rationale is that the variation of one-way delay (OWD)
reflects the variation of RTT. The OWD estimation does not
require clock synchronization here as we use relative values.
For example in Figure 5 (c), a relative OWD sample can
be computed as OWD = t2 − t0, where t0 and t2 are the
packet departure timestamp and the packet arrival timestamp,
respectively. Upon packet arrivals, the receiver is capable to
generate per-packet OWD samples.

The smoothed OWD is an exponentially weighted moving
average (EWMA) [56] of the per-packet OWD samples at
the receiver. According to the smoothed OWD, the minimum
OWD during each TACK interval can be observed. Afterwards,
based on the TACK delay (Δt�) and the departure timestamp
(t�0) corresponding to the packet that achieves the minimum
OWD, the sender calculates the RTT of this packet as a
minimum RTT sample. Ultimately, the minimum RTT is
computed according to these minimum RTT samples using
a minimum filter [17], [57] over a long period of time τ
(τ ≤ 10 s), where the 10-second part is to handle route
changes. Note that we adopt two minimum filters at both sides
because the minimum filter at the sender further implicitly
reduces biases of the ACK delivery.

To investigate how round-trip timing impacts performance,
we first discuss the accuracy of RTTmin as a microbench-
mark that we seek to improve. We use the TACK-based
TCP implementation (§ VI) to transmit flows between two
Wi-Fi endpoints, with a network emulator forwarding. A fixed
bidirectional latency (100 ms) is set between the endpoints.
Figure 7(a) shows that the advanced round-trip timing tracks
the real minimum RTT. However, legacy RTT sampling suffers
8% ∼ 18% larger RTTmin estimates. We further explore
performance improvement on real paths over the Internet [58].
As illustrated in Figure 7(b), applying the advanced round-trip
timing has reduced 20% of the 95th percentile OWD and 54%
of the packet loss. Note that this improvement is obtained
without sacrificing throughput [59], [60]. We infer that an
accurate minimum RTT estimate avoids pushing too much data
into the pipe, and thus reduces latency and loss.

C. Advancements in Send Rate Control

Lowering the ACK frequency might result in larger bursti-
ness. In order to control the amount of sent data, TACK-based
congestion controller should integrate with pacing instead
of the burst send pattern. The rationale is that pacing [61]
smooths traffic behaviors by evenly spacing packets at a
specific pacing rate (denoted by pacing_rate) according to
the congestion controller. For example, pacing_rate may
be obtained by distributing congestion window (CWND)
over RTT when applying a window-based controller (e.g.,
CUBIC [62]), and pacing_rate may also be computed using
bandwidth estimate of a rate-based controller (e.g., BBR [17]).

2In general, the minimum RTT estimation can be easily extended to the xth

percentile RTT estimation, where x ∈ (0, 100].

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. Round-trip timing in the context of TACK. (a) Legacy RTT sampling
suffers 8% ∼ 18% larger RTTmin estimates. (b) Latency and loss change
before [59] and after [60] applying the advanced round-trip timing.

The pacing_rate can be computed at both endpoints.
Take the rate-based controller as an example, if a BBR-
like bandwidth estimation [17] is adopted, the pacing
rate at time t is computed at the sender side using
a windowed max-filter (θfilter is set at several RTTs):
pacing_ratet ∝ max(delivery_ratei), ∀i ∁ [t − θfilter , t],
where delivery_ratei is the deliver rate computed upon
each TACK arrival. Since receiver-based computation is more
straightforward than sender-based one in the context of TACK,
a rate-based controller may conduct bandwidth estimation
in a receiver-based way instead, i.e., the delivery_rate is
computed at the receiver upon data packet arrivals and synced
to the sender via TACK. With regard to the window-based con-
trollers such as CUBIC, Vegas [63], and Compound TCP [64],
a TACK-based congestion controller requires converting the
CWND to the pacing rate [57]: pacing_ratet ∝ CWND

sRTTt
,

where sRTTt denotes the smoothed RTT at time t.
Most of the popularly used congestion controllers can

work with TACK by handling minor changes. Moreover,
rate-based congestion controllers (e.g., BBR) usually requires
less changes than window-based ones (e.g., CUBIC). In this
paper, we give an example for the design and implementation
of a TACK-based congestion controller co-designing BBR.
BBR’s RTT and bandwidth estimations are all coupled with
frequent ACKs. However, these can be implemented with
small amount of work by moving the estimation logic from
sender to receiver. This receiver-based paradigm also fits the
TACK-based acknowledgment mechanism well. On the other
hand, since one round of pacing rate control can be as large
as multiple RTTs (e.g., 8), BBR is supposed to work well
with the TACK-based protocol framework where ACKs are
excessively delayed. We will give the detailed receiver-based
BBR implementation in § VI-D. In addition, we further
conducted experiments to demonstrate that the receiver-based
BBR in the context of TACK performs similar to the legacy
BBR (see Appendix C).

In addition, lowering ACK frequency probably causes
bandwidth under-utilization without timely updating the send
window. To tackle this issue, an IACK updating the largest
acknowledged packet and the RWND should be sent without
delay when encountering an abrupt change of receive buffer.
For example, when the receive buffer usage is full, an IACK
may be generated to report a zero window.

VI. PROTOCOL IMPLEMENTATION

TACK, or its acknowledgment mechanism, can be imple-
mented in most of the ordered and reliable transport protocols.
This paper mainly discusses TCP-TACK, a TACK-based TCP
implementation that applies TACK and deploys the advance-
ments as specified in § V-A∼V-C. A full implementation of

Fig. 8. TCP option extension using TLV encoding.

TCP-TACK including all the above advancements requires
extension on the TCP option to introduce more ACK types,
and also requires extension on the TCP data field to carry
more information in ACKs.

The legacy TCP adopts the TCP option extension to carry
newly defined information such as the Timestamp option,
the SACK option, the MSS option, etc. TCP-TACK can also
be implemented by defining more option fields for more ACK
types and the rich information (e.g., TACK delay, “unacked
list”, delivery rate, etc.) carried by ACKs. However, due to
the 40-byte limitation of the TCP option, TCP-TACK might
fail to report enough number of ACK blocks (e.g., more than
4) in the case of bidirectionally lossy paths.

In this case, we first define more types of ACKs by extend-
ing the TCP options in the TCP header, and then extend the
TCP data field to carry more information in ACKs. This design
rationale comes from three concerns: First, the TCP option
extension makes full use of the residual header space. Second,
the data field extension only increases the size of ACKs rather
than increasing the number of ACKs. Ultimately, piggybacking
acknowledgment [65] might be unnecessary because TCP-
TACK’s ACK frequency is usually already extremely low. This
greatly motivates the data field extension in TCP-TACK.

A. TCP Option Extension

The TACK option. As illustrated in the table of Figure 8,
the TACK option uses two TCP alternatives with type-length-
value (TLV) encoding [54]. The first is an enabling option,
TACK-Permitted, which may be sent in a SYN (synchro-
nization) packet to indicate that TACK-based acknowledgment
mechanism can be used once the connection is established.
The second is an ACK indicator option, ACK-Type, whose
value indicates the type of ACKs (e.g., TACK = 0 × 01,
IACKs = 0 × 02-0xff) over an established TCP connection
once permission has been given by the TACK-permitted.

The packet number option. A TCP-TACK packet contains
both sequence number (SEQ) and packet number (PKT.SEQ).
SEQ is the existing data sequence number used in legacy TCP,
and TCP-TACK further extends the PKT.SEQ option in each
data packet for receiver-based loss detection. As shown in the
table of Figure 8, the option contains a 4-byte value for the
packet number and it is sent over an established connection
once permission has been given by the TACK-permitted.

B. Data Field Extension

Extension for loss recovery. Figure 9 gives an example
of the format of the loss-event-driven IACK (type 0 × 02),
which contains two fields to indicate the most recent range of
lost packets in the PKT.SEQ space. The Largest PKT.SEQ
and the Second largest PKT.SEQ refer to the largest
PKT.SEQ and the second largest PKT.SEQ of the received
packets, respectively. IACKs also accumulatively acknowledge
ordered packets in the SEQ space by reusing the field of
Acknowledgment Number in the TCP header [66].

TACK syncs rich information between endpoints. The data
field of TACK can be extended on demand as long as the

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: REVISITING ACKNOWLEDGMENT MECHANISM FOR TRANSPORT CONTROL 9

Fig. 9. Loss-event-driven IACK format in TCP-TACK.

Fig. 10. TACK format in TCP-TACK.

TACK size does not exceed the MSS (e.g., 1500 bytes).
Figure 10 shows an example for the TACK format.

In order to bound the delay incurred by HoLB under ACK
losses, we further define receive-buffer-bubble (RBB) in the
“black list” as the gap between non-contiguous blocks of SEQ
space occupied by data that has been received and queued at
the receiver. TACK defines HOL.SEQ for the smallest SEQ of
out-of-order packets in the receive buffer, and acknowledges
the largest ordered packets accumulatively by reusing the field
of Acknowledgment Number in the TCP header [66].
These two SEQs report the first RBB to pull packets that are
the most required according to the delivery ordering.

Under excessive bidirectional losses, pulling only one RBB
per TACK can be inefficient (Figure 6). Optionally, TACK
further defines a series of additional RBB fields for redundant
loss feedbacks. No more than MSS in length, one TACK can
carry hundreds of RBBs. Upon a packet arrival, RBBs are
updated with the complexity of O(logN). A TACK should
report the first a few RBBs. Specifically, when the receiver
sends a TACK, the following two rules apply. (1) A TACK
should include as many distinct RBBs as possible. (2) A
TACK should be filled out by repeating the oldest RBBs (with
the smallest SEQs). This assures every RBB can be reported
multiple times.

Extension for round-trip timing. TACK redefines the TCP
Timestamp Option [66], such that TSval indicates the
timestamp when the packet who achieves the minimum OWD
is sent, and TSecr indicates the timestamp when TACK is sent.
TACK also defines a new field of TACK Delay to indicate
the delay incurred between when the packet who achieves the
minimum OWD is received and when the TACK is sent.

Extension for send rate control. For bytes-in-flight update,
TACK defines Received-inflight-data for the amount
of data that has been received but not acknowledged. TACK
also defines more fields such as Congestion Window
for the window-based congestion controllers and Delivery
Rate for the rate-based congestion controllers. Both TACK
and IACK reuse the field of Window Size in the TCP
header [66] for the receive window advertisement.

C. Transport State Monitoring

A frequency-update-driven IACK is to indicate the updated
TACK frequency calculated by the sender. It is recommended
that the frequency-update-driven IACK is sent when the
updated TACK frequency doubles or halves. In this paper,
bw is specified as the maximum delivery rate. The average
delivery rate (delivery_rate) per TACK interval can be com-
puted as the ratio of data delivered to time elapsed. Details
are given in § VI-D. The minimum RTT (RTTmin) can
be monitored according to § V-B. Both bw and RTTmin

should be monitored in real time for TACK frequency update
according to Equation (4).

Moreover, the receiver computes the loss rate (ρ) on the data
path per TACK interval. ρ is the ratio of number of lost packets
to number of packets that should have been received. The
sender also computes the loss rate (ρ′) on the ACK path when
RTTmin is updated. ρ′ is the ratio of number of lost TACKs
to number of expected TACKs during a period of time. These
transport state are monitored to decide if more information
should be carried in ACK according to Equation (5).

D. Receiver-Based BBR Implementation

This section discusses the implementation of a
receiver-based BBR as the congestion controller for
TCP-TACK.

The receiver-based BBR adopts pacing, instead of the burst
send pattern, for every data packet at a pacing rate that is
updated upon each TACK arrival. After sending at a certain
rate and waiting for one TACK interval, the sender updates its
sending rate according to the maximum bandwidth estimation
of a newly coming TACK.

Similar to legacy BBR [17], a flow adopting the
receiver-based BBR has three states: Startup, Drain, and Sta-
ble. The Startup and Drain states usually last for a few TACK
intervals. Note that it is suggested to use the legacy TCP’s
per-packet ACK to speed up the bandwidth probing in the
startup phase, and meanwhile, this removes the side effect that
may appear in the case of short flows. The Stable is the main
state that covers two events: maximum bandwidth estimation
(ProbeBW) and minimum RTT estimation (ProbeRTT). Both
estimations are receiver-driven and relatively independent from
the ACK delivery.

ProbeBW. To reduce the interference of burst, the receiver
updates the delivery rate (delivery_rate) per TACK but
calculates as delivery_rate = Δdelivered·ftack

2 when the
system is not application-limited. Δdelivered refers to
the bytes received during two TACK intervals (usually
approximates the OWD). At time t, the maximum avail-
able bandwidth (BWmax) is a windowed max-filtered value
of the delivery rates carried in TACKs, i.e., BWmax =
max (delivery_ratei), ∀i ∁ [t − θfilter , t], where the band-
width filter window θfilter is set at several dozens according
to the steady phase cycle. The pacing rate is computed as
pacing_ratet = pacing_gain ·BWmax, where pacing_gain
is a control parameter that varies in different phases as
discussed next.

The ProbeBW lasts for dozens of TACK intervals and
contains three subphases: the gain cycle occupying four
TACK intervals, the drain cycle occupying four TACK inter-
vals, and the rest cycles are cruise cycles. The recom-
mended duration of ProbeBW is 32 TACK intervals, which
approximates BBR’s 8 RTTs. Accordingly, the bandwidth

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. Parameters of 802.11-based links.

filter window θfilter is set 40 TACK intervals (approximates
10 RTTs) to cover feedback delay. The pacing rate is com-
puted as max (pacing_gain · BWmax, MSS · ftack), where
pacing_gain = 1.25, 0.75, and 1 during the gain, the drain,
and the cruise cycles, respectively.

ProbeRTT. ProbeRTT is entered when RTTmin has not
been updated by a lower measured value for several seconds
(e.g., 10 s). The sender limits its pacing rate to MSS ·ftack for
max (RTT, 200 ms). This aims to drain the queue to enable
the minimum RTT estimation.

Inflight cap. BBR does not use a congestion window or
ACK clocking to control the amount of inflight data, instead,
it uses an inflight data limit of inflight_cap = cwnd_gain ·
bdp, where bdp = BWmax × RTTmin and cwnd_gain is a
control parameter. Upon a TACK arrival, the sender updates
the bytes in flight (inflight_size) by subtracting the received
bytes from the sent bytes. The received bytes can be updated
upon TACK arrivals. For example, a TCP-TACK receiver
directly carries a field of Received-inflight-data in
a TACK (see Figure 10).

Before sending a packet, the bytes in flight must satisfy
inflight_size < inflight_cap, otherwise the sender has to
wait. During the Stable state, legacy BBR sets cwnd_gain =
2, which allows BBR to continue sending smoothly at the
pacing rate even when ACKs are delayed by one RTT [17].
In general, TCP-TACK delays the ACK at most for one TACK
interval, and we therefore set cwnd_gain = 2+ 1

RTTmin·ftack
.

Note that we have also integrated the improvements specified
in [67] to improve throughput over Wi-Fi network paths with
aggregation.

VII. EVALUATION

In this section, we first give numeral analysis of TACK
frequency over the 802.11 wireless links. We then investigate
the ideal and the actual performance of TCP-TACK in WLAN
scenarios, including the deployment experience in commercial
products. We finally investigate how TCP-TACK would work
over the combined links of WLAN and wide area network
(WAN).

A. Experiment Setup

Experiments are conducted on various wireless links (e.g.,
IEEE 802.11b/g/n/ac), controllable links connected with a
Spirent Attero network emulator [68], and shared links on the
Internet, using the link conditions for randomized experimental
trials. If not otherwise specified, the PHY raw bit rates
of 802.11b/g/n/ac links are 11/54/300/866.7 Mbps, respec-
tively. Detailed parameters are listed in the table of Figure 11.

Since this paper mainly discusses acknowledgment mech-
anism rather than congestion control, we do not intend to
investigate the differences among various congestion con-
trollers. Instead, we focus on the comparison between different
acknowledgment mechanisms in the context of the same
congestion controller upon the same transport protocol. Partic-
ularly, TCP-TACK is compared with TCP BBR. TCP-TACK

Fig. 12. TACK reduces ACK frequency over the IEEE 802.11b/g/n/ac
wireless links.

is implemented upon the TCP of our user-mode Stack based
on the Netmap framework [69]. Unless otherwise noted, TCP-
TACK refers to the TCP-TACK that implements the receiver-
based BBR.

The Linux kernel follows the TCP [6], [7] guidelines of
sending an ACK for every second full-sized data packet
received. For experimentation we changed the Linux Kernel
5.3 TCP code [70] to allow the receiver sends an ACK
for every L (L ≥ 2) full-sized data packets, with which
we can deploy prior ACK thinning mechanisms, i.e., TCP
variants with L = 4, 8, 16. We introduced a new option called,
BPF_SOCK_OPS_ACK_THRESH_INIT, as part of the BPF
socket options [71] (BPF_PROG_TYPE_SOCK_OPS) to allow
changing the ACK frequency. This option operates in TCP
control flow handling only and does not introduce any runtime
overhead during data flow.

For a fair comparison, we tried our best to use default
versions and parameters for all schemes. For example, TCP
BBR represents TCP using BBR as congestion controller
and RACK [55] as loss detection algorithm. TCP CUBIC is
the default SACK-enabled implementation in the latest Linux
kernels. Unless otherwise noted, TACK sets L = 2, TCP
delayed ACK is enabled, and data packets are full-sized with
MSS = 1500 bytes.

B. TACK Frequency in Real-World Deployments

First of all, we give numeral analysis of TACK frequency
over the 802.11 wireless links in comparison with standard
delayed ACKs. Figure 12(a) shows that more number of ACKs
are reduced in the case of a faster PHY capacity. Specifically,
as shown in Figure 12(b), TACK has the same frequency as
TCP’s delayed ACK (denoted by TCP (L=2)) over 802.11b
wireless links with a small RTTmin (10 ms). However, for
the 802.11ac links, the frequency of TACK has dropped two
orders of magnitude when RTTmin = 10 ms and three orders
of magnitude when RTTmin = 80 ms. Note that Figures 12(a)
and 13(a) also reveal that goodput increase is insensitive to the
latency between endpoints. This is because TACK’s frequency
is already quite low, reducing ACK frequency by hundreds
of Hz only slightly impact goodput.

C. Performance in WLAN Scenarios

Before diving into protocol performance, we first answer the
question of how close TACK can get to transport upper bound.
We use the UDP-based tool [47] specified in § III-B to estimate
the ideal goodput of different ACK thinning techniques. For
example, “TCP (L=8)” considers the case of byte-counting
ACK that sends an ACK for every 8 packets. The emulator
keeps sending 1518-byte packets from the sender, the receiver
counts 8 received packets, and then sends one 64-byte packet

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: REVISITING ACKNOWLEDGMENT MECHANISM FOR TRANSPORT CONTROL 11

Fig. 13. (a) Links with faster PHY rate enlarge goodput improvement. Note
that Goodputtcp here refers to the goodput of TCP without “negative effect”,
whose traffic is emulated by UDP. (b) TACK approaches the transport upper
bound with a minimized ACK frequency (RTT=80 ms, 802.11n).

Fig. 14. (a) TCP-TACK obtains 20% ∼ 28.1% of goodput improvement.
(b) Prior ACK thinning mechanisms impact the TCP transport performance
(RTT=80 ms, 802.11n).

as an ACK. “UDP Baseline” refers to the goodput of UDP
without sending any ACKs, it acts as the transport upper bound
as its goodput is not impacted by ACKs. “PHY Capacity”
is the raw bit rate at the PHY layer. For IEEE 802.11n
links, “UDP Baseline” = 210 Mbps and “PHY Capacity” =
300 Mbps according to the table in Figure 11.

It is well-known that the transport performance will be
impacted when the number of ACKs is excessively reduced.
Thus, sending fewer ACKs has a “negative effect” on the
transport performance. However, in wireless scenarios sending
fewer ACKs also has a “positive effect” on the transport
performance due to the reduced contentions. To better estimate
this “positive effect”, we assume that there is no “negative
effect” ideally. As a result, “Ideal Goodput” refers to the ideal
situation that the transport will not be impacted by reducing
the number of ACKs. “Actual Goodput” refers to the real
situation that the transport performance is impacted by both
the “negative effect” and the “positive effect” when reducing
the number of ACKs.

Figure 13(a) shows that the goodput gain is enlarged over
a faster wireless link. Figure 13(b) demonstrates that TACK’s
ideal goodput approaches the transport upper bound with a
minimized ACK frequency.

We then compare the actual goodput of TCP-TACK flows
and TCP BBR flows over the IEEE 802.11b/g/n/ac wireless
links. A Wi-Fi host (Intel Wireless-AC 8260, 2 × 2) is
connected to another wired host with a wireless router (TL-
WDR7500) forwarding. All devices are in a public room
with over 10 additional APs and over 100 wireless users at
peak time. Ping test shows that the RTT varies between 4 to
200 ms and slight burst losses exist. Single-flow tests are
repeatedly conducted over all hours of the days in a full week.
Figure 14(a) shows that TCP-TACK obtains 20% ∼ 28.1%
of average goodput improvement over TCP BBR. Our data
traces also show that TCP-TACK sends much less number of
ACKs than TCP BBR (e.g., over the 802.11g wireless links,

number of ACKs
number of data packets of TCP-TACK approximates 1.9%, and

Fig. 15. Topology of wireless projection.

Fig. 16. Performance of wireless projection with Miracast.

which of TCP BBR approximates 50%), significantly reducing
the contentions on wireless links.

We also investigate the difference between the actual and
the ideal goodput of TCP BBR with prior ACK thinning
mechanisms. We check both scenarios with and without arti-
ficial packet loss (i.e., ρ = 0.1% and ρ = 0, respectively).
Figure 14(b) shows that legacy TCP’s actual trend of goodput
improvements does not match the ideal trend (as illustrated
in Figure 13(b)). We believe it is because TCP’s control algo-
rithms such as loss recovery, round-trip timing, and send rate
control are impacted by reducing ACK frequency. In contrast,
TCP-TACK’s actual performance approaches the ideal goodput
improvement. This validates the TACK-based protocol design.
We have also tested the Wi-Fi Direct [72] links, the results of
which remain similar.

D. Deployment Experience: Miracast

TCP-TACK is deployed in the commercial products, such
as Huawei Mate20 Series Smartphone (Android 9) [73] and
Honor Smart TV [74], providing optimized high resolution
wireless projection using Miracast. Miracast [45] allows users
to wirelessly share multimedia, including high-resolution pic-
tures and HD video content between Wi-Fi devices. A prede-
cessor (Android 8) of Huawei’s product adopts RTP on top of
UDP as the transport protocol, while the current commercial
products have modified Miracast so as to enable the TCP-based
transmissions, i.e., TCP CUBIC, TCP BBR, and TCP-TACK.

The first lesson we have learned during our deployment of
Miracast is that BBR cannot perform well in two aspects. First,
ProbeRTT only sends few packets every RTT, a sudden drop in
throughput results in rebuffering of real-time video streaming.
It is suggested that we remove the ProbeRTT directly, or just
make it less drastic (e.g. 0.75x pacing rate) and more frequent
(e.g., every 2.5 s) as specified in [75].

Second, BBR converges slowly under bandwidth change.
In [17], Neal Cardwell et al. elaborated the decrease and
increase details for TCP BBR under bandwidth change. In that
experiment, a single long-lived flow runs under 10 Mbps
bandwidth with 40 ms RTT. At t = 20 s, the bandwidth is
doubled to 20 Mbps. At t = 40 s, the bandwidth is halved
to 10 Mbps. Since bandwidth estimate increases 1.95 times
(≈ 1.253) in 3 ProbeBW cycles, TCP BBR takes about 960 ms
(24 RTTs, RTT = 40 ms) to converge when the bandwidth
is doubled. For the Miracast use case, it is recommended that
we set the duration of ProbeBW as 16 TACK interval which
approximates half of BBR’s 8 RTTs. Similarly, the bandwidth
filter window θfilter is set 20 TACK intervals (approximates
5 RTTs). In the case of bandwidth change, TCP-TACK,
however, only requires half of time (12 RTTs). On the other

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 17. Hybrid topology of WLAN and WAN.

Fig. 18. Performance over combined links of WLAN and WAN.

hand, the inflight drops from 200 KB down to 100 KB at
t = 42 s due to the inflight_cap dropping from a 200 KB
value adapted to 20 Mbps down to a 100KB value adapted to
10 Mbps. Since this duration is decided by the bandwidth filter
window θfilter , TCP BBR takes about 1600 ms (10 RTTs,
RTT = 160 ms) and TCP-TACK only takes half of the
time (5 RTTs). After t = 42 s, TCP-TACK has the same
the behavior as TCP BBR.3

The topology of wireless projection with Miracast is illus-
trated in Figure 15. The smartphone screen can be pro-
jected to a nearby TV, wherein the distance is usually
less than 10 meters between the two devices. Data traces
are collected from both the smartphones and TVs dur-
ing A/B testing. The table in Figure 16 summarizes the
trace-based performance results. We found that TCP-TACK’s
video rebuffering ratio [46] is significantly reduced as com-
pared with the legacy TCP or RTP based projections. Also
TCP-TACK’s macroblocking artifacts are less as compared
with the RTP transport. The application-level benefit of TCP-
TACK can be attributed to goodput improvement because of
reduced ACK overhead and effective loss recovery. These
experiences demonstrate TACK’s significant advantages for
high-throughput and reliable wireless transport.

E. Performance Over Combined Links of WLAN and WAN

TACK also works on the hybrid connections over both
wired and wireless links. Figure 17 illustrates the topology.
A wireless client (Intel Wireless-AC 8260, 2 × 2) con-
nects a wireless router (TL-WDR7500) within a distance
of 10 meters. Bandwidth of WLAN is configured by setting
different 802.11 standards on the wireless router. For example,
the policy of “802.11g only” provides a 54 Mbps bandwidth
for WLAN. A network emulator is deployed to provide packet
impairments and transport latency between the wireless router
and a wired server. For example, setting the latency of 100 ms
on both ingress and egress ports of network emulator provides
a 200 ms RTT for the WAN. Packet loss rate on the data path
(ρ) and on the ACK path (ρ′) can also be set on the ingress
port and egress port, respectively.

The table in Figure 18 shows the results when bandwidth
of WLAN is the bottleneck. Case 1 and Case 2 consider the
cases where a wireless client communicates with a domestic
server. Case 3 and Case 4 consider the cases where a wireless
client communicate with a cross-country server. All cases
demonstrate TCP-TACK’s advantage over legacy TCP on

3The inflight_cap reduction from roughly 100 KB to 50 KB after t=42 s
is because that TCP BBR’s actual send rate is computed to be 1% lower
than the computed pacing rate [76]. TCP-TACK follows the same design to
gradually drain any excess queue.

goodput. This can be attributed to two reasons: (1) ACK fre-
quency reduction improves WLAN bandwidth utilization, and
(2) TCP-TACK’s advancements in loss recovery, round-trip
timing and send rate control assure robust transmission over
the long-delay and lossy links of WAN. We have also checked
the scenario when the WAN is the bottleneck, no significant
differences were observed between the two schemes.

Note that the number of ACKs of TCP-TACK in Case 1 is
nearly 10 times of that in Case 3, this is because the RTT on
the WAN link has increased to 10 times in Case 3. According
to Equation (4), the higher RTT results in the lower ACK
frequency even though the data throughput is substantially
higher. In addition, the number of ACKs in Case 4 is nearly
20 K larger than that in Case 3, this is because TCP-TACK
adds more ACKs on the ACK path when losses occur, in which
the additional ACKs are almost IACKs.

Although the TACK-based protocols are designed for
WLAN scenarios, in our previous conference paper [16],
we also conducted experiments on TCP-TACK’s performance
in pure WAN scenarios. We summarize that TCP-TACK
performs equally well as high-speed TCP variants because it
removes the “negative effect” of reducing ACK frequency.

VIII. DISCUSSION, LIMITATIONS, AND FUTURE WORK

Buffer requirement. Sending fewer ACKs increases bottle-
neck buffer requirement. Ideally, buffer requirement is decided
by the minimum send window (Wmin), i.e., Wmin − bdp.
Given by [10], we have Wmin = β

β−1 ·bdp, β ≥ 2. By default,
TCP-TACK (β = 4) requires a bottleneck buffer of 0.33 bdp.
However, in practice, buffer requirement might be enlarged
when the send rate control does not behave properly under
network dynamics. Pacing can help alleviate the problems
associated with increased buffer requirements [10], [61], [77],
[78]. However, more substantial measurements are needed
for a deep dive into the buffer requirement of TACK-based
protocols in the future.

Handling reordering. Load balancing usually splits traf-
fic across multiple paths at a fine granularity [79]–[82].
By handling the prevalent small degree of reordering on the
transport layer [83], we help network layer to achieve fine
partition granularity by enabling the load balancer to consider
less about reordering avoidance in traffic engineering. Thus,
we define the IACK delay as an allowance for settling time
([84] and [55] recommend RTT min

4) before marking a packet
lost. In general, the IACK delay depends on the service’s
tolerance of retransmission redundancy. It can be adjusted
dynamically according to whether unnecessary retransmissions
occur, which we leave as the further work.

Deployment issues. TCP-TACK depends on the middle-
boxes to permit the extended-option-packets through, which
might limit applicable scenarios. Thus we acknowledge that
TCP-TACK only works for a prototype implementation or in
confined environments (e.g., WLAN), a general deployment
of TCP-TACK requires dealing with some issues where TCP
options are modified or removed [85]. QUIC [34] is a flexible
framework of transport protocol that uses UDP as a substrate
to avoid requiring changes to legacy operating systems and
middleboxes, and encrypts most of the packets including
ACKs to avoid incurring a dependency on middleboxes.
We consider an implementation of TACK upon QUIC as a
future work.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: REVISITING ACKNOWLEDGMENT MECHANISM FOR TRANSPORT CONTROL 13

IX. CONCLUSION

In this paper, we revisited the acknowledgment mechanism
for transport control, and we gave the detailed modeling,
analysis, and implementation of a full protocol design with the
minimized ACK frequency required on the transport layer. The
TACK-based acknowledgment mechanism introduces more
types of ACKs and carries more information in ACKs so
as to reduce the number of ACKs required. In particular,
IACKs speed up feedback for different instant events, and
TACK periodically assures feedback robustness by carrying
rich information in ACKs. The protocols based on TACK
are therefore capable to achieve robust loss recovery, accurate
round-trip timing, and effective send rate control. A TACK-
based protocol is a good replacement of the legacy TCP to
compensate for scenarios where the acknowledgment overhead
is non-negligible.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their comments that have greatly helped to improve the
manuscript.

REFERENCES

[1] iLab. (2019). Top 10 Traffic Killers Among Internet Videos.
[Online]. Available: https://www-file.huawei.com/-/media/corporate/pdf/
whitepaper/10.pdf

[2] Cisco. (2020). Cisco Visual Networking Index: Forecast and Trends,
2018–2023. [Online]. Available: https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/white-
paper-c11-741490.html

[3] International Standards Associations. (2016). Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications.
[Online]. Available: https://ieeexplore.ieee.org/document/7786995

[4] E. Magistretti, K. K. Chintalapudi, B. Radunovic, and R. Ramjee, “WiFi-
nano: Reclaiming WiFi efficiency through 800 ns slots,” in Proc. ACM
MobiCom, 2011, pp. 37–48.

[5] L. Salameh, A. Zhushi, M. Handley, K. Jamieson, and B. Karp, “Hack:
Hierarchical ACKs for efficient wireless medium utilization,” in Proc.
USENIX ATC, 2014, pp. 359–370.

[6] R. Braden, Requirements for Internet Hosts—Communication Layers,
document RFC 1122, IETF, 1989.

[7] M. Allman, V. Paxson, and E. Blanton, TCP Congestion Control,
document RFC 5681, IETF, 2009.

[8] R. de Oliveira and T. Braun, “A smart TCP acknowledgment approach
for multihop wireless networks,” IEEE Trans. Mobile Comput., vol. 6,
no. 2, pp. 192–205, Feb. 2007.

[9] S. Floyd and E. Kohler, Profile for Datagram Congestion Control
Protocol (DCCP), document RFC 4341, IETF, 2006.

[10] S. Landström and L.-Å. Larzon, “Reducing the TCP acknowledgment
frequency,” ACM SIGCOMM Comput. Commun. Rev., vol. 37, no. 3,
pp. 5–16, Jul. 2007.

[11] M. Gerla, K. Tang, and R. Bagrodia, “TCP performance in wireless
multi-hop networks,” in Proc. IEEE WMCSA, Feb. 1999, pp. 1–10.

[12] E. Altman and T. Jiménez, “Novel delayed ACK techniques for improv-
ing TCP performance in multihop wireless networks,” in Proc. IFIP
PWC, 2003, pp. 237–250.

[13] A. Bhartia et al., “Measurement-based, practical techniques to improve
802.11 ac performance,” in Proc. IMC, Nov. 2017, pp. 205–219.

[14] K. N. Rao, Y. K. S. Krishna, and K. N. Lakshminadh, “Improving TCP
performance with delayed acknowledgments over wireless networks: A
receiver side solution,” in Proc. IET Commun. Comput., Sep. 2013,
pp. 195–201.

[15] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM
Comput. Commun. Rev., vol. 18, no. 4, pp. 314–329, 1988.

[16] T. Li et al., “TACK: Improving wireless transport performance by taming
acknowledgments,” in Proc. ACM SIGCOMM, Jul. 2020, pp. 15–30.

[17] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” ACM Queue, vol. 14,
no. 5, pp. 20–53, 2016.

[18] H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst, and
M. Sooriyabandara, TCP Performance Implications of Network Path
Asymmetry, document RFC 3449, IETF, 2002.

[19] F. Ge, L. Tan, and M. Zukerman, “Throughput of FAST TCP in
asymmetric networks,” IEEE Commun. Lett., vol. 12, no. 2, pp. 158–160,
Feb. 2008.

[20] C. P. Fu and S. C. Liew, “A remedy for performance degradation of
TCP Vegas in asymmetric networks,” IEEE Commun. Lett., vol. 7, no. 1,
pp. 42–44, Jan. 2003.

[21] C.-Y. Ho, C.-Y. Ho, and J.-T. Wang, “Performance improvement of
delay-based TCPs in asymmetric networks,” IEEE Commun. Lett.,
vol. 15, no. 3, pp. 355–357, Mar. 2011.

[22] J. Park, D. Park, S. Hong, and J. Park, “Preventing TCP performance
interference on asymmetric links using ACKs-first variable-size queu-
ing,” Comput. Commun., vol. 34, no. 6, pp. 730–742, May 2011.

[23] H. Chen, Z. Guo, R. Y. Yao, X. Shen, and Y. Li, “Performance analysis
of delayed acknowledgment scheme in UWB-based high-rate WPAN,”
IEEE Trans. Veh. Technol., vol. 55, no. 2, pp. 606–621, Mar. 2006.

[24] R. de Oliveira and T. Braun, “A dynamic adaptive acknowledgment
strategy for TCP over multihop wireless networks,” in Proc. IEEE
INFOCOM, Mar. 2005, pp. 39–49.

[25] J. Chen, M. Gerla, Y. Z. Lee, and M. Y. Sanadidi, “TCP with delayed
ACK for wireless networks,” Ad Hoc Netw., vol. 6, no. 7, pp. 1098–1116,
Sep. 2008.

[26] F. R. Armaghani, S. S. Jamuar, S. Khatun, and M. F. A. Rasid, “Per-
formance analysis of TCP with delayed acknowledgments in multi-hop
ad-hoc networks,” Wireless Pers. Commun., vol. 56, no. 4, pp. 791–811,
Feb. 2011.

[27] A. M. Al-Jubari, M. Othman, B. M. Ali, and N. A. W. A. Hamid,
“An adaptive delayed acknowledgment strategy to improve TCP perfor-
mance in multi-hop wireless networks,” Wireless Pers. Commun., vol. 69,
no. 1, pp. 307–333, Mar. 2013.

[28] M. Allman, “On the generation and use of TCP acknowledgments,” ACM
SIGCOMM Comput. Commun. Rev., vol. 28, no. 5, pp. 4–21, Oct. 1998.

[29] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “pHost: Distributed near-optimal datacenter transport over
commodity network fabric,” in Proc. ACM CONEXT, Dec. 2015,
pp. 1–12.

[30] L. Xu, K. Xu, Y. Jiang, F. Ren, and H. Wang, “Throughput optimization
of TCP incast congestion control in large-scale datacenter networks,”
Comput. Netw., vol. 124, pp. 46–60, Sep. 2017.

[31] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded con-
gestion control for datacenters,” in Proc. ACM SIGCOMM, Aug. 2017,
pp. 239–252.

[32] M. Handley et al., “Re-architecting datacenter networks and stacks
for low latency and high performance,” in Proc. ACM SIGCOMM,
Aug. 2017, pp. 29–42.

[33] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” in Proc.
ACM SIGCOMM, Aug. 2018, pp. 221–235.

[34] A. Langley et al., “The QUIC transport protocol: Design and internet-
scale deployment,” in Proc. ACM SIGCOMM, Aug. 2017, pp. 183–196.

[35] J. Iyengar and I. Swett, QUIC Loss Recovery and Congestion Control,
document draft 30, IETF, 2020.

[36] V. Paxson et al., Known TCP Implementation Problems,
document RFC 2525, IETF, 1999.

[37] G. Fairhurst, A. Custura, and T. Jones, Changing the Default QUIC ACK
Policy, document draft 03, IETF, 2020.

[38] N. Kuhn, G. Fairhurst, J. Border, and E. Stephan, QUIC for SATCOM,
document draft 06, IETF, 2020.

[39] J. Iyengar and I. Swett, Sender Control of Acknowledgement Delays in
QUIC, document draft 02, IETF, 2020.

[40] T. Li, K. Zheng, R. Jadhav, and J. Kang, Optimizing ACK Mechanism
for QUIC, document draft 00, IETF, 2020.

[41] T. Li, K. Zheng, K. Xu, and Y. Cui, “Acknowledgment on demand for
transport control,” IEEE Internet Comput., vol. 25, no. 2, pp. 109–115,
Mar. 2021.

[42] Cisco. (2019). Cisco Predicts More IP Traffic in the Next Five
Years Than in the History of the Internet. [Online]. Available:
https://newsroom.cisco.com/press-release-content?type=webcontent
&articleId=1955935

[43] K. Xu, L. Lv, T. Li, M. Shen, H. Wang, and K. Yang, “Minimiz-
ing tardiness for data-intensive applications in heterogeneous systems:
A matching theory perspective,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 1, pp. 144–158, Jan. 2020.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[44] K. Xu et al., “Modeling, analysis, and implementation of universal
acceleration platform across online video sharing sites,” IEEE Trans.
Services Comput., vol. 11, no. 3, pp. 534–548, May/Jun. 2018.

[45] Wi-Fi-Alliance. (2019). High-Definition Content Sharing on Wi-Fi
Devices Everywhere. [Online]. Available: https://www.wi-fi.org/discover
-wi-fi/miracast

[46] F. Dobrian et al., “Understanding the impact of video quality on user
engagement,” in Proc. ACM SIGCOMM, 2011, pp. 362–373.

[47] Fillpthepipe. (2019). Ackemu. [Online]. Available: https://github.com/
fillthepipe/ackemu

[48] S. D. Strowes, “Passively measuring TCP round-trip times,” Commun.
ACM, vol. 56, no. 10, pp. 57–64, Oct. 2013.

[49] Google WebRTC Team. (2019). WebRTC. [Online]. Available: https://
webrtc.org/

[50] Y. Gu and R. L. Grossman, “UDT: UDP-based data transfer for
high-speed wide area networks,” Comput. Netw., vol. 51, no. 7,
pp. 1777–1799, 2007.

[51] E. He, J. Leigh, O. Yu, and T. A. DeFanti, “Reliable blast UDP:
Predictable high performance bulk data transfer,” in Proc. IEEE Cluster
Comput., Sep. 2002, p. 317.

[52] R. Fox, TCP Big Window and NAK Options, document RFC 1106, IETF,
1989.

[53] B. Adamson, C. Bormann, M. Handley, and J. Macker, NACK-Oriented
Reliable Multicast (NORM) Transport Protocol, document RFC 5740,
IETF, 2009.

[54] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Selective
Acknowledgment Options, document RFC 2018, IETF, 1996.

[55] Y. Cheng and N. Cardwell, RACK: A Time-Based Fast Loss Detection
Algorithm for TCP, document draft 15, IETF, 2016.

[56] V. Paxson, M. Allman, H. J. Chu, and M. Sargent, Computing TCP’s
Retransmission Timer, document RFC 6298, IETF, 2011.

[57] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in Proc. USENIX NSDI, Jul. 2018, pp. 329–342.

[58] Pantheon. (2018). Pantheon of Congestion Control. [Online]. Available:
http://pantheon.stanford.edu/

[59] Pantheon-Before. (2018). Test From GCE Tokyo to GCE Sydney Before
the Advanced Round-Trip Timing is Applied. [Online]. Available:
https://pantheon.stanford.edu/result/4623/

[60] Pantheon-After. (2018). Test From GCE Tokyo to GCE Sydney After
the Advanced Round-Trip Timing is Applied. [Online]. Available:
https://pantheon.stanford.edu/result/4874/

[61] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the per-
formance of TCP pacing,” in Proc. IEEE INFOCOM, Mar. 2000,
pp. 1157–1165.

[62] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74,
2008.

[63] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP VEGAS: New
techniques for congestion detection and avoidance,” ACM SIGCOMM
Comput. Commun. Rev., vol. 24, no. 4, pp. 24–35, 1994.

[64] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP
approach for high-speed and long distance networks,” in Proc. IEEE
INFOCOM, Apr. 2006, pp. 1–12.

[65] W. S. Lai, “An analysis of piggybacking in packet networks,” Comput.
Netw., vol. 6, no. 4, pp. 279–290, Sep. 1982.

[66] Transmission Control Protocol, document RFC 793, IETF, DARPA,
1981.

[67] N. Cardwell et al. (2018). BBR IETF 101 Update. [Online]. Avail-
able: https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-
an-update-on-bbr-work-at/-google-00

[68] Spirent. (2017). Accurate and Repeatable Network Emulation. [Online].
Available: https://www.spirent.com/Products/Attero

[69] L. Rizzo. (2019). Netmap—The Fast Packet I/O Framework. [Online].
Available: http://info.iet.unipi.it/~luigi/netmap/

[70] Fillpthepipe. (2020). A Patch to Allow Changing TCP ACK Frequency.
[Online]. Available: https://github.com/fillthepipe/TcpAckThinning

[71] Linux Man-Pages Project. (2020). BPF Helpers. [Online]. Available:
http://man7.org/linux/man-pages/man7/bpf-helpers.7.html

[72] Wi-Fi-Alliance. (2019). Wi-Fi Direct. [Online]. Available: https://www.
wi-fi.org/discover-wi-fi/wi-fi-direct

[73] Huawei. (2018). Mate 20 Series Wireless Projection. [Online]. Available:
https://consumer.huawei.com/en/support/content/en-us00677996/

[74] Honor. (2019). Honor Smart Screen. [Online]. Available: https://
consumer.huawei.com/en/support/content/en-us00677996/

[75] N. Cardwell et al. (2018). BBR IETF 102 Update. [Online]. Avail-
able: https://datatracker.ietf.org/meeting/102/materials/slides-102-iccrg-
an-update-on-bbr-work-at-google-00

[76] N. Cardwell. (2020). How to Make Inflight to Convergency 1 BDP When
Inflight is 2 BDP Currently. [Online]. Available: https://groups.google.
com/g/bbr-dev/c/50AQUVQaGCg/m/SSZUt90WAwAJ

[77] F. Zhang et al., “TADOC: Text analytics directly on compression,” VLDB
J., vol. 30, no. 2, pp. 163–188, Mar. 2021.

[78] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and W. Chen, “Efficient document
analytics on compressed data: Method, challenges, algorithms, insights,”
Proc. VLDB Endowment, vol. 11, no. 11, pp. 1522–1535, Jul. 2018.

[79] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load bal-
ancing without packet reordering,” ACM SIGCOMM Comput. Commun.
Rev., vol. 37, no. 2, pp. 51–62, 2007.

[80] T. Li, K. Wang, K. Xu, K. Yang, C. S. Magurawalage, and H. Wang,
“Communication and computation cooperation in cloud radio access
network with mobile edge computing,” CCF Trans. Netw., vol. 2, no. 1,
pp. 43–56, Jun. 2019.

[81] F. Zhang, J. Zhai, B. He, S. Zhang, and W. Chen, “Understanding co-
running behaviors on integrated CPU/GPU architectures,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 3, pp. 905–918, Mar. 2017.

[82] F. Zhang, J. Zhai, B. Wu, B. He, and X. Du, “Automatic irregularity-
aware fine-grained workload partitioning on integrated architectures,”
IEEE Trans. Knowl. Data Eng., vol. 33, no. 3, pp. 867–881, Mar. 2021.

[83] L. Li et al., “A measurement study on multi-path TCP with multiple cel-
lular carriers on high speed rails,” in Proc. ACM SIGCOMM, Aug. 2018,
pp. 161–175.

[84] S. Blanton, A. L. N. Reddy, M. Allman, and E. Blanton, Improving the
Robustness of TCP to Non-Congestion Events, document RFC 4653,
IETF, 2006.

[85] C. Raiciu et al., “How hard can it be? Designing and implementing a
deployable multipath TCP,” in Proc. USENIX NSDI, 2012, pp. 399–412.

Tong Li (Member, IEEE) received the B.E. degree
from the School of Computer Science, Wuhan Uni-
versity, China, in 2012, and the Ph.D. degree from
the Department of Computer Science and Technol-
ogy, Tsinghua University, China, in 2017. He was
a Visiting Scholar with the School of Computer
Science and Electronic Engineering, University of
Essex, U.K., in 2014 and 2016. His research interests
include networking, distributed systems, and big
data.

Kai Zheng (Senior Member, IEEE) is currently
the Director of the Computer Network and Pro-
tocol Research Laboratory, Huawei Technologies.
His research interests include architectures and pro-
tocols for the next generation networks, such as
5G/IoT networks, cloud oriented data center net-
works, RDMA networks, and real-time multimedia
networks.

Ke Xu (Senior Member, IEEE) received the Ph.D.
degree from the Department of Computer Sci-
ence and Technology, Tsinghua University, Bei-
jing, China. He is currently a Full Professor with
Tsinghua University. He has published more than
200 technical articles and holds 11 U.S. patents
in the research areas of next-generation internet,
blockchain systems, the Internet of Things, and
network security. He is a member of ACM. He has
guest-edited several special issues in IEEE and
Springer Journals. He served as the Steering Com-

mittee Chair for IEEE/ACM IWQoS. He is an Editor of IEEE INTERNET OF

THINGS JOURNAL.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: REVISITING ACKNOWLEDGMENT MECHANISM FOR TRANSPORT CONTROL 15

Rahul Arvind Jadhav graduated in computer sci-
ence from Mumbai University in 2001. Since 2001,
he has been part of few startups where he saw
projects from conception to market deployment.
In 2009, he joined Huawei and had been part
of 2012 Labs untill 2020. He is currently an Avid
Coder and a System Engineer working on solu-
tions involving network and transport optimization.
He has contributed towards more than dozen open
sources, including Linux Kernel. He has also con-
tributed towards IETF protocol standardization in the

domain. He has special interest in scalable mesh network architectures for
low-power networks.

Tao Xiong received the B.E. degree in computing
science from China University of Geoscience, China,
in 2003, the M.E. degree in computer science and
engineering from the University of New South Wales
at Sydney, Sydney, NSW, Australia, in 2008, and the
Ph.D. degree from the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong,
in 2014. His research interests include networking,
cloud computing, high performance network proto-
col, and wireless networks.

Keith Winstein is currently an Assistant Professor
of computer science and, by courtesy, of electrical
engineering at Stanford University.

Kun Tan is currently the Vice President of CSI,
heading the Distributed and Parallel Software Lab-
oratory, Huawei. He has been working on var-
ious aspects in networking and networked sys-
tems, AI/serverless frameworks, and cloud com-
puting. Before joining Huawei, he was a Senior
Researcher/Research Manager at Microsoft Research
Asia. He has published over 100 papers in top
conferences and journals. He received the USENIX
Test-of-Time Award in 2019.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 12,2021 at 01:42:55 UTC from IEEE Xplore. Restrictions apply.

1

APPENDIX A
NECESSITY OF CARRYING MORE INFORMATION IN
TACK
MSS is the maximum segment size (MSS), bw is the
throughput on the data path, and L indicates the number
of full-sized data packets counted before sending an ACK.
RTTmin is the minimum RTT observed over a long period
of time, and β indicates the number of ACKs per RTTmin.
Then we compute the frequency of TACK as follow:

ftack = min{ bw

L ·MSS
,

β

RTTmin
} (1)

We use IACKs to report the most recent range of lost
packets, with which the sender can retransmit lost packets
timely upon IACK arrivals. Since IACKs might also be
lost when there exist losses on the ACK path, TACKs are
adopted to report the blocks of lost packets with the smallest
serial numbers as the so-called “unacked list”. We use ρ and
ρ′ to denote the loss rate on the data path and on the ACK
path, respectively. Q denotes the primary number of blocks
in the “unacked list” that a TACK has reported. It is easy to
see that if ρ′ = 0, then we can set Q = 0. However, when ρ′

is large, the provisioning of Q might fail to meet the needs
of loss recovery. In this section, we derive under what ρ′ it is
more profitable to use a TACK carrying more information.

A.1 When bdp is large
To ensure efficient loss recovery, during the time period of
4t, our goal is to employ the TACK to repeat all the blocks
of lost packets that have been reported by the lost IACKs,
that is, the number of lost IACKs should not exceed Q.

Considering the worst case in which there are no back-
to-back packet losses, that is, each loss forms a “hole” in the
receiver’s buffer. According to Equation (1), when bdp ≥
β · L · MSS, the receiver sends β (β ≥ 1) TACKs every
RTT. The maximum number of IACKs can be computed as
ρ · bdp

MSS , where 4t = RTT , and the number of lost IACKs
is computed as ρ · ρ′ · bdp

MSS under an ACK loss rate of ρ′.
Since the number of lost IACKs should not exceed Q, i.e.,
ρ · ρ′ · bdp

MSS ≤ Q, we have

ρ′ ≤ Q ·MSS

ρ · bdp
(2)

In this case, when ρ′ > Q·MSS
ρ·bdp , it is more profitable to

use a TACK carrying more information. And the additional
number of blocks (4Q) in the “unacked list” that the TACK
should report is given by 4Q = ρ·ρ′·bdp

MSS −Q.

A.2 When bdp is small
According to Equation (1), when bdp < β · L · MSS, the
TACK frequency is ftack = bw

L·MSS , where L is the number
of full-sized data packets counted before sending an ACK.

During the time period of 4t, and the number of lost
IACKs is computed as ρ · ρ′ · bw

MSS · 4t. And meanwhile,
at least one TACK should be sent, i.e., bw

L·MSS · 4t = 1.
Since the number of lost IACKs should not exceed Q, i.e.,
ρ · ρ′ · bw

MSS ·
L·MSS
bw ≤ Q, we have

ρ′ ≤ Q

ρ · L
(3)

ACKi+1 ACKi+3

Di-1 Di

t RTT/2

 2 RTT

|Di-1| = |Di| = 1 bdp
ACKi+2ACKi-1 ACKi

Fig. 1. Behavior analysis when β = 2.

In this case, when ρ′ > Q
ρ·L , it is more profitable to

use a TACK carrying more information. And the additional
number of blocks (4Q) in the “unacked list” that the TACK
should report is given by 4Q = Q

ρ·L −Q.
To summarize, it can be derived that the rich information

should be carried when the loss rate (ρ′) on the ACK path
follows:

ρ′ >

{
Q·MSS
ρ·bdp , bdp ≥ β · L ·MSS
Q
ρ·L , bdp < β · L ·MSS

(4)

APPENDIX B
TACK FREQUENCY MINIMIZATION

TACK’s frequency follows Equation (1), where β indicates
the number of ACKs per RTT, and L indicates the number of
full-sized data packets counted before sending an ACK. To
minimize the ACK frequency, a smaller β or a larger L is ex-
pected. This section discusses the lower bound of β and the
upper bound of L. We also give the default values suggested
in practical scenarios. Finally, three insights are obtained
through quantitatively analysis of TACK frequency.

B.1 Lower bound of β
With regard to the sliding-window protocols such as TCP,
sending one ACK per RTT (i.e., β = 1) transforms the
protocol into a stop-and-wait mode. That is, the sender stops
after sending a send window of data, and then waits for one
RTT, i.e., the time it takes for an ACK to reach the sender and
the data released by this ACK to propagate to the receiver.

Since the waiting time wastes opportunities of sending
data, a transport with β = 1 suffers from bandwidth under-
utilization. Under these circumstances, two ACKs per RTT
(i.e., β = 2) are required. To facilitate the analysis, we
assume that a symmetric network without loss. Di denotes
the data packets released by the ith ACK (ACKi) and |Di|
denotes the data volume of Di. As shown in Figure 1, to
fully utilize the available bandwidth, at time t, the first
byte of Di should arrive at the receiver, and meanwhile
ACKi+2 should acknowledge the last byte of Di−1. Upon
each ACK arrival, the sender will be enabled to send a bdp
of data, i.e., |Di| = bdp. As a result, the send window size
is |Di| + |Di−1| = 2bdp and it takes 2 RTTs for the data
in this window to complete. Note that the bottleneck buffer
therefore has to be at least one bdp. In summary, the lower
bound of β is 2.

B.2 Upper bound of L
According to Equation (3), we have

L ≤ Q

ρ · ρ′
(5)

Hence, the upper bound of L is given by L = Q
ρ·ρ′ . For

example, when Q = 4, ρ = ρ′ = 10%, the receiver should
send an ACK at least every L = 400 full-sized data packets.

2

0
.0

1 2 5

1
0

5
0

1
0
0

5
0
0

1
0
0
0

2
0
0
0

3
0
0
0

bw (Mbps)

100

101

102

103

104

105
A

C
K

 F
re

q
u
e
n
c
y
 (

H
z
)

Pivot point

ftcp(L=1)

ftack(RTT=1ms)
ftack(RTT=10ms)

ftack(RTT=80ms)
ftack(RTT=200ms)
ftack(RTT=400ms)

(a) ACK frequency vs. bw

0
.0

0
1

0
.0

1

0
.1 1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

RTTmin (ms)

101

102

103

104

105

A
C

K
 F

re
q

u
e

n
c
y
 (

H
z
)

Pivot point

5

ftcp(bw=1000Mbps)

ftcp(bw=100Mbps)

ftcp(bw=0.1Mbps)

ftack(bw=1000Mbps)
ftack(bw=100Mbps)
ftack(bw=0.1Mbps)

(b) ACK frequency vs.
RTTmin

Fig. 2. An example of ACK frequency dynamics (data packets are full-
sized, L = 1, β = 4, and MSS = 1500 bytes).

B.3 Robustness consideration in TACK

According to Equation (1), the parameter β comes into effect
when the bdp is large, and parameter L comes into effect
when the bdp is small.

In terms of a transport with a large bdp, β = 2 should
be sufficient to ensure utilization, but the large bottleneck
buffer (i.e., one bdp) makes it necessary to acknowledge data
more often. In general, the minimum send window Wmin

can be roughly estimated as given in [1]:

Wmin =
β

β − 1
· bdp, β ≥ 2 (6)

Ideally, the bottleneck buffer requirement is decided by the
minimum send window, i.e., Wmin−bdp. Since doubling the
ACK frequency reduces the bottleneck buffer requirement
substantially from one bdp to 0.33 bdp, this paper suggests
β = 4 to provide redundancy, being more robust in practice.

Having a relatively low throughput, latency-sensitive
flows (such as RPCs) and application-limited flows usually
suffer more from ACK reduction as L grows. Since the high
ACK frequency is not the main bottleneck in these cases, this
paper suggests a delayed TCP-like provisioning of L = 2 to
be more robust in practice. Note that we might also provide
an option similar to TCP_QUICKACK, allowing the real-time
applications to set L = 1.

B.4 Quantitatively analysis of TACK frequency

In this section, we give a quantitatively analysis of ACK
frequency of TCP (L = 1) and TACK (L = 1). In the case that
data packets are full-sized, we get three insights as follows.

First, given an L, the frequency of TACK is always no
more than that of the legacy TCP ACK, i.e., ftack ≤ ftcp. For
example as shown in Figure 2 , the frequency of TACK is
only 10% of the per-packet ACK when bw = 48 Mbps and
RTTmin = 10 ms, which is a typical scenario in WLAN.

Second, the higher bit rate over wireless links, the more
number of ACKs are reduced by applying TACK. For ex-
ample, the frequency of TACK has dropped two orders of
magnitude (ftack ≈ 2.4%ftcp) when bw increases from 48
Mbps to 200 Mbps (RTTmin = 10 ms). Also, with higher
bw, the RTTmin pivot point where the ACK frequency is
reduced, is further lowered (Figure 2(a)).

Meanwhile, the larger latency between endpoints, the
more number of ACKs are reduced by applying TACK. For
example, the frequency of TACK has dropped three orders
of magnitude (ftack ≈ 0.3%ftcp) when RTTmin increases

1ms
0%

20ms
0.2%

120ms
1%

240ms
5%

400ms
10%

Scenarios:(RTT, Loss)

0
25
50
75

100

Go
od

pu
t (

M
bp

s)

TCP BBR
TCP CUBIC
TCP-TACK

Fig. 3. Goodput vs. (RTT, Loss).

0 20 40 60
Time (s)

0

50

100

Ut
iliz

at
io
n
(%

)

(a) Utilization (b) RTT

Fig. 4. Behavior under traffic change.

0 50 100
Time (s)

0

50

100

Th
ro
ug

hp
ut
 (M

bp
s) Flow 1

Flow 2
Flow 3
Flow 4
Total

(a) Large buffer

0 50 100
Time (s)

0

500

1000

Th
ro
ug

hp
ut
 (M

bp
s) Flow 1
Flow 2
Flow 3
Flow 4
Total

(b) Small buffer

Fig. 5. Four flow convergence.

from 10 ms to 80 ms (bw = 200 Mbps). And with larger
RTTmin, the bw pivot point where the ACK frequency is
reduced, is further lowered (Figure 2(b)).

In summary, TACK significantly reduces the ACK fre-
quency in most cases. It is also straightforward that the
results remain similar in the case that the data packets are
not full-sized.

APPENDIX C
RECEIVER-BASED BBR EVALUATION

In this section, we conduct experiments to demonstrate that
the receiver-based BBR in the context of TACK performs
similar to the legacy BBR. Unless otherwise noted, TCP-
TACK refers to the TCP-TACK that implements the receiver-
based BBR.

Robustness over long-delay and lossy links. Figure 3
presents the average goodput achieved under various net-
work delays and packet drops when transmitting a long-
lived flow. The topology is formed by two hosts connected
with a 100 Mbps wired link. Packet impairments are pro-
vided by the hardware network emulator between the end-
hosts. It can be observed that both TCP BBR and TCP-TACK
obtain a considerable goodput under long-delay and lossy
network conditions, however, TCP CUBIC’s goodput falls
off rapidly with the increase of loss rate due to its loss-based
congestion controller. TCP-TACK’s efficiency of adaption to
long-delay and lossy links can be attributed to two aspects.
(1) TCP-TACK employs the receiver-based BBR to be robust
to stochastic packet loss, and (2) the TACK-based protocol
achieves effective loss recovery.

Traffic change adaptation. We start a long-lived flow under
1 Gbps bandwidth with 120 ms RTT. At t = 10 s, we start

3

0 50 100
Time (s)

1

50

100

Th
ro
ug

hp
ut
 (M

bp
s) RTT=60ms

RTT=30ms
Total

(a) Large buffer

0 50 100
Time (s)

0

500

1000

Th
ro
ug

hp
ut
 (M

bp
s) RTT=240ms

RTT=120ms
Total

(b) Small buffer

Fig. 6. RTT fairness.

BBR CUBIC TACK CUBIC TACK BBR
0

0.5

1

1.5

2

2.5

A
v
e
ra

g
e
 R

a
ti

o

Ratio=
Throughput

Ideal Throughput

TCP BBR TCP CUBIC TCP-TACK

Fig. 7. TCP Friendliness.

3 new flows and let them stabilize for some time, then
stop these 3 flows, leaving the original single flow in the
system. Figure 4(a) shows that TCP-TACK absorbs the new
burst of flows without disturbing the bandwidth utilization.
Figure 4(b) shows timing detection in TCP-TACK absorbs
the new traffic and drains afterwards.

Convergence dynamics. In this experiment, four long-lived
flows share a bottleneck with 6 MB buffer. This bottleneck
buffer is regarded as large under 100 Mbps bandwidth with
60 ms RTT, and small under 1 Gbps bandwidth with 120
ms RTT. The flows start their transfers ten seconds apart
at 0, 10, 20, 30 s. Figure 5 shows that whenever a new

flow starts, min-max fairness is maintained by TCP-TACK’s
adaptive rate controller. It also reveals that this reallocation
is achieved without decreasing the utilization.

RTT Fairness. We start one flow at 0 s and another at
10 s with different RTTs. Figure 6(a) demonstrates that
TCP-TACK converges smoothly to high utilization and fair
bandwidth allocation when the bottleneck buffer is large.
While in the small-buffer case as shown in Figure 6(b), the
fair share shows randomness, which is similar to legacy
BBR [2].

TCP Friendliness. We randomly sample throughput be-
tween 1 and 100 Mbps, RTT between 1 and 200 ms, buffer
size between 0.5 and 5 bdp. The flows are run concurrently
for 60 seconds. We report the average ratio of the through-
put achieved by each flow to its ideal fair share for both
the algorithm being tested. As shown in Figure 7, since
TCP-TACK adopts a receiver-based BBR, it has a similar
behavior [3] with legacy BBR in TCP friendliness.

REFERENCES

[1] S. Landström and L.-A. Larzon, “Reducing the tcp acknowledg-
ment frequency,” ACM SIGCOMM CCR, vol. 37, no. 3, pp. 5–16,
2007.

[2] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of
bbr congestion control,” in IEEE ICNP, 2017, pp. 1–10.

[3] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR congestion control,” https://www.ietf.org/proceedings/97/
slides/slides-97-iccrg-bbr-congestion-control-02.pdf, 2017.

	tong_ton21
	TACK_Appendics_TON_Camera_Submitted

