
Motivation
Different CCAs complement each other in achieving high throughput,
low delay, or fast convergence.
Recent studies have shown that leveraging the complementarity

among existing CCAs holds the potential to consistently achieve high
performance across different environments.
However, their implementations concentrate on resolving specific

problems or rely on specific system capabilities, lacking a general
framework for the simultaneous operation of multiple CCAs.

3

Abstract
This paper demonstrates PolyCC, a general framework for simultaneous operation of poly-algorithmic congestion control. PolyCC gains benefits from
taking advantage of the complementary among already existing congestion controllers.

1

l Step 2: The Congestion Controller Agent runs BBR, Vegas and CUBIC
simultaneously and computes their congestion windows (i.e., 𝑐𝑤𝑛𝑑!,
𝑐𝑤𝑛𝑑", …, 𝑐𝑤𝑛𝑑#) independently.

l Step 3: The Fusion Controller computes the %𝑐𝑤𝑛𝑑 according to the
fusion function (𝑓()), i.e., %𝑐𝑤𝑛𝑑 = 𝑓(𝑐𝑤𝑛𝑑!, 𝑐𝑤𝑛𝑑", … , 𝑐𝑤𝑛𝑑#). Note that
𝑓() is customizable.

l Step 4: The sender updates the windows of all CCAs with %𝑐𝑤𝑛𝑑, and then
conducts congestion control according to BBR.

5

Demonstration and	Evaluation
We implement PolyCC upon QUIC and showcase two representative
scenarios: (i) Employing PolyCC to improve the goodput of BBR in the case
of high degrees of aggregation and RTT variance, and (ii) employing PolyCC
to accelerate the convergence of BBR in the case of bandwidth change:
lAs shown in Figure 3(a), BBR acts as the pilot and CUBIC acts as the
copilot. The fusion function in set %𝑐𝑤𝑛𝑑 = 𝑚𝑎𝑥 𝑐𝑤𝑛𝑑$$% , 𝑐𝑤𝑛𝑑&'$(& .
When the RTT varience becomes fierce (e.g., ±70ms, ±100𝑚𝑠), PolyCC
achieves 1.82 to 10.35 times of goodput than BBR varients.

lAs shown in Figure 3(b), BBR acts as the pilot and Copa acts as the
copilot. The fusion function is set 𝑟̂ = 𝑚𝑖𝑛 𝑟$$% , 𝑟&)*+ , where r is pacing
rate. We start a flow with bandwidth to 10Mbps, at t =5s, we halve the
bandwidth to 10 Mbps. The convergence time is reduced by 54.1% than
BBRv1, and reduced by 32.8% than BBRv2.

6

Conclusion
PolyCC provides a general framework for enabling poly-algorithmic
congestion control. For both high degrees of aggregation and RTT variance
and bandwidth change scenarios, PolyCC has significant improvements in
network performance.

7

Figure.	3:	Testbed	results.

Background
For	 over	 40	 years,	 many	 different	 congestion	 control	 algorithms	
(CCAs)	have	been	developed	for	specific	environments,	including	over	
15	CCAs	in	the	Linux	kernel	alone.	
No	 single	 CCA	 can	 adequately	 prevail	 across	 all	 environments	 .	 To	

satisfy	 the	 increasingly	 diverse	 application	 requirements	 over	 highly	
complex	 network	 conditions,	 learning-based	CCAs	have	 gained	much	
attraction	 recently.	 However,	 their	 exploration-based	 models	 may	
make	mistakes	or	dangerous	actions,	resulting	in	poor	performance.

2

REFERENCES
[1]	Soheil Abbasloo, Chenyu Yen, and H Jonathan Chao. Classic meets modern: A pragmatic learning-based congestion control for the internet. In SIGCOMM, 2020.
[2]	Michael Schapira and Keith Winstein. Congestion-control throwdown. In ACM Hotnets, pages 122–128, 2017.
[3]	Bo Wu, Tong Li, Cheng Luo, Changkui Ouyang, Xinle Du, and Fuyu Wang. Autoplex: inter-session multiplexing congestion control for large-scale live videoservices. In SIGCOMMWorkshop (NAI), pages 1–6, 2022.
[4]	Jianer Zhou, Xinyi Qiu, Zhenyu Li, Gareth Tyson, Qing Li, Jingpu Duan, and Yi Wang. Antelope: A framework for dynamic selection of congestion control algorithms. In ICNP, pages 1–11, 2021.
[5]	Zhuoxuan Du, Jiaqi Zheng, Hebin Yu, Lingtao Kong, and Guihai Chen. A unified congestion control framework for diverse application preferences and network conditions. In CoNext, pages 282–296, 2021
[6]	Wenzheng Yang, Yan Liu, Chen Tian, Junchen Jiang, and Lingfeng Guo. Gemini: Divide-and-conquer for practical learning-based internet congestion control. In INFOCOM, pages 1–10, 2023.

Design
Figure 1 illustrates the architecture of PolyCC, which contains sender-
side components as we will describe below.
CCA Pool: PolyCC reuses the already existing implementations of CCAs
in the protocol stack to build the CCA Pool.
User-Customized Policy: Users can customize the policy on how CCAs
collaborate.
Pilot-Copilot Filter: This component selects only one CCA as the pilot
and selects one or more CCAs as the copilots.
Congestion Controller Agent: The Congestion Controller Agent
enables the protocol stack to run multiple CCAs simultaneously.
Fusion Controller: Considering the computed windows/rates of all
copilots, the Fusion Controller computes a calibrated window/rate for
the pilot CCA according to a fusion function.

We further give an example of the PolyCC workflow in Figure 2.
l Step 1: According to the user-customized policy, the Pilot-Copilot
Filter selects BBR as the pilot, and selects Vegas and CUBIC as the
copilots.

4

PolyCC:	Poly-Algorithmic	Congestion	Control
Shuaipeng	Zhu†,	Tong	Li†	,	Xinyu	Ma†	,	Yinfeng Zhu§ ,	Taotao	Zhang§ ,	Senzhen Liu§ ,	Haiyang	Wang‡ ,	and	Ke Xu¶	

Renmin University	of	China†	,	ByteDance§ ,	University	of	Minnesota	Duluth‡	,	Tsinghua	University¶

PART 1

CCA 
Pool

Pilot-Copilot 
Filter

Fusion 
Controller

User-Customized 
Policy

Send

Feedback

Receive

Feedback

Sender Receiver

Pilot 
Logic

Copilot 
Logic

Copilot 
Logic…

Congestion Controller Agent

Figure.	1:	The	PolyCC architecture.

CCA Pool

…
!"#$!

##%

!&'(

)*+(,

-!!

Pilot
Filtering

Copilot 
Filtering

Copilots

##%

!"#$!

!"#$!

!"#$"

Pilot

f
Fusion
Control %!"#$

)*+(,

!"#$#	
… …

①

①

②

②

③

④

④

Figure.	2:	An	example	of	the	PolyCC workflow.

)� )�� )
� )�� )���
������#�� �����$�

�

�

	

�




��

�'
�#
��
��
�!

!�
"&

%��
��

"$
� ���'� ���'� �!�(��

��

	�

�� ���"��

��

	�

��

��
���

��
 ��

��
�

���!�

	��� 
��� ���� ���� 
��� ���� �����
���������

�
��
	�
�� ���!�

1.88s

2.8s

4.1s

（a）Scenario	1 (b)	Scenario	2

PART 2


