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Abstract—Frequent subgraph extraction from a large number
of small graphs is a primitive operation for many data mining
applications. To extract frequent subgraphs, existing techniques
need to enumerate a large number of subgraphs which is
superlinear with the cardinality of the dataset. Given the rapid
growing volume of graph data, it is difficult to perform the
frequent subgraph extraction on a centralized machine efficiently.
In this paper, we investigate how to efficiently perform this
extraction over very large datasets using MapReduce.

Parallelizing existing techniques directly using MapReduce
does not yield good performance as it is difficult to balance
the workload among the compute nodes. We therefore propose
a framework that adopts the breadth first search strategy to
iteratively extract frequent subgraphs, i.e., all frequent size-(i+1)
subgraphs are generated based on frequent size-i subgraphs at
the ith iteration using a single MapReduce job. To efficiently
extract frequent subgraphs, we propose an isomorphism-testing-
free approach by properly maintaining how frequent subgraphs
are mapped within each graph. Extensive experiments conducted
on our in-house clusters demonstrate the superiority of our
proposed solution in comparison with the baseline approach.

I. INTRODUCTION

As a primitive operation, frequent subgraph extraction has a

wide range of applications in data mining, such as extracting

frequent patterns from chemical compounds, identifying the

relationship between chemical compounds, and building graph

indexes to facilitate subgraph containment queries [20], [21],

[3], [2]. Given a dataset D consisting of a set of graphs, a

subgraph s is defined to be frequent if the number of graphs

in D containing s is not less than a frequent threshold.

The majority of existing work adopts a pattern-growth

approach [19], [1], [6], [7], [13] that typically applies the depth

first search strategy to extract frequent subgraphs. Figure 1

shows an overview of how a pattern-growth approach works.

Initially, by extracting every distinct edge from the graphs, it

is easy to identify all frequent size-1 subgraphs. Starting from

a certain frequent size-1 subgraph s, s is then recursively ex-
tended until all frequent subgraphs containing s are generated.

An extension over a frequent subgraph s is to append an edge

from some vertex of s, and the new generated subgraph is

called a child of s. In Figure 1, the extension order for the

offsprings of s11 is s21 > s31 > s32 > s22. Subsequently,

the remainder of each frequent size-1 subgraph is extended

one by one in the same manner. Note that a frequent size-i
subgraph (i > 1) might be generated by multiple size-(i− 1)

subgraphs. To avoid redundant extensions, one typical solution
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Fig. 1. An Overview of Pattern-growth Approaches

is to define a global order for the subgraphs and each size-

i subgraph is always generated by its smallest size-(i − 1)
subgraph. For example, suppose S11 is the smallest size-1

subgraph and hence all size-2 subgraphs that contains s11 will

be only extended from s11. In this way, we can imagine that

the cardinality of the offsprings rooted at different subgraphs

with the same size is rather skewed and a smaller subgraph

usually has more number of offsprings.

Regarding these approaches, it is necessary to maintain

considerable mappings from frequent subgraphs to graphs that

contain them while the number of mappings is superlinear

with the cardinality of the dataset. Considering the AIDS

Antiviral Screen1 dataset consisting of only 43,905 chemical

compounds, these pattern-growth approaches including gSpan

[19], Mofa [1], FFSM [6], [7] and Gston [13] consume 300M-

B, 600MB, 1.2GB and 1.3GB memory usage, respectively,

when the frequent threshold is set to 5% of the cardinality

of the dataset [5]. Consider the forever increasing data size.

For example, SCIFinder2, which provides the world’s largest

collection of chemistry and related science information, reports

that about 4,000 new compound structures are added each

day. It is not appropriate to employ these in-memory pattern-

growth approaches, and somehow difficult to perform frequent

subgraph extraction on a centralized machine efficiently.

MapReduce [4] was recently proposed as a programming

model for supporting data intensive applications in a distribut-

ed computing environment. It has gained wide acceptance and

been applied in various application domains due to its sim-

plicity, flexibility, fault tolerance and scalability. It therefore

1http://dtp.nci.nih.gov/docs/aids/aids data.html
2http://www.cas.org



is a good platform for extracting frequent subgraphs over large

graph datasets. In this paper, we focus on how to design and

implement a solution that enables fast and scalable frequent

subgraph extraction using MapReduce.

A baseline approach to achieving parallelism directly using

MapReduce is to assign each compute node to process the

same number of size-1 frequent subgraphs and generate the

other frequent subgraphs based on them. However, it does

not yield good performance as it is difficult to balance the

workload among the compute nodes. We observe that the

number of frequent subgraphs generated in different compute

nodes is rather skewed and the majority of frequent sub-

graphs are generated based on very few size-1 subgraphs.

Such unbalance is caused by the generation scheme in the

pattern-growth approach for avoiding redundant extensions.

To alleviate this problem, an alternative is to re-assign the

children of these subgraphs to other compute nodes. However,

such re-assignment is challenging since we do not know how

many frequent subgraphs can be generated based on a given

subgraph in advance.

Regarding the baseline approach, it is challenging to balance

the workload by assigning the frequent subgraphs to compute

nodes. To tackle this imbalance issue, we propose a frame-

work, called MRFSE (M
¯

apR
¯
educe based f

¯
requent s

¯
ubgraph

e
¯
xtraction), to iteratively extract frequent subgraphs using

breath first search, and apply the generation-and-verification
mechanism over the graphs at each iteration. The generation

task takes each graph g as the input, and generates size-(i+1)
subgraphs for g based on all frequent size-i subgraphs that g
contains. With the help of existing technique including the

minimum DFS code in [19], and CAM in [6], we can obtain

a unique key that is a sequence for all isomorphic subgraphs.

Therefore, the verification collects each frequent size-(i + 1)
subgraph from the generation task by counting the number

of the same keys. In our case, the cost of generation task is

obviously more expensive than that of the verification task.

Therefore, we propose a strategy on how to assign graphs to

compute nodes so that they could take similar generation cost.

In this way, we can balance the workload over each compute

node.

Simply applying the generation-and-verification mechanism

may involve two MapReduce jobs, one for the generation

task and the other for the verification task. However, too

many MapReduce jobs could incur considerable overhead of

writing the intermediate results. In our case, we use only one

MapReduce job. Specifically, the generation task involves the

map phase only. In the map function, it takes the ID and all

frequent size-i subgraphs of a graph g as the input, and gener-

ate a superset of all frequent size-(i+1) subgraphs of g. The

verification task involves the reduce phase only. In each reduce
function, it collects all isomorphic size-(i + 1) subgraphs by

the same key. Although the number of MapReduce jobs is

reduced, it is more difficult to balance the workload using a

single MapReduce. In our case, as a graph is always processed

by the same compute node during the entire iterations, we need

to guarantee that each mapper processes similar generation

computation at each iteration while the graphs are assigned to

the compute nodes before the first iteration. We demonstrate

that our proposed strategy on how to assign graphs to compute

nodes is effectiveness to balance the workload in this case.

To efficiently produce size-(i + 1) subgraphs in the gener-

ation task, we propose an isomorphism-testing-free approach

by properly maintaining how frequent subgraphs are mapped

within each graph. In our design, at the ith iteration, for each

graph g, we maintain mappings from frequent size-i subgraphs

that g contains to g. These mappings for each graph are

generated at the (i−1)th iteration. Based on the mappings, we

propose an extension based approach that is similar to pattern-

growth approaches, but without any isomorphism testing op-

erations to generate size-(i+ 1) subgraphs for each graph.

In summary, we make the following contributions:

• We propose framework MRFSE to iteratively extract

frequent subgraphs. All frequent size-(i + 1) subgraphs

are extracted at the ith iteration using a single MapReduce

job. We also propose a strategy on how to balance the

workload in term of the generation cost.

• We propose an isomorphism-testing-free approach for the

generation task by properly maintaining how frequent

subgraphs are mapped within each graph.

• We conduct extensive experiments on our in-house clus-

ters to demonstrate the superiority of our proposed solu-

tion in comparison with the baseline approach.

The remainder of the paper is organized as follows. Section

II discusses related work. Section III introduces the necessary

background knowledge and provides the problem definition.

Section IV describes an overview of the framework. Section

V presents the extension of existing techniques to generate

new subgraphs in our framework. Section VI reports the

experimental results and Section VII concludes the paper.

II. RELATED WORK

Frequent subgraph extraction is a well studied research

area in the centralized systems. Existing work that extracts

frequent subgraphs exactly can be broadly classified into

two categories: Apriori-based approaches [8], [9] and pattern-

growth approaches [19], [1], [6], [7], [13]. Apriori-based

approaches iteratively extract the frequent subgraphs using

breath first search. At the ith iteration (i ≥ 1), all frequent

size-(i + 1) subgraphs are generated by joining two frequent

size-i subgraphs. Since a new subgraph can be generated by

multiple pairs, a graph isomorphism testing [15] is required to

remove duplicates. Finally, each distinct subgraph is verified

whether it is frequent by counting the number of occurrences

in the graphs of the dataset using subgraph isomorphism test-
ing [15]. Although Apriori-based approaches also use breath

first search, the difference between our framework and them

is two-fold. First, we take each graph as the process unit

while the latter take each frequent subgraph as the process

unit. Second, our framework employ a isomorphism-testing-

free approach to generate new subgraphs. Apriori-based ap-

proaches have considerable overhead for join and isomorphism

testing operations. Therefore, most of existing work applies



pattern-growth approaches to extract frequent subgraphs. The

most widely used pattern-growth approaches is gSpan [19],

in which the authors introduce a novel coding technique, to

restrict the extensions for each frequent subgraph from partial

vertexes. Besides, it also provides a novel mechanism to avoid

redundant extensions to generate the same frequent subgraphs.

gSpan has been widely used to extract frequent subgraphs

in graph index construction techniques [20], [3], [2]. Other

pattern-growth algorithms, such as MOFA [1], FFSM [6],

SPIN [7] and GASTON [13], adopt various coding techniques

and optimization strategies to reduce the enumeration space.

There are also quite a few studies on extracting frequent

subgraphs using disk-based algorithms. In [17], Wang et al.

propose an index structure, called the ADI, to support a

disk-based extension for existing techniques. However, for

processing large scale graph data, the cost of deserializing

graphs from external storage to main memory still contribute

to a bottleneck according to our experiment.

Recently, there is a rapidly growing trend to design and

implement graph algorithms in the distributed graph-parallel

systems, including Pregel [12], GraphLab [10], etc. These

systems regard each vertex in the graph as the process unit.

The vertex can receive/send messages from/to the neighbors,

and modify its own status based on the received messages.

In particular, these systems are mainly designed for the ap-

plications involving implicit or explicit dependencies among

the process units, such as PageRank and shortest path compu-

tation. However, in our application scenario, we extract the

frequent subgraphs from a large number of small graphs.

Each graph is taken as the process unit and there does not

exist any dependency among different graphs. Therefore, the

reason of not using Pregel-like system is two-fold. First, our

problem is embarrassingly parallel, which can be efficiently

supported by MapReduce. Second, MapReduce shows better

performance than Pregel and GraphLab in our scenario. As

the mappers and reducers do not need to communicate with

each other in the process, MapReduce reduces the cost of

synchronizations. Besides, there exists extensive amount of

work that aims to implement the typical database operators

via MapReduce framework, including theta-join [14], multi-

way join [18], and similarity join [16], [11]. All of these work

is orthogonal to our work.

III. PRELIMINARIES

In this section, we first formally describe the problem

definition and then present a brief review of gSpan [19]. Table I

summarizes the notations used throughout this paper.

A. Frequent Subgraph Extraction

For ease of presentation, we model each complex structure

as an undirected, labeled graph. Typically, a labeled graph g
is able to be represented as a quadruple (Vg, Eg, Lg, lg), in

which Vg is the set of vertices, Eg is the set of undirected

edges, Lg is a set of labels, and lg is a labeling function that

maps every vertex and edge to a single label in Lg. Given

a graph g, we use lg[v] to denote the label of vertex v and

TABLE I
SYMBOLS AND DEFINITIONS

Symbols Definitions
D a collection of graphs
g a graph in D
Vg the set of vertices in g
Eg the set of edges in g
g.ID the graph identifier of g in D
lg [v] the label of vertex v in g

lg [u, v] the label of edge (u, v) connecting u and v in g
s a subgraph

s ⊆ g s is a subgraph of g (or g is a supergraph of q)
gse a subgraph in g built by embedding e and subgraph s
s.D an ID list of graphs in D containing s
T the frequent threshold
Fi all frequent size-i subgraphs in D
F g
i subgraphs in Fi that a graph g contains.

lg[u, v] to denote the label of edge (u, v) connecting vertices u
and v in g. For sake of brevity, let g.id represent the identifier

of graph g.

Given two graphs g and s, we can verify whether s is

a subgraph of g (i.e., g is a supergraph of s or g contains

s) by performing subgraph isomorphism, which is defined as

follows:

Definition 1. (Subgraph Isomorphism ⊆) Given a graph
s = (Vs, Es, Ls, ls) and a graph g = (Vg, Eg, Lg, lg), s is
said to be subgraph isomorphic to g (denoted as s ⊆ g) if
and only if there exists an injective function f : Vs → Vg

such that (1) ∀v ∈ Vs, we can have f(v) ∈ Vg , and ls(v) =
lg(f(v)); (2) ∀(u, v) ∈ Es, we can have (f(u), f(v)) ∈ Vg,
and fs[u, v] = fg[f(u), f(v)].
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Fig. 2. An Example of Subgraph Isomorphism

Example 1. (Subgraph Isomorphism) Figure 2 shows an
example of three undirected, labeled graphs. According to
Definition 1, we can find that g3 ⊆ g1 since there exists an
injective function f : {0 → 0, 1 → 1, 2 → 4}, while g3 � g2.

Particularly, given two graphs s and g, if s ⊆ g and |Vs| =
|Vg|, then we say s is graph isomorphic to g. That is, graph

isomorphism is a special case of subgraph isomorphism.

Definition 2. (Embedding) Given a subgraph s and a graph
g, suppose s ⊆ g and f : Vs → Vg is an injective function that
satisfies the requirements in Definition 1. An embedding e is
a sequence of vertices in Vg that are mapped to the vertices
of Vs using f , i.e., e = [f(v1), . . . , f(vi), . . . , f(v|Vs|)], where



vi ∈ Vs and f(vi) ∈ Vg .
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Fig. 3. An Example of Embeddings

Figure 3 shows two subgraphs s1, s2 and the embeddings in

g1 (shown in Figure 2(a)) for them, respectively. In practice,

an embedding acts like an injective function. Given a subgraph

s and a graph g, we can build a unique subgraph gse in g based

on an embedding e such that gse is graph isomorphic to s. It

enables us to fast identify all isomorphic subgraphs to s in g
by maintaining all these possible embeddings.

A subgraph s is called connected if for any two vertices

u, v ∈ Vs, there exists a path from u to v in s. Given a graph

collection D and a subgraph s, the posting list of s is defined as

an ID list of graphs in D containing s, i.e., s.D = {g.id|g ∈
D, s ⊆ g}. Given a subgraph s, s is said to be frequent if

|s.D| ≥ T , where T is called frequency threshold which is

a user-defined number. In many applications, users are more

concerned with the frequent recurring components of graphs

[17]. Hence, in this paper, we focus on identifying the frequent

subgraphs that are connected.

Problem Definition: Given a graph collection D and a

frequency threshold T , the problem of frequent subgraph
extraction is to identify all connected subgraphs which are

contained in at least T graphs of D.

In the remainder of this paper, a subgraph that we mention

is connected. Additionally, we Fi to denote all frequent size-i
subgraphs in D and F g

i to denote the frequent size-i subgraphs

that a graph g contains. Trivially, F g
i ⊂ Fi.Given a size-i

subgraph s, we say s′ is a child of s when s ⊆ s′ and |Es′ | =
i + 1; similarly, we say s′ is a parent of s when s′ ⊆ s and

|Es′ | = i−1. An enumeration operation of a size-i subgraph s
is to enumerate all children of s by appending one edge from

every vertex in Vs if possible.

B. gSpan and the Minimum DFS Code

gSpan [19] is the most widely used approach to extract fre-

quent subgraph in the centralized systems. As a pattern-growth

approach, it was proposed with two common objectives: (i)

avoiding redundant enumeration for the same subgraph and

(ii) reducing the enumeration spaces during the extension of

frequent subgraphs by appending all possible one edges.

Order

Sequence (0,1,A,a,B) (1,2,B,a,C) (1,3,B,a,D) (3,4,D,a,A) (3,5,D,a,E)

0 1 2 3 4

Fig. 4. An Example of DFS Code

To tackle both problems, gSpan proposes DFS coding

technique to translate each subgraph into a sequence of DFS

codes. Each DFS code is an edge sequence, generated by

performing a depth first search (DFS) on the edges of the

subgraph, i.e., edges in the DFS code are ranked by the

discovery order in the DFS search. Accordingly, each vertex in

the subgraph is also marked by its discovery order. In the DFS

coding technique, an edge in the DFS code is represented by

a 5-tuple, (i, j, ls[i], ls[i, j], ls[j]), where ls[i], ls[i, j], ls[j] are

the labels of vertex i, edge (i, j), and vertex j in the subgraph

s, respectively. We show a DFS code consisting of five ordered

edges in Figure 4 for the graph g2 shown in Figure 2(b). Since

there exist multiple depth first search trees for a given subgraph

s, s can have many DFS codes. Therefore, a lexicographic

order is used so that every two DFS codes can be compared

with each other [19].

Lemma 1. (Minimum DFS Code)[19] Given a size-i sub-
graph s, let parent(s).min be its parent in Fi−1 with the
minimum DFS code. Then, s generated by parent(s).min takes
the minimum DFS code.

Initially, each frequent size-1 subgraph is generated with its

minimum DFS code. This generation is able to be implement-

ed by scanning the dataset once. The minimum DFS codes of

other frequent subgraphs are able to be generated based on

Lemma 1. By introducing the minimum DFS code technique,

gSpan is able to avoid redundant enumeration and restrict the

extension of a frequent subgraph in a proper way.

Lemma 2. (Redundant Enumeration Elimination)[19] Giv-
en a frequent subgraph s, children of s will be enumerated if
and only if it takes the minimum DFS code.

Lemma 2 eliminates redundant enumeration for the other

isomorphic subgraphs in order to avoid many unnecessary

computations. Consider the graph g2 shown in Figure 2(b)

as an example. Subgraph (0, 3, 5) of g2 can be extended from

either (0, 3) or (3, 5). Since subgraph (0, 3, 5) that has been

extended from (3, 5) does not take the minimum DFS code,

no enumeration is required in this case. On the other hand,

the same subgraph extended from (0, 3) takes the minimum

DFS code, and hence, enumeration of all its children will

be performed by extending one edge. In this manner, we

can ensure that enumeration for all isomorphic subgraphs is

executed only once.

Lemma 3. (Enumeration Restriction)[19] Given a frequent
subgraph s associated with the minimum DFS code, suppose
L and R are the last and first discovery vertices in the depth
first search. Let PR→L be the path from R to L. We enumerate
children of s by appending one edge in one of the following
two cases: (1) backward extension: from L to a vertex in
PR→L; (2) forward extension: from a vertex in PR→L to a
new vertex.

Lemma 3 restricts the enumeration of a frequent subgraph

by extending one edge from its partial vertices instead of the

complete vertices. For example, enumerating children of g2
shown in Figure 2 constrains the extension of edges from

vertices 0, 3, 5. We use Enu(s) to denote the children of

s by extending one edge using Lemma 3. After generating all

distinct size-1 subgraphs, the details of extracting all frequent

subgraphs and their posting lists based on each size-1 subgraph



Algorithm 1: gSpan(D,F, s)

1 if s.code is not the minimum DFS code of s then
2 return;

3 F ← F
⋃{s} // F is the set of frequent subgraphs ;

4 compute Enu(s);
5 foreach s′ ∈ Enu(s) do
6 if |s′.D| ≥ T then
7 gSpan(D,F, s′);

are shown in Algorithm 1.

A baseline approach to parallelizing gSpan3 using MapRe-

duce is to partition all frequent size-1 subgraphs to reducers

evenly and run Algorithm 1 in each reducer. Although the

baseline approach is easy to implement, it has two drawbacks.

On the one hand, it causes the load skew problem among

the reducers. The extension space for deriving the frequent

subgraphs is not evenly distributed. Typically, the majority of

frequent subgraphs are generated based on very few frequent

size-1 subgraphs with the smallest minimum DFS codes. This

is because, for a new generated frequent subgraph s based on

the other frequent size-1 subgraphs, we often do not need to

enumerate s according to Lemma 2. On the other hand, when

the dataset cannot be held in main memory, each enumeration

of a frequent size-i subgraph to size-(i+1) subgraphs incurs a

large number of deserializing operations by loading the graphs

into main memory, resulting in an I/O bottleneck.

IV. OVERVIEW OF THE FRAMEWORK

In order to overcome the limitations of simply paralleliz-

ing gSpan-like approaches, we propose a framework, called

MRFSE (M
¯

apR
¯

educe based f
¯
requent s

¯
ubgraph e

¯
xtraction),

to iteratively extract frequent subgraphs using breadth first

search, i.e., at the ith iteration (i ≥ 1), we identify Fi+1 and

their posting lists. Figure 5 shows the overview of the frame-

work at the ith iteration. Typically, our framework employs a

generation-and-verification mechanism at each iteration using

a single MapReduce job.

The generation, involving the map phase only, aims to

generate a superset of Fi+1, which is shown on top of Figure 5.

In the map function, the input key is a graph ID, and the input

value is a superset of frequent size-i subgraphs that this graph

contains. In our design, each size-i subgraph s is associated

with a set of embeddings from a graph g, which are used to

facilitate generation of new size-(i+ 1) subgraphs from s. In
what follows, we assume that a subgraph is associated with
a set of embeddings whenever there is no ambiguity in our
discussion. We generate size-(i + 1) subgraphs contained in

g based on these size-i subgraphs. Details of how to generate

size-(i + 1) subgraphs for each graph is presented in the

next section. Since a frequent size-(i + 1) subgraph cannot

be generated based on a non-frequent size-i subgraph, before

3Although we focus on gSpan algorithm, the baseline approach can easily
be extended to any other pattern-growth approach.

proceeding the generation, we filter all non-frequent size-

i subgraphs of g based on Fi, which is shown on bottom

of Figure 5 and highlighted in the rectangle with a dashed

line. In our case, Fi is generated at the (i − 1)th iteration

and pre-loaded in the map setup phase at the ith iteration.

The output key and output value in the map function are the

graph ID and the newly generated size-(i+ 1) subgraphs. To

enable the iterations, the output of the map phase at the ith

iteration is taken as the input of that at the (i+ 1)th iteration.

Obviously, union of size-(i + 1) subgraphs generated in all

graphs constitute a superset of Fi+1.

Lemma 4. [19] Given subgraphs s1, s2, if the minimum DFS
codes of s1, s2 are equal, then s1,s2 are graph isomorphic.

Based on Lemma 4, all isomorphic subgraphs take the

same minimum DFS code that is a sequence of vertex and

edge labels in essence. Therefore, a straightforward approach

verifies size-(i+ 1) subgraphs generated in the map phase as

follows. By shuffling each pair (minimum DFS code, <size-

(i+ 1) subgraph, graph ID>) to the reducers, in each reduce

function, we collect each frequent size-(i + 1) subgraph by

counting the number of graph IDs with the same minimum

DFS code, and build the posting list of graph IDs for this

subgraph. However, in this way, it incurs unnecessary I/O

and communication overhead in that we have to shuffle a

large amount of embeddings associated with subgraphs while

these embeddings are useless for the verification. To tackle

this problem, we decompose the output in the map function

into two parts. The first part consists a pair (graph ID, size-

(i+1) subgraph) which is then taken as the input of the map

phase at the (i + 1)th iteration. The second part, highlighted

in the rectangle with a dashed line, consists a pair (minimum

DFS code, graph ID) which is then taken as the input of the

reduce phase. Clearly, in this way, we can save both I/O and

communication cost by omitting the embeddings.

The above iteration goes on until no further frequent

subgraphs are generated. In order to utilize the MapReduce

framework to support parallel computation, we split the dataset

into partitions at the beginning and each partition will be held

and processed by a separate mapper during all the iterations.

Regarding the generation-and-verification mechanism used in

our framework, an important observation is that that the cost

of generation task is obviously more expensive than that of the

verification task (it only counts the graph IDs in the reduce

function). Therefore, we balance the workload in term of the

generation task. A straightforward approach to partitioning the

graph dataset is to apply random partitioning, i.e., randomly

assigning graphs to different partitions. In this way, each

partition could take the approximately equal number of graphs.

However, this approach may incur load imbalance among

mappers. Imagine an extreme case that size of all graphs in

one partition are very large while that of graphs in the other

partitions are small. Clearly, the mapper that involves in this

partition will take expensive generation cost and contributes to

a bottleneck. As described in the next section, our generation

scheme is based on the extension of edges. Therefore, we
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Fig. 5. Overview of the Framework to Extract Frequent Subgraphs

propose the equal size partitioning to split the graph dataset,

i.e., assign each graph to the partition with the minimum

number of edges so that each partition takes the approximately

equal number of edges. Later in the experimental section,

we will show that equal size partitioning outperforms random

partitioning significantly.

Subsequently, we will focus on the details of generating a

superset of F g
i+1 based on F g

i for each graph in our framework.

V. GENERATION OF NEW SUBGRAPHS

In general, we can employ two strategies: (1) join-based
enumeration and (2) extension-based enumeration that follow

the ideas of Apriori-based approaches and pattern-growth

approaches, respectively to perform the generation.

Join-based enumeration generates a size-(i + 1) subgraph

by joining two size-i subgraphs once they share common size-

(i−1) subgraph. Regarding the Apriori-based approaches, it is

expensive to identify the common size-(i− 1) subgraph for a

join pair. However, in our case, as we maintain the embeddings

within each graph g for all frequent size-i subgraphs that

g contains, a join pair is easily identified based on their

embeddings. Specifically, given two size-i subgraphs s with

its embedding e and s′ with its embedding e′, we join gse
and gs

′
e′ if they share common i− 1 edges (i ≥ 2) or a vertex

(i = 1). The new size-(i+1) subgraph with its embedding can

be generated by joining gse and gs
′

e′ . To save both computation

and storage cost, for any new generated size-(i+1) subgraph

s with their embeddings, it is necessary to eliminate duplicate

embeddings once gse = gse′ . Taking embedding [4 1] associated

with subgraph s2 in Figure 3 for example, we remove it

as it is redundant with embedding [1, 4]. Due to the space
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Fig. 6. An Example of Extension-based Enumeration

limitation, we do not elaborate the details of employing join-

based enumeration in that the cost of performing join is more

expensive than that of performing extension. Therefore, in this

section, we mainly focus on how to employ extension-based
enumeration, to generate (i+ 1)-subgraphs.

For ease of presentation, given a subgraph s from F g
i , let

s.E denote the embeddings in g that are associated with s.
As extension-based enumeration follows the ideas of pattern-

growth approaches, we employ gSpan to generate the new

subgraphs and their minimum DFS codes. In comparison with

gSpan-like approaches, both edges and size-i subgraphs in

extensions must be contained in g. This could help us eliminate

duplicates without any isomorphism-testing operations.

First, it is easy to identify F g
1 and the embeddings for

each frequent size-1 subgraph by scanning the dataset once

using MapReduce. For a better understanding, the entire size-



1 subgraphs and their embeddings of g1 in Figure 2 are shown

on top of Figure 6. Next, given a subgraph s and all its

embeddings in g, we shall discuss how we can enumerate

all children of s by appending one edge in g efficiently.

Consider an example by taking s11 shown in Figure 6 as s
and g1 in Figure 2 as g. According to Lemma 3, we first

identify the vertices in path PR→L for s, which are vertex 0

labeled with A and vertex 1 labeled with B. Since there exist

only two vertices, we do not need to perform the backward

extension. We begin from the vertex 1 of s to conduct the

forward extension by appending a new edge. Since we have

already identified all embeddings in g for s, we sequentially

check the vertex v in each embedding e where v in gse is

mapped to vertex 1 of s. Specifically, we first collect all

frequent edges which start from v but not contained in gse , and

append the edge one by one. For example, for embedding [0

1] (emphasized in yellow of embbedings of s11 in Figure 6), s-

tarting from vertex 1, we can append edges (1, 5), (1, 4), (1, 2),
based on which three new size-2 subgraphs are generated and

the corresponding embeddings are highlighted in yellow in

the figure. Similarly, we can perform the forward extension

for the other embeddings associated with the same subgraph.

After extending one edge from vertex 1, we perform with the

forward extension from the vertex 0 of s. For embedding [0

1], we append one edge (0, 4) that starts from 0. A new size-

2 subgraph is generated and the corresponding embedding is

highlighted in black, and the complete extension for s in g is

shown at the bottom of Figure 6.

Lemma 5. (Isomorphism-free Verification) Given a sub-
graph s with an embedding e, and another subgraph s′ with
an embedding e′, if |Egs

e
| = |Egs′

e′
|, and ∀(i, j) ∈ Egs

e
,

(i, j) ∈ Egs′
e′

, then gse and gs
′

e′ are the identical subgraphs.
Therefore, s is graph isomorphic to s′.

To avoid unnecessary enumeration of the same subgraphs,

we need to remove redundant subgraphs with non-minimum

DFS code. Take the subgraph s12 shown in Figure 6 as an

example. By appending edge (3, 5) for embedding [2 3], we

can generate a subgraph s with embedding [2 3 5]. Although

we can perform either a graph isomorphism testing of s on

the generated subgraphs, or a minimum DFS code verification

of s, these two operations are expensive. In practice, we can

verify whether s is a redundant subgraph simply based on

Lemma 5. For example, by constructing the subgraph from

embedding [2 3 5] of s, we find that it is identical to the

subgraph constructed from embedding [5 3 2] of subgraph

s23 shown in Figure 6. Hence s is subgraph isomorphic to

s23, and we do not need to enumerate s.

According to Lemma 1, for each subgraph s, s generated by

parent(s).min takes the minimum DFS code. Hence, we rank

the subgraphs in Fg
i in the ascending order of their minimum

DFS codes. When a subgraph is verified as a duplicate based

on Lemma 5, we can safely discard this subgraph and its em-

beddings since the associated DFS code is not minimum. After

ranking and enumerating all 1-subgraphs, we can detect the

Algorithm 2: E-Enumeration(F g
i )

1 Fg
i+1 ← ∅; genG ← ∅;

2 sort subgraphs of F g
i in the ascending order of minimum

DFS codes;

3 E ← collect distinct edges from F g
i ;

4 foreach s ∈ F g
i do

5 foreach extension do
6 foreach e ∈ s.E do
7 S ← ext(e,E, extension);

8 foreach s′ ∈ S do
9 let e′ be an embedding of s′.E;

10 if !contain(genG, gs
′

e′ ) then
11 genG ← genG ∪ {gs′e′};

12 if !contain(Fg
i+1, s

′.code) then
13 Fg

i+1 ← Fg
i+1 ∪ {s′};

14 else
15 s̄ ← get(Fg

i+1, s
′);

16 s̄.E ← s̄.E ∪ s′.E;

17 return Fg
i+1;

other redundant subgraphs and their embeddings surrounded

by dashed red lines shown in Figure 6.

The extension-based enumeration algorithm is outlined in

Algorithm 2. At first, we initialize Fg
i+1, and a hash set

genG which maintains all distinct gse for each new subgraph

s ∈ Fg
i+1 associated with an embedding e ∈ s.E (line 1).

We then sort the subgraphs in F g
i in the ascending order of

their minimum DFS codes, and collect the distinct edges from

their minimum DFS codes (line 2–3). For each subgraph s in

F g
i , we enumerate all children of s by appending one edge

from every possible vertex, which is described in Lemma 3

(line 4–16). For each possible vertex v, we sequentially check

the embeddings of s and extend one edge from the mapping

vertex v′ of each embedding to v by probing the edges starting

from v′ in E (line 7). For each newly generated subgraph s′,
according to Lemma 5, if gs

′
e′ is contained in genG, we can

verify that the associated DFS code of s′ is not the minimum.

We note that s′ might have already been contained in F g
i , since

the same s′ is generated by s but with another embedding. In

this case, we merge their embeddings together (line 14–16).

Finally, we return Fg
i+1.

VI. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed algorithms

on a 72-node cluster4. Each node in the cluster has one Intel

Xeon X3430 2.4 GHz Quad core Processor, 8GB of RAM,

two 500GB SATA hard disks and gigabit ethernet. Each node

is equipped with the CentOS 5.5 operating system, Java 1.6.0

with a 64-bit server VM, and Hadoop 0.20.2. We configure

4http://awan.ddns.comp.nus.edu.sg/ganglia/



one node to act as the name node and job tracker and the

remaining nodes as the data nodes and task nodes.

We compare three approaches to extract frequent subgraphs:

(i) Baseline approach runs with a cache with 1GB size to

buffer the graph data, (ii) MRFSE-J and (iii) MRFSE-E extract

frequent subgraphs using MRFSE framework and generate

new subgraphs using join-based and the extension-based enu-

meration respectively. We conduct the experiments over a real

dataset, PubChem5. PubChem contains one million chemical

structures. Each graph has 23.98 vertices, 25.76 edges, 3.5

distinct vertex labels, 2.0 distinct edge labels on average, and

the total number of distinct vertex labels and distinct edge

labels is 81 and 3, respectively. The size of PubChem dataset

is 434 MB.

We evaluate the performance of the proposed approaches in

terms of running time and I/O cost. Since the input at each it-

eration is the output at the previous iteration, for simplicity, we

only collect the output at each iteration as well as the original

data size. To compare the efficiency and the effectiveness of

our proposed framework, we adjust the maximum size (maxL)

of the frequent subgraphs in {2, 4, 6, 8,10, 12, 14, 16}, the

frequency threshold (T ) in {4%, 6%, 8%,10%, 12%} and the

number of compute nodes in {10,20, 30, 40}. By default, we

set T to 10% and the number of compute nodes to 20. In the

default settings, the largest size of frequent subgraphs is 16.
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Fig. 7. Data Partitioning

We first study the effect of partitioning strategies on

MRFSE-J and MRFSE-E: (1) randomly partitioning and (2)

equal size partitioning. The results are shown in Figure 7. We

can observe that performance of using equal size partitioning

strategy is better than that of using random partitioning in both

MRFSE-J and MRFSE-E. This is because in both extended-

based enumeration and join-based enumeration, we generate

new subgraphs in term of edges. Therefore, the workload can

be more balanced among the compute nodes if we partition

the data based on edges. In the remainder of experiments, we

employ equal size partitioning strategy to partition the data.

We then compare the performance of proposed algorithms

and show the results in Figure 8. We only show partial results

of the Baseline approach for sake of clarity since the running

time is 57,713s even when the maximum size is just 5. We

observe that MRFSE-J and MRFSE-E are significantly faster

than the Baseline by two orders of magnitude because of

5http://pubchem.ncbi.nlm.nih.gov
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two major reasons. First, Baseline has the severe load skew

problem. We observe that the majority of frequent subgraphs

are generated based on very few frequent size-1 subgraphs

with many recursions while the others stop much earlier with

less number frequent subgraphs. Moreover, although the cache

is able to alleviate the repeated reading the graphs from the

disks, deserializing process of a graph is time consuming and

is executed millions of times.

As we can see from Figure 8, MRFSE-J incurs less I/O cost.

This is because given a graph g and a subgraph s, MRFSE-J

maintains only one embedding of each subgraph sg in g that is

graph isomorphic to s while MRFSE-E maintains all possible

embeddings of sg. However, MRFSE-E performs better than

MRFSE-J in that the cost of join operation is more expensive

than that of extension operation.
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Fig. 9. Speedup

Figure 9(a) plots the results by varying the number of

compute nodes when the maximum size is 5. To analyze

the speedup more accurately, we omit the cost introduced by

the MapReduce framework itself, i.e., the time of running

MapReduce without any computation. We observe that the

performance of Baseline remains almost the same in that the

reducer generating the maximum number of the frequent sub-

graphs becomes the bottleneck. The running time of MRFSE-

E and MRFSE-J decreases when the reducer number varies.

Nevertheless, there is an obvious trend of diminishing returns.

We show the results for extracting all frequent subgraphs in

Figure 9(b), which follows the same trends.

We study the performance of MRFSE by varying the fre-

quency threshold. Figure 10 plots the number of frequent sub-

graphs, the size of their posting lists, and the cost of MRFSE-

J and MRFSE-E. Curves with different symbols demonstrate

the trend for different frequency thresholds. From 10(a), we
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Fig. 10. Effect of Frequency Threshold

observe that the number of frequent subgraphs first increases

exponentially and then increases smoothly after an inflection

point emerges. This is because frequent subgraphs with smaller

size tend to have many extensions that are then able to be

verified as frequent subgraphs as well. Nevertheless, frequent

subgraphs with larger size may not have many valid extensions

with respect to the frequency threshold. The position of the

inflection point relies on the frequency threshold. Generally, a

small frequency threshold leads to a larger inflection point.

Another interesting finding is that the number of frequent

subgraphs drops superlinearly when we enlarge the frequency

threshold. Not surprisingly, the size of their posting lists shown

in Figure 10(b) follows the same trends to that of the number

of frequent subgraphs. The running time and the I/O cost for

both MRFSE-J and MRFSE-E follow the same trends. When

reducing the frequency threshold, we can find that the running

time in MRFSE-J increases more significantly than that in

MRFSE-E while the I/O cost is the exact opposite.

VII. CONCLUSION

In this paper, we studied the problem of efficiently sup-

porting frequent subgraphs extraction in a distributed envi-

ronment, particularly, using the MapReduce framework. We

presented a framework, called MRFSE, to iteratively extract

frequent subgraphs on a MapReduce like platform such as

Hadoop. We introduced a equal size partitioning strategy in

order to balance the workload. We proposed an isomorphism-

testing-free approach for generating new subgraphs by prop-

erly maintaining how frequent subgraphs are mapped within

each graph. Extensive experiments conducted on our in-house

clusters demonstrate that the techniques built using proposed

framework are scalable and efficient.
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