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Abstract. Influence maximization aims at finding a set of seed nodes in
a social network that could influence the largest number of nodes. Exist-
ing work often focuses on the influence of individual nodes, ignoring that
infecting different seeds may require different costs. Nonetheless, in many
real-world applications such as advertising, advertisers care more about
the influence of groups (e.g., crowds in the same areas or communities)
rather than specific individuals, and are very concerned about how to
maximize the influence with a limited budget. In this paper, we inves-
tigate the problem of group-level influence maximization with budget
constraint. Towards this, we introduce a statistical method to reveal the
influence relationship between the groups, based on which we propose a
propagation model that can dynamically calculate the influence spread
scope of seed groups, following by presenting a greedy algorithm called
GLIMB to maximize the influence spread scope with a limited cost bud-
get via the optimization of the seed-group portfolio. Theoretical analysis
shows that GLIMB can guarantee an approximation ratio of at least
(1 − 1/

√
e). Experimental results on both synthetic and real-world data

sets verify the effectiveness and efficiency of our approach.

1 Introduction

Given a social network, influence maximization aims at finding a subset of nodes
(refer to as seeds) that could influence the largest number of nodes [7]. Over
the last decade, this problem has received considerable attention due to its key
importance in applications such as epidemic prevention, public opinion monitor-
ing and viral marketing, in which local influence relationships between people
may lead to an unexpectedly wide spread of disease, ideas, and product adop-
tion [1,2].

Existing studies on influence maximization mostly focus on the influence
of individuals [11], ignoring different costs required for infecting different seeds
[13]. Nonetheless, analyzing the influence of specific individuals is trivial in many
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real-world scenarios, and cost budgets for infecting seeds are usually limited in
practice. For example, to prevent and control epidemic diseases, establishing
epidemic prevention stations is a common method. The siting of the stations
depends on, firstly, the influence of crowds grouped in the same areas rather
than the influence of individuals, and secondly, the cost of establishing a station
in each area. The final goal, as a rule, is to make the best of the cost budget and
prevent the diseases as much as possible. Analogous considerations also exist in
advertising and promotional activities.

Driven by the practical applications above, in this paper, we study the prob-
lem of group-level influence maximization with budget constraint. A straight-
forward solution could be extending the existing individual-level approaches to
solve this problem, since the influence of a group can be considered to be the sum
of the influence of each group member [11]. Nonetheless, this solution has three
drawbacks. (1) As the number of individuals is much greater than that of groups,
analysing the influence of individuals instead of groups is much more computa-
tionally expensive. (2) Exact and clear influence relationship between individuals
are hard to obtain. For example, although an epidemic prevention station can
identify an infected person, it is difficult to find out which one infected him
or her. (3) Cost estimation is based mostly on groups, e.g., crowds in the same
geographical regions or human social communities, but few based on individuals.

To avoid the drawbacks of individual-level approaches, we propose to analyse
the influence relationship at the level of groups. To this end, we adopt association
probability to describe the influence relationship between a group pair. With
historical infection data sets, we learn the association probability by checking
the conditional independence between the infection statuses of each two groups,
and construct an influence relationship graph. With the graph, we present an
influence propagation model which can calculate the influence spread scope of
any group or group set.

Based on the aforementioned group-level influence relationship graph and
influence propagation model, we propose GLIMB (Group-Level Influence
Maximization with Budget constraint) algorithm to approximate the optimal
seed groups that maximize the influence spread scope with a limited cost budget.
Towards this, GLIMB keeps searching the group that maximizes the incremen-
tal spread scope over cost ratio. Before the ending of searching, GLIMB checks
whether there is an alternative group or group portfolio that can bring a greater
incremental spread scope. Theoretical analysis shows that GLIMB provides at
least a (1 − 1/

√
e)-approximation. Experimental results on synthetic and real-

world data sets verify the effectiveness and efficiency of our approach.
The remaining sections are organized as follows. In Sect. 2, we review the

related work. In Sect. 3, we introduce how to construct the influence relation-
ship graph and model the influence propagation at the level of groups, followed
by presenting our GLIMB algorithm in Sect. 4. Experimental results and our
findings are reported in Sect. 5 before concluding the paper in Sect. 6.
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2 Related Work

The related work to group-level influence maximization with budget constraint
can be classified into three categories, i.e., (1) influence relationship modeling,
(2) individual-level influence maximization, and (3) influence maximization with
budget constraint.

Influence relationship modeling aims at inferring the influence relationship
between entities. Existing work focuses on inferring individual-level influence
relationship based on historical infection statuses and infection time. Individ-
uals that are sequentially infected within a time interval are regarded to have
influence relationship [4,12]. Nonetheless, this idea is not appropriate to infer-
ring group-level influence relationship. Because that in a group, the infection
time of different individuals often vary a lot so that the time interval between
the infections of two groups is hard to be determined. To model the group-
level influence relationship, only a few approaches have been proposed. COLD
model [5] carries out this work via subject analysis, but cannot construct an
influence relationship graph for influence maximization. CSI model [11] regards
the individual-level influence relationship across two groups as the group-level
influence relationship, but requires the influence relationship between individu-
als, which is hard to obtain in practice. As CSI needs to calculate the strength
of influence relationship between each two individuals, its time complexity is
O(n2), where n is the number of individuals.

Individual-level influence maximization tries to find top k individuals that
can maximize the expected influence spread scope. The existing approaches
to this problem can be divided into two types, namely (1) greedy searching
approaches [1,7,15,16], which utilize the submodularity of influence propagation
model and keep selecting individuals that maximize current incremental spread
scope, and (2) heuristic searching approaches, which efficiently identify the can-
didate seeds satisfying some heuristic rules, e.g., having the highest degree [3],
influence ranking [6] or local influence [2]. Nonetheless, these approaches mostly
still require the influence relationship between individuals.

Influence maximization with budget constraint considers the cost of each seed,
and tries to make the best of a cost budget to maximize the influence spread
scope. Only a few literature [10,13] addresses this problem with a basic idea
of iteratively selecting a candidate seed that maximizes the incremental spread
scope over cost ratio. Among the existing approaches, the best guarantee for the
approximation ratio is (1 − 1/

√
e) [13], while our proposed GLIMB algorithm

provides at least a (1 − 1/
√
e)-approximation.

3 Group-Level Influence Propagation Model

In this paper, we assume that the underlying influence propagation between the
individuals follows the IC (Independent Cascade) model, which is one of the
most commonly used influence propagation models for individuals. Table 1 sum-
marizes the notations. Given a set S ⊆ V (V = {v1, . . . , vn} refers to the set of
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n individuals) of seed individuals, IC model works as follows: Let St be the set
of individuals newly infected at time t, with S0 = S and St ∩St+1 = ∅. In round
t+1, each infected individual u ∈ St tries to infect its uninfected neighbors (i.e.,
uninfected individuals having influence relationship with u) in V\

⋃
0≤j≤t Sj

independently with probability pu,v. When there are multiple infected individu-
als trying to infect the same uninfected individual simultaneously, the infections
can be carried out in any order. If the influence relationship between individuals
is given, IC model can help calculate the influence spread scope σ(S) of S, which
is the expected number of infected individuals given seed set S.

Nevertheless, in many real-world application scenarios of influence maximiza-
tion, the influence relationship between individuals is hard to obtain. It is often
the case that available data resources only include the historical infection state
ski ∈ {1, 0} of each individual vi ∈ V in the k-th (k ∈ {1, . . . ,κ}) outbreak of
an infection event, forming a historical infection data set D =

{
ski ∈ {1, 0} |

1 ≤ i ≤ n, 1 ≤ k ≤ κ
}
. In order to find out which seeds can bring the greatest

influence spread scope, the influence propagation model should be constructed
in advance. In this paper, we propose to carry out this work at the granularity

Table 1. Notations

Symbol Description Symbol Description

V The set of individuals M The set of groups of individuals in V

n The number of individuals in V m The number of groups in M

vi The i-th individual in V Mi The i-th group in M

S The set of seed groups, S ⊆ M κ The number of infection outbreaks

ski The historical infection state of vi in

the k-th infection outbreak

D The historical infection data set that

records each ski , where

k ∈ {1, . . . , κ}
X Any group in M |X| The number of individuals in X

x Infection status value of X,

x ∈ {0, 1}
G(M,E,W) The group-level influence

relationship graph

E The set of directed edges in

G(M,E,W)

W The set of edge weights of edges in E

Wij The edge weight of directed edge

(Mi,Mj)

pij The probability that Mi can

influence Mj

N′
Mi

The set of groups that can directly

influence Mi,

N′
Mi

= {Mj | (Mj ,Mi) ∈ E}

NMi
The set of groups that can be

directly influenced by Mi,

NMi
= {Mj | (Mi,Mj) ∈ E}

θi The infection ratio of Mi θt
i The infection ratio of Mi at time t

θi→j The pass ratio of influence on a

directed edge (Mi,Mj) from Mi to

Mj

θt
i→j The pass ratio of influence on a

directed edge (Mi,Mj) from Mi to

Mj at time t

θS→j The pass ratio of influence from S to

Mj

σ(S) The influence spread scope of S

MS→j The set of groups in all the path

from any seed group in S to Mj

ΓS→j The set of groups in MS→j that can

directly influence Mj

Ii→j The set of individuals in Mj that are

infected by Mi

IS→j The set of individuals in Mj that are

infected by S

c(Mi) The cost of infecting Mi b The cost budget

△σ(S,Mi) The incremental spread scope caused

by adding Mi in to S

δ(S,Mi) The ratio of incremental spread

scope △σ(S,Mi) over cost c(Mi)

L The set of candidate seed groups P The set of candidate seed group pairs
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of groups via the following two steps, namely (1) revealing influence relationship
between groups, and (2) modeling influence propagation between groups.

3.1 Revealing Influence Relationship Between Groups

Statistically speaking, if a group of individuals can influence another group, there
should be an association relationship between the two groups. The strength of
the influence can be reflected by an association probability. To check associa-
tion relationship, statistical independence testing is a commonly used approach.
Formally, for any infection status values x ∈ {0, 1} and y ∈ {0, 1} of groups X
and Y , if relationship p(x, y) = p(x)p(y) always holds, then X and Y are called
independent to each other, denoted as (X !Y ). Here, probabilities p(x), p(y)
and p(x, y) can be estimated based on the historical infection data set D under
the assumption that individuals in a same group are homogeneous [12]. With
this homogeneous assumption, the infection probability of each individual in a
group is equal to each other, and can be regarded as the infection probability
of the group. In other words, if we observed that 20% of individuals in a group
were infected by a disease, it indicates that the disease has a 20 percent chance
of infecting each individual of this group. Hence, we utilize D to estimate the
infection probability of each group. For example, in the k-th outbreak of an
infection event, pk(x = 1) =

∑
vi∈X ski /|X|, where |X| refers to the number of

individuals in X; then, considering all κ outbreaks of this infection event, we
have p(x = 1) =

∑κ
k=1 pk(x = 1)/κ and p(x = 0) = 1 − p(x = 1). Moreover,

according to the definitions of joint probability and conditional probability, we
can also estimate probabilities p(x, y) and p(x|y) based on D.

Nonetheless, sometimes, the independence between X and Y is not enough to
comprehensively express the association relationship between groups X and Y .
Because X may influence Y directly, or X may influence Y through group Z
even if X cannot directly influence Y . Both cases result in (X ̸ !Y ). To avoid this
ambiguity, we adopt conditional independence to reveal the direct association
relationship between groups X and Y . For any infection status values x ∈ {0, 1},
y ∈ {0, 1} and z ∈ {0, 1} of groups X, Y and Z, if p(x, y | z) = p(y | z)p(x|z)
always holds, then X is independent of Y conditioned on Z, denoted as (X !Y |
Z). The physical interpretation of (X !Y | Z) is the independence between X
and Y when the mediating effect of Z is excluded.

In information theory, conditional mutual information is commonly used to
quantify the conditional independence. Formally, given Z, the conditional mutual
information of X and Y , denoted by Inf(X,Y | Z), is calculated as

Inf(X,Y | Z) =
∑

z∈{0,1}
p(z)

∑
x∈{0,1}

∑
y∈{0,1}

p(x, y | z)log2
p(x, y | z)

p(x | z)p(y|z) .

(1)
Inf(X,Y | Z) = 0 indicates that (X !Y | Z). A higher Inf(X,Y | Z) indicates
a stronger direct association relationship between X and Y given Z. Moreover,
conditional mutual information has the following properties.
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Theorem 1. For any variable sets X, Y and Z, if the mutual information
Inf(X,Y ) of X and Y is equal to 0, then relationship Inf(X,Y | Z) = 0
always holds.

Proof. Since Inf(X,Y ) = Inf(X,Y | ∅), when Inf(X,Y ) = 0, we have
Inf(X,Y | ∅) = 0, indicating that X is independent of Y conditioned on ∅,
i.e. (X !Y | ∅). Then, we can have (X !Y | ∅∪Z) which is equal to (X !Y | Z),
due to strong union property of conditional independence relation, indicating
that Inf(X,Y | Z) = 0.

Theorem 2. For any variable sets X, Y , Z and W , if Inf(X,Y | Z) = 0, then
relationship Inf(X,Y | Z ∪ W ) = 0 always holds.

Proof. Inf(X,Y | Z) = 0 indicates that (X !Y | Z). Then, due to strong union
property of conditional independence relation, relationship (X !Y | Z ∪W ) also
holds, indicating that Inf(X,Y | Z ∪ W ) = 0.

With the help of conditional mutual information, if group X has a strong
direct association relationship with group Z, then we can add a directed edge
from X to Z and add Z into the neighbor set NX of X, indicating that X can
directly influence Z. When we check the direct association relationship between
X and group Y ̸∈ NX , the mediating effect of groups in NX should be excluded
by calculating Inf(X,Y | NX). Based on the above basic ideas, Algorithm1
provides a construction approach for the group-level influence relationship graph
G(M,E,W), in which M is the set of groups, E is the set of directed edges, and
W is the set of edge weights.

Algorithm1 takes as inputs the given group setM, and the historical infection
data set D, which is used for calculating probabilities required in the compu-
tation of conditional mutual information. The algorithm first initializes E, W,
and the neighbor set NMi for each group Mi ∈ M as empty sets (line 1), and
calculates the mutual information Inf(Mi,Mj) of each two groups in M (line
2), which is equal to the conditional mutual information Inf(Mi,Mj | ∅) of the

Algorithm 1. Construction of Group-Level Influence Relationship Graph
Input : Group set M; historical infection data set D.
Output: Influence relationship graph G(M,E,W).

1 Initial E ← ∅, W ← ∅, and an empty neighbor set NMi for each group Mi ∈ M;
2 Calculate Inf(Mi,Mj) for each two groups Mi,Mj ∈ M (i ̸= j);
3 for each Mi ∈ M do
4 for each Mj ∈ M (j ̸= i) having Inf(Mi,Mj) > 0 do
5 if Inf(Mi,Mj | NMi ) > ε then
6 NMi ← NMi ∪ {Mj } ;

7 for each Mj ∈ NMi do
8 E ← E ∪ {(Mi,Mj)} ; //(Mi,Mj) is a directed edge from Mi to Mj

9 Wij ← Inf(Mi,Mj | NMi\{Mj } ); //Wij is the weight of edge (Mi,Mj)
10 W ← W ∪ {Wij } ;
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two groups conditioned on ∅. Then, for each group Mi ∈ M, it identifies which of
other groups {Mj ∈ M | i ̸= j} have strong direct association relationship with
group Mi by checking whether Inf(Mi,Mj | NMi) is greater than a threshold
ε (line 5). Instead of adopting a user-specified ε, we suggest to determine the ε
based on mutual information Inf(Mi,Mj) of each two groups in M. Specifically,
by performing K-means with K = 2, the non-zero values of mutual information
can be classified into two parts. Let ε be the minimal value in the part contain-
ing greater mutual information values. Then, condition Inf(Mi,Mj | NMi) > ε
helps find direct association relationship that are strong enough. Groups that
satisfy the condition above will be added into the neighbor set NMi of Mi (line
6). Finally, for each Mj ∈ NMi , we add the directed edge (Mi,Mj) into the edge
set E (line 8), calculate the weight Wij of this edge (line 9), followed by adding
Wij into the edge weight W (line 10).

The overall time complexity of Algorithm1 is O(mnκ +m2 + 2αm2), where
m is the number of groups in M, n is the number of individuals in all groups
(usually m ≪ n), κ is the number of historical infection outbreaks recorded
in D, and α is the maximal number of groups that can be directly influenced
by each Mi ∈ M (i.e., α = max1≤i≤m |NMi |). To be specific, statistics for the
probabilities used for calculating conditional mutual information take O(mnκ)
time. Then, calculating mutual information in line 2 requires O(m2) time. The
time complexity of the loop of line 3 is O(2αm2). In the loop of line 3, the most
computationally expensive step is in line 5, i.e., the computation of conditional
mutual information. For eachMi andMj , it takesO(2|NMi |) time, where |NMi | ≤
α refers to the number of groups that can be directly influenced by group Mi.
In practice, the influence of each group is usually limited, and only a few groups
can be directly influenced by each group (α ≪ m). Furthermore, to reduce
the time complexity of line 5, users can adopt a greater threshold ε to reduce
the cardinality |NMi | of each set NMi and obtain a smaller α. Though, the
compensation of a greater ε is that the constructed graph will have less edges
which only capture the strongest direct association relationship. Besides, to avoid
unnecessary calculation in line 5, we carry out a pruning in line 4. According
to Theorems 1 and 2, if Inf(Mi,Mj) = 0, then Inf(Mi,Mj | NMi) = 0 always
holds. Thus, it is not necessary to calculate Inf(Mi,Mj | NMi) for each Mj ∈ M
(j ̸= i) having Inf(Mi,Mj) = 0.

With the influence relationship graph constructed by Algorithm1, in what
follows, we introduce how the influence is propagated between the groups on the
graph.

3.2 Modeling Influence Propagation Between Groups

In this section, we first introduce (1) the pass ratio of influence on each directed
edge, based on which we elaborate (2) the rules of influence propagation on the
influence relationship graph, followed by presenting (3) the function of influence
spread scope, which calculates the expected number of of infected individuals
given seed groups.
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Pass Ratio of Influence. For groups Mi, Mj ∈ M in the influence relationship
graph G(M,E,W), if there is a directed edge (Mi,Mj) ∈ E from Mi to Mj , then
Mi can directly influence Mj , and the strength of influence is proportional to the
edge weight Wij ∈ W. Among all the groups N′

Mj
= {Mℓ ∈ M | (Mℓ,Mj) ∈ E}

that can directly influence Mj , group Mi ∈ N′
Mj

can influence group Mj with a
probability pij = Wij/

∑
Mℓ∈N′

Mj

Wℓj .
Furthermore, according to IC model, uninfected individuals can only be influ-

enced by infected ones. Thus, when the infection ratio θj of Mj is less than 1, Mi

with a higher infection ratio θi (i.e., more infected individuals) has more chances
to influence Mj .

In brief, the pass ratio of influence on a directed edge (Mi,Mj) ∈ E, denoted
by θi→j , is affected by infection ratio θi of the influence source Mi, the influence
probability pij from Mi to Mj , and the infection ratio θj of the target group
Mj . Formally, θi→j can be calculated as θi→j = θi ×pij ×(1− θj). The physical
interpretation of θi→j is the newly-increased infection ratio of Mj caused by the
influence from Mi.

Rules of Influence Propagation. According to IC model, infected individuals
at time t (or round t) only have infectivity at time t + 1. Analogously, in the
process of group-level influence propagation, we calculate and record the infec-
tion ratio θti of each Mi ∈ M at time t, based on which we can deduce each
infection ratio θt+1

i at time t+ 1.
At time t = 0, if the set S of seed groups is given, the expected infection

ratio θ0j of Mj ∈ S can be predicted based on historical infection data.
At time t > 0, if the infection ratio of a group Mi ∈ M has increased at

time t − 1, then Mi will try to influence its neighbors Mℓ ∈ NMi through the
directed edge (Mi,Mℓ) ∈ E. For a target group Mℓ ∈ NMi , (1) if N′

Mℓ
= {Mi},

i.e., Mℓ will be only influenced by Mi, then the infection ratio θtℓ of Mℓ at time
t can be calculated as θtℓ = θt−1

ℓ + θti→ℓ, where θti→ℓ = θt−1
i ×piℓ ×(1 − θt−1

ℓ );
(2) if N′

Mℓ
= {Mi,Mk} and infection ratio of Mk has increased at time t − 1,

then Mi and Mk will influence Mℓ simultaneously at time t. Following the rules
of IC model, the influences can be carried out in any order. Let Mi execute the
influence first, we can calculate θti→ℓ in the same way, and exclude this newly-
increased infection ratio of Mℓ in the calculation of θtk→ℓ to avoid repeatedly
infecting the same part in Mℓ. Specifically, θtk→ℓ = θt−1

k ×pkℓ ×(1−θt−1
ℓ −θti→ℓ),

and the infection ratio ofMℓ at time t can be updated by θtℓ = θt−1
ℓ +θti→ℓ+θtk→ℓ.

The above calculation rules can be easily extended to the cases that more groups
influence Mℓ simultaneously.

Moreover, we consider that the process of influence propagation is acyclic,
i.e., once Mi pass its influence to Mj , Mj will not pass back its influence to Mi

any more. This consideration is commonly used in influence maximization [13].
When the infection ratio of each group does not increase any more, the influence
propagation will end.

Function of Influence Spread Scope. According to the rules of influence
propagation, each Mj ∈ M\S can be influenced by S iff there is at least one
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directed path from any seed group to Mj . Let MS→j denote the union of groups
in all the paths from any seed group in S to Mj , group set ΓS→j = MS→j ∩N′

Mj

refers to the groups that can directly influence Mj in MS→j . By combining the
influence from each Mk ∈ ΓS→j to Mj , we have the recursion formula for the
pass ratio of influence from S to Mj , i.e.,

θS→j =

{
1 −

∏
Mk∈ΓS→j

(1 − θS→k ×pkj), Mj ̸∈ S
θ0j , Mj ∈ S

(2)

Let |Mj | denote the number of individuals in group Mj , the function σ(S)
of influence spread scope can be be formulated as follows.

σ(S) =
∑

Mj∈M
|Mj | ×θS→j . (3)

Function σ(S) has the following properties.

Theorem 3. Function σ(S) is monotone.

Proof. We first proof that θS→j is monotone increasing, i.e., given G(M,E,W)
and S ⊆ T ⊆ M, for any Mj ∈ M, relationship θT→j ≥ θS→j always holds.
When Mj ∈ S, according to the definition of θS→j , we have θS→j = θT→j = θ0j .
Hence, relationship θS→j ≤ θT→j holds for Mj ∈ S. When Mj ̸∈ S, we
can proof relationship θS→j ≤ θT→j by induction. (1) For each Mk ∈ MS→j

which is directed influenced by S, if there is a directed path from T\S to Mk,
i.e., θT\S→k > 0, then θT→k > θS→k; otherwise θT→k = θS→k. (2) For each
Mℓ ∈ MS→j which is directed influenced by Mk, since θT→k ≥θS→k, we have
relationship 1−

∏
Mk∈ΓS→ℓ

(1− θT→k ×pkℓ) ≥1−
∏

Mk∈ΓS→ℓ
(1− θS→k ×pkℓ) =

θS→ℓ. Moreover, since S ⊆ T ⊆ M, we have MS→ℓ ⊆ MT→ℓ, and thus
ΓS→ℓ ⊆ ΓT→ℓ. Then, relationship θT→ℓ = 1 −

∏
Mk∈ΓT→ℓ

(1 − θT→k ×pkℓ) ≥
1−

∏
Mk∈ΓS→ℓ

(1−θT→k×pkℓ) holds, and hence relationship θT→ℓ ≥θS→ℓ holds.
(3) By induction, we can proof that for each group Mi ∈ MS→j , relationship
θT→i ≥θS→i holds. (4) If there is at least one path from S to Mj , then relation-
ship θT→j ≥ θS→j holds; otherwise, θS→j = 0, and relationship θT→j ≥ θS→j

also holds since θT→j ≥0. In summary, θS→j is monotone increasing.
Since a non-negative linear combination of monotone increasing functions

is still a monotone increasing function, function σ(S) is a monotone increasing
function.

Theorem 4. Function σ(S) is submodular.

Proof. We first proof the submodularity of θS→j , i.e., given G(M,E,W) and
S ⊆ T ⊆ M, for anyMi,Mj ∈ M, relationship θS∪{Mi}→j−θS→j ≥θT∪{Mi}→j−
θT→j always holds. (1) WhenMi ∈ S, we have θS∪{Mi}→j−θS→j = θT∪{Mi}→j−
θT→j = 0. Hence, the relationship θS∪{Mi}→j − θS→j ≥ θT∪{Mi}→j − θT→j

holds for Mi ∈ S. (2) When Mi ∈ T\S, we have θT∪{Mi}→j − θT→j = 0. Since
θS∪{Mi}→j −θS→j ≥0, the relationship θS∪{Mi}→j −θS→j ≥θT∪{Mi}→j −θT→j

holds for Mi ∈ T\S. (3) When Mi ̸∈ T, we proof the submodularity of θS→j
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at the granularity of individuals. Let θi→j denotes the newly-increased infection
ratio of Mj caused by Mi regardless of the influence of any other seed groups. As
Mj ̸∈ S ⊆ T, θ0j = 0. Hence, |Mj | ×θi→j is the expected number of individuals
(directly and indirectly) infected byMi. We denote these individuals by set Ii→j .
Similarly, sets IS→j and IT→j refer to the individuals (directly and indirectly)
infected by S and T, respectively, regardless of the influence of any other seed
groups. IS→j ⊆ IT→j since S ⊆ T. With sets Ii→j , IS→j and IT→j , we have
θS∪{Mi}→j − θS→j =

(
|Ii→j | − |Ii→j ∩ IS→j |

)
/|Mj |, and θT∪{Mi}→j − θT→j =(

|Ii→j |− |Ii→j ∩ IT→j |
)
/|Mj |. As IS→j ⊆ IT→j , we have |Ii→j ∩ IS→j | ≤ |Ii→j ∩

IT→j |, and thus
(
|Ii→j | − |Ii→j ∩ IS→j |

)
/|Mj | ≥

(
|Ii→j | − |Ii→j ∩ IT→j |

)
/|Mj |,

indicating that relationship θS∪{Mi}→j − θS→j ≥ θT∪{Mi}→j − θT→j holds for
Mi ̸∈ T, Mj ̸∈ S.

In brief, θS→j is submodular. Since a non-negative linear combination of
submodular functions is still a submodular function, function σ(S) is also sub-
modular.

Corollary 1. Given G(M,E,W), relationship σ({Mi}) ≥σ(S ∪ {Mi}) − σ(S)
holds for any group set S ⊂M and group Mi ∈ M\S.

Proof. Since σ(S) is submodular, i.e., given G(M,E,W) and T ⊆ S ⊆ M, for
any Mi ∈ M, relationship σ(T ∪ {Mi}) − σ(T) ≥σ(S ∪ {Mi}) − σ(S) always
holds, we have σ({Mi}) = σ(∅ ∪ {Mi}) − σ(∅) ≥σ(S ∪ {Mi}) − σ(S).

4 The GLIMB Algorithm

Given the constructed influence relationship graph G(M,E,W), the function
σ(S) of influence spread scope, and the cost c(Mi) for each group Mi ∈ M, in
this section, we address the problem of finding a set S of groups that maximizes
σ(S) under a cost budget constraint b, i.e., maxS⊆M σ(S), s.t.

∑
Mi∈S c(Mi) ≤ b.

An intuitive strategy, which can be denoted as NaiveGreedy, is to select at
each step a groupMi that maximizes the incremental spread scope over cost ratio
δ(S,Mi) =

(
σ(S∪{Mi})−σ(S)

)
/c(Mi) if c(Mi) is less than the remaining budget

[10,13]. However, this strategy is easy to plunge into local optima. For example,
assume there are three equal-sized groups M1, M2 and M3, θ01 = θ02 = θ03,
c(M1) = 0.9, c(M2) = c(M3) = 2, and cost budget b = 2. Let M1 be an isolated
group, while M2 and M3 are connected with influence probability one to each
other. Then, although M2 or M3 can maximize the spread scope under the cost
budget constraint, NaiveGreedy will select M1 as the seed group and stop, since
θ01|M1|/c(M1) > (θ02|M2|+ θ03|M3|)/c(M2) = (θ02|M2|+ θ03|M3|)/c(M3).

To avoid the drawbacks of NaiveGreedy method, an improved solution
known as ImprovedGreedy records the set Snaive of seed groups selected
by NaiveGreedy, and identifies the group Mmax having the largest influ-
ence scope and a cost no more than b, followed by returning set S =
argmax

(
σ(Snaive),σ({Mmax})

)
as the seed group set. It has been proven that

ImprovedGreedy provides an approximation ratio of (1− 1/
√
e), when the func-

tion of influence spread scope is monotone and submodular [13].
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Algorithm 2. The GLIMB Algorithm
Input : G(M,E,W); budget b; cost c(Mi) and infection ratio θ0

i for each
Mi ∈ M.

Output: Set S of seed groups.
1 Initial S ← ∅, L ← M; //L records the candidates for seed groups
2 Calculate σ({Mi} ) for each Mi ∈ M, Mλ ← argmaxMi∈M σ({Mi} );
3 while L ̸= ∅do
4 L ← L\{Mi ∈ L | c(Mi) > b −

∑
Mj∈S c(Mj)} ;

5 ℓ ← 0, MaxRatio ← 0;
6 for Mi ∈ L do

7 if σ({Mi} )
c(Mi)

> MaxRatio then

8 δ(S,Mi) ← △σ(S,Mi)/c(Mi); //△σ(S,Mi) = σ(S ∪ {Mi} ) − σ(S)
9 if δ(S,Mi) > MaxRatio then

10 MaxRatio ← δ(S,Mi), ℓ ← i;

11 if ∀Mk ∈ L\{Mℓ} , c(Mk) > b −
∑

Mj∈S∪{Mℓ} c(Mj) then

12 if c(Mk) ≥ c(Mℓ) then
13 Mℓ ← argmaxMi∈L, b≥

∑
Mj∈S∪{Mi}

c(Mj) △σ(S,Mi);

14 S ← S ∪ {Mℓ} , L ← L\{Mℓ} ;
15 else
16 P ← {< Mi,Mj >| Mi,Mj ∈ L\{Mℓ} , i ̸= j, △σ(S,Mi) +

△σ(S,Mj) > △σ(S,Mℓ), c(Mi) + c(Mj) ≤ b −
∑

Mj∈S c(Mj)} ;
17 while P ̸= ∅do
18 < Mi∗,Mj∗ >← argmax<Mi,Mj>∈P

(
△σ(S,Mi)+△σ(S,Mj)

)
;

19 if △σ
(
S ∪ {Mi∗} ,Mj∗

)
> △σ(S,Mℓ) then

20 S ← S ∪ {Mi∗ ∪ Mj∗} , L ← L\{Mi∗ ∪ Mj∗} ;
21 break;

22 else
23 P ← P\{< Mi∗,Mj∗ >} ;

24 else
25 S ← S ∪ {Mℓ} , L ← L\{Mℓ} ;
26 if L = ∅ and σ({Mλ} ) ≥ σ(S) then
27 S ← {Mλ} , L ← M\{Mλ} ;

Nevertheless, both NaiveGreedy and ImprovedGreedy have a high risk of
waste budge. For example, (1) Case 1: when the remaining budget is 4, and
there are still two candidates M1 and M2, of which the costs are 2 and 3,
respectively, assume that δ(S,M1) = 1 while δ(S,M2) = 0.8, NaiveGreedy and
ImprovedGreedy will select M1 and stop, although candidate M2 can bring a
greater incremental spread scope, which is 2.4 (it is 2 for M1); (2) Case 2: when
the remaining budget is 4, and there are still two candidates M1, M2 and M3,
of which the costs are 3, 2 and 2, respectively, assume that δ(S,M1) = 1 while
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δ(S,M2) = δ(S,M3) = 0.8, NaiveGreedy and ImprovedGreedy will select M1

and stop, although selecting the candidate portfolio of M2 and M3 can bring a
greater incremental spread scope, which is 3.2 (it is 3 for M1).

To avoid the above waste-budget cases, in Algorithm 2, we propose a novel
algorithm called GLIMB for the problem of influence maximization with budget
constraint.

The GLIMB algorithm takes as inputs the influence relationship graph
G(M,E,W), the cost budget b, the cost c(Mi) for each Mi ∈ M (assume that
∀Mi ∈ M, c(Mi) ≤ b), and the expected infection ratio θ0i for each Mi ∈ M
which is used in the calculation of influence spread scope. It first initializes an
empty set S to record the seed groups, and a set L which is initially set as M
to record which candidate groups are left for S (line 1), followed by calculating
σ({Mi}) of each Mi ∈ M (line 2). Then, it iteratively searches the currently
best candidate or candidate portfolio for seed groups. Each iteration has two
routine phases, namely (1) removing each group having a cost greater than cur-
rent remaining budget from set L (line 4), and (2) finding the group Mℓ ∈ L
that can maximize the incremental spread scope over cost ratio δ(S,Mℓ) for cur-
rent S (lines 5–10), and two extra phases which are carried out before ending,
namely (3) searching an alternative candidate or candidate portfolio (if any)
that can bring a greater incremental spread scope (lines 11–23), and (4) check-
ing whether the algorithm plunges into local optima with the strategy used by
ImprovedGreedy (lines 26–27).

The first extra phase (lines 11–23) plays the central role to help avoid waste-
budget cases. It works as follows. If each remaining candidate has a cost no less
than c(Mℓ), it is easy to prove that the remaining cost budget cannot afford more
than one alternative candidate. Thus, in the groups that can be afforded by the
remaining cost budget, we select the one that can bring the greatest incremental
spread scope (line 13) as the latest seed group (line 14). Otherwise, we find
out the set P of alternative candidate portfolios (a portfolio consists of two
candidates) that can be afforded by the remaining cost budget (line 16). In P, if
there is a candidate portfolio that can bring a greater incremental spread scope
than current △σ(S,Mℓ) (line 19), we add the two candidates in this portfolio
into S (line 20), and go to the next iteration of the loop of line 3 (line 21).

The time complexity of GLIMB is dominated by the time complexity of the
second routine phase (lines 4–10) and the first extra phase (lines 11–23). Let
τ be the maximum time required by calculating δ(S,Mi) for each candidate
group Mi ∈ L. The second routine phase requires O(m2τ) time since there are
at most m ×(m − 1) times of calculation on δ(S,Mi), where m is the num-
ber of groups in M. To avoid redundant computations in the second routine
phase, we adopt a pruning method based on Corollary 1, which indicates that
the incremental spread scope △σ(S,Mi) of Mi will not be greater than σ({Mi}).
In other words, for each incremental spread scope over cost ratio δ(S,Mi), the
upper bound is σ({Mi})/c(Mi). Hence, if this upper bound σ({Mi})/c(Mi) is
less than MaxRatio which records current maximal ratio of incremental spread
scope over cost, then this Mi definitely cannot maximize the incremental spread
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scope over cost ratio, and thus can be excluded to calculate the δ(S,Mi). The
first extra phase requires O

(
(|L|−1)2τ

)
time since there are at most |L|−1 can-

didate groups for the calculation of line 13 and (|L| − 1)2 candidate portfolios
for the calculation of line 19 (|L| ≤ m).

Moreover, GLIMB algorithm has the following performance guarantees.

Theorem 5. GLIMB provides at least a (1 − 1/
√
e)-approximation.

Proof. Without the execution of the first extra phase, the result of GLIMB is
equal to that of ImprovedGreedy. If (1) the first extra phase is executed and
finds an alternative candidate or candidate portfolio that can bring a greater
incremental spread scope, and (2) after this execution of the first extra phase,
the second extra phase is not executed till ending, then σ(S) > σ(S′); otherwise,
σ(S) = σ(S′). In brief, we have σ(S) ≥σ(S′).

With the monotone and submodular function σ(·), ImprovedGreedy provides
a (1 − 1/

√
e)-approximation. Thus, GLIMB can provide at least a (1 − 1/

√
e)-

approximation.

5 Experimental Evaluation

In this section, we first describe the data sets used for experiments, and then
verify the efficacy of the two algorithms proposed in this paper.

5.1 Experimental Setup

We adopt (1) LFR benchmark graphs [8] and (2) Amazon product co-purchasing
network [9], respectively, as the underlying individual-level influence relationship
graphs. A LFR benchmark graph can be generated by setting the number n of
nodes, the number m of communities (groups), the average size avg-s of com-
munities, and the average degree avg-d of each node. If there is an edge between
two nodes, we regard that these two nodes can directly influence each other.
We generate three series of LFR benchmark graphs with properties summarized
in Table 2. Amazon product co-purchasing network was crawled from Amazon
website. It contains 262111 nodes, each of which refers to a product, and 1234877
directed edges. A directed edge from node i to node j indicates that the i-th
product is frequently co-purchased with the j-th product. Community detection
approaches [14] can help divide the nodes into different number of groups.

Table 2. Properties of LFR benchmark graphs used for experiments

Graph data sets Group number m Average group size avg-s Average degree avg-d

LFR1.1–1.5 50, 100, 150, 200, 250 200 3

LFR2.1–2.5 200 50, 100, 150, 200, 250 3

LFR3.1–3.5 200 150 3, 5, 7 , 9 , 11



638 Q. Yan et al.

The historical infection data set D can be obtained by simulating κ times
of infection outbreaks on each underlying individual-level influence relationship
graph with randomly selected seed nodes in each simulation. In each infection
outbreak, each infected node tries to activate its uninfected neighbors with prob-
ability p. In all the experiments, κ is set to 50, the proportion of the seed nodes
is set to 10%, and p is set to 0.2.

5.2 Performance Study of Influence Relationship Graph
Construction

In this experiment, we carry out performance study on the construction of
group-level influence relationship graph by comparing our proposed approach,
i.e., Algorithm1, with the existing algorithm known as CSI [11] in terms of (1)
runtime for construction, and (2) effect to influence maximization. Since CSI
requires the influence relationship between individuals to estimate group-level
influence relationship, we give it a privilege that the underlying individual-level
influence relationship graphs are available for CSI.

Runtime for Graph Construction. To evaluate the effects of (1) group num-
ber m, (2) average group size avg-s, and (3) the compactness of individual-level
influence relationship (reflected by average degree avg-d) to the runtime for the
construction of group-level influence relationship graph, we carry out runtime
comparisons on graphs LFR1.1–1.5 that have varyingm, graphs LFR2.1–2.5 that
have varying avg-s, and graphs LFR3.1–3.5 that have varying avg-d, respectively.
For the Amazon product co-purchasing network that has a fixed number of nodes
and a fixed degree for each node, we only vary the number m of groups returned
by community detection from 50 to 250 with an interval of 50 (the corresponding
avg-s will also vary with the varying m).

Figures 1(a)–(d) illustrate the runtime comparison result on each graph data
set, from which we can have the following observations. (1) Our approach is
significantly faster than CSI on the graph construction. This is because the
time complexity of Algorithm1 is O(mnκ +m2 + 2αm2), which is linear to the
number n = m ×avg-s of nodes (individuals), while the time complexity of
CSI is quadratic to n. (2) The gradients of runtime curves of Algorithm1 in
Figs. 1(a) and (d) are greater than that in Figs. 1(b) and (c), indicating that the
number of groups is dominant affecting factor for the efficiency performance of
Algorithm1. (3) The compactness of individual-level influence relationship (i.e.,
avg-d) can also slightly affect the runtime of Algorithm1. This is because with
a higher average degree, each node is expected to spread its influence to more
neighbors, and thus more groups may have significant influence relationship,
resulting in that Algorithm1 needs to execute more computation of conditional
mutual information.

Effect to Influence Maximization. On the group-level influence relationship
graphs constructed by Algorithm1 and CSI, we perform our GLIMB algorithm
with the same paraments. Figures 1(e)–(h) illustrate the corresponding influence
spread scopes of the seed groups selected by GLIMB. From the figures, we can
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Fig. 1. (a)–(d): Runtime for the construction of group-level influence relationship graph
on different graph data sets. (e)–(h): The influence spread scopes of seed groups selected
by GLIMB on the corresponding constructed group-level influence relationship graphs.

observe that our proposed Algorithm1 can help our GLIMB algorithm to find
better seed groups that bring larger influence spread scopes.

In brief, compared with CSI which learns the influence relationship between
groups based on individuals, our proposed group-level approach can not only
achieve a better efficiency performance, but also help improve the results of
influence maximization.

5.3 Performance Study of GLIMB Algorithm

In this experiment, we verify the effectiveness and efficiency of our GLIMB algo-
rithm for the problem of influence maximization with budget constraint. For the
purpose of comparison, we modify the existing individual-level influence maxi-
mization approaches, including a state-of-the-art greedy searching method TIM
[15] and two canonical heuristic searching methods DegreeDiscount [3] and IRIE
[6], to search optimal seed groups with budget constraint by (1) considering the
number of individuals in each group as a weight during their estimation of influ-
ence spread scope, and (2) adopting an ImprovedGreedy-like strategy. Moreover,
the ImprovedGreedy approach [13] (denoted as Greedy in short) is also involved
in the comparison.

Comparison on Influence Spread Scope. We compare our GLIMB algo-
rithm with the other tested algorithms on all the LFR benchmark graph data sets
listed in Table 2 and all the Amazon graph data sets used in Sect. 5.2, and record
the influence spread scope when different number of seed groups are selected. Fig-
ures 2(a) and (b) illustrate the comparison results on LFR1.4 (in whichm = 200)
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Fig. 2. (a)–(b): Influence spread scopes of the seed groups selected by different tested
algorithms. (c)–(d): Scalability to number of groups.

and the Amazon graph data set containing 200 groups. From the figures, we can
observe that (1) the seed groups selected by GLIMB and Greedy always have
the significantly larger influence spread scopes than the other tested algorithms;
(2) when the budget is sufficient to afford more seed group portfolios, the seed
groups selected by GLIMB can bring a larger influence spread scope than the
seed groups selected by Greedy. Similar observations can be observed on the rest
of tested data sets.

Scalability Study. To investigate the scalability of GLIMB to the number m
of groups, in Figs. 2(c) and (d), we report the runtimes of GLIMB and the other
tested algorithms on LFR1.1 to 1.5 and the Amazon graph data sets, in which
the number m of groups varies from 50 to 250 with an interval of 50. From
the figures, we can have the following observations. (1) GLIMB is slightly more
efficient than Greedy. This is due to the pruning method adopted in GLIMB,
which reduces some redundant computation. (2) The gradient of IRIE’s runtime
curve is close to that of GLIMB’s and Greedy’s runtime curves, while IRIE’s
runtime is less than the runtimes of GLIMB and Greedy. This advantage in
runtime of IRIE may be from a lower coefficient of the dominant item in its time
complexity (3) The gradient of TIM’s runtime curve is slightly smaller than
that of GLIMB’s and Greedy’s runtime curves, since it has a O(m logm) time
complexity. (4) DegreeDiscount is the most efficient, although its performance
on influence maximization is often not comparable to GLIMB and Greedy.

In summary, with a compensation of more runtime, our GLIMB algorithm
can make a better use of cost budget to achieve a larger influence spread scope,
compared against the other tested approaches.

6 Conclusion

In this paper, we have studied the problem of group-level influence maximization
with budget constraint. Towards this, we have proposed an efficient construc-
tion approach for group-level influence relationship graphs, introduced how to
model influence propagation on the graph, and presented the GLIMB algorithm
to search the optimal seed groups with at least a (1 − 1/

√
e)-approximation.

Experimental results on both synthetic and real-world data sets have demon-
strated the efficacy of our approaches.
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