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Abstract. Most of the existing word embedding models only con-
sider the relationships between words and their local contexts (e.g.
ten words around the target word). However, information beyond lo-
cal contexts (global contexts), which reflect the rich semantic mean-
ings of words, are usually ignored. In this paper, we present a gener-
al framework for utilizing global information to learn word and text
representations. Our models can be easily integrated into existing lo-
cal word embedding models, and thus introduces global information
of varying degrees according to different downstream tasks. More-
over, we view our models in the co-occurrence matrix perspective,
based on which a novel weighted term-document matrix is factorized
to generate text representations. We conduct a range of experiments
to evaluate word and text representations learned by our models.
Experimental results show that our models outperform or compete
with state-of-the-art models. Source code of the paper is available at
https://github.com/zhezhaoa/cluster-driven.

1 Introduction

Word embedding models (also known as neural language model-
s) encode syntactic and semantic information of words into low-
dimensional real vectors, where words share similar meanings tend
to have similar representations. Generating word embedding is one
of the most fundamental tasks in the NLP literature. Word embed-
dings are widely used in tasks such as tagging and text classification,
and have been reported to bring significant improvements on those
tasks. Most word embedding algorithms are trained by modeling the
relationships between target words and their local contexts, which
is based on the distributional hypothesis of Harris: words in similar
contexts have similar meanings. However, global contexts, which
usually reflect semantic meanings of target words, are generally ig-
nored by these models. For example, words that often co-occur in the
same texts tend to reflect similar topics or sentiment tendencies, even
they seldom appear in each others’ local contexts.

As far as we know, there is still rare research which utilizes glob-
al context for word embedding training besides the following three
works. Huang et al. [8] propose GCANLM on the basis of C&W [2],
where authors use weighted average of word embeddings to repre-
sent texts (global contexts), and the embeddings of words and their
corresponding texts are trained to obtain higher scores. However,
C&W and GCANLM are slow in computation and are reported to
perform relatively poorly on various linguist tasks compared to state-
of-the-art methods, such as models in the word2vec toolkit * [19, 18].
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Paragraph Vector(PV), proposed by Le and Mikolov [12], intro-
duces global information into word2vec. PV embeds texts by predict-
ing the words they include, and thus introduces global information
into word embedding indirectly, though the aim of PV is training text
embedding. Sun et al. [22] demonstrate the superiority of PV (or the
variants of PV) on various word-level linguistic tasks. The problem
of PV is that, it has to give every text a vector. For large-scale datasets
such as Wikipedia, the number of texts is much larger than the vocab-
ulary size, which requires expensive computational resources during
the training process. Besides that, none of GCANLM and PV intro-
duce global information of different degrees according to different
applications. Intuitively, for tasks like word syntactic analogy, more
local information is preferred, while tasks such as sentiment analysis
tend to favor global information, where rich semantics are included.
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Figure 1. Visualization of forming clusters in two dimensional case.

In this paper, a more general and powerful framework of utiliz-
ing global context is proposed for learning improved word and tex-
t embedding, namely, the cluster-driven models. The main idea of
our models follow the concept of clustering algorithms. The mod-
els are trained to make the embedding of words in the same text to
form a cluster (as shown in figure 1). Different from other cluster-
ing algorithms, in our models, which word belongs to which cluster
is preordained and a word may belong to multiple clusters (a word
occurs in different texts). Nevertheless, the objectives of our models
are the same with other clustering methods: intra-cluster distances
are minimized while inter-cluster distances are maximized. As a re-
sult, our models extend words’ contexts from local windows to the
whole texts. Though our model is not based on neural networks, we
still call it embedding model since it is trained in an on-line, stochas-
tic fashion. The cluster-driven models can be used standalone, which
are able to capture rich semantic information, and can also be inte-
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grated into existing word embedding models easily, and hence the
degree of utilizing global information can be adapted to the require-
ments of different applications.

From word embedding to text embedding, considerable attention
has been paid to designing various Neural Networks (NNs) to learn
complex compositionality of texts, such as word order, sentence
structure and even document structure [7]. Word order is taken into
consideration in convolutional NNs (CNNs) [10] and recurrent NNs
(RNNs) [17, 3]; Recursive NNs (RecNNs) make fully use of syntac-
tic information by constructing neural networks on the basis of parse
tree [21]; Recently several works have been proposed to use combi-
nation of NNs to model the documents hierarchically [11, 23]. For
example, Li [15] uses recursive NN to learn sentence embeddings
from word emebddings and use recurrent NN to learn document em-
beddings from sentence embeddings. Though complex composition-
ality are learned upon word embedding, these models still don’t show
significant superiority over bag-of-words models [9]. In this paper,
we discover that with richer semantic word embeddings, superior
text embeddings, at least for sentiment analysis, can be obtained even
by simple strategy such as word embeddings averaging (VecAvg).
This paper also provides us better understanding of Paragraph Vec-
tor (PV), a very popular method for learning text embeddings. We
discover that the superiority of PV comes from the use of global in-
formation, rather than the way it trains text embeddings (it trains in
prediction manner).

For a thorough comprehension of the cluster-driven models, we
analyze it in the co-occurrence matrix perspective. Count-based and
embedding methods are two families for generating low dimensional
word and text representations. Count-based methods directly utilize
co-occurrence statistics and usually obtain dense representations by
factorizing co-occurrence matrix [4]. Count-based methods usually
served as poor baselines in various linguistic tasks until the works
done by Levy and Goldberg [13] and Pennington et al. [20], which
demonstrate that count-based models can compete with state-of-the-
art word embedding models [14]. In this paper, we extend their works
from word representations to text representations. We present count-
based counterparts of our cluster-driven models, based on which we
factorize a novel weighted matrix of term-document type. Experi-
mental results show this new count-based model can achieve compa-
rable results with state-of-the-art text embedding models, and even
outperforms previous approaches on small-scale datasets.

2 Models
2.1 Embedding Models Revisit: Train in Local
Manner

Word embedding models can capture the syntactic and semantic in-
formation of words from large-scale unlabeled corpus. In contrast to
traditional bag-of-words representations, relationship between word
embeddings mirrors the syntactic and semantic similarities between
two words. For example, words that share similar meanings are close
to each other, e.g. ‘strong’ and ‘powerful’. And embedding model-
s can also preserve some interesting linear translation patterns, e.g.
Vec(‘Madrid’) - Vec(‘Spain’) + Vec(‘France’) = Vec(‘Paris’).

Most word embedding algorithms are trained by maximizing the
log-likelihood of the probability of the target word given its local
context [1]:

|WN|
L(01,02) = ) logP(w;|wi*"**"") M
i=1

where w§°™**** denotes the local context of word w;. [WN| is the
number of training words in the whole dataset. Word embeddings
and parameters in neural network are respectively denoted by 6 and
0. Different word embedding models differ in how they define the
conditional probability and how they represent the local contexts.

2.2 Cluster-Driven Models: Train in Global
Manner

One obvious drawback of the existing models is that they don’t use
information beyond local contexts. For capturing global informa-
tion, two versions of the cluster-driven models are designed: pair-
wise model and centric model, both of which are trained by making
embeddings of words in the same text to form a cluster.

2.2.1 Pairwise Cluster-Driven (PCD)

In pairwise model, word pairs are sampled for distance adjustment
according to whether they are in the same text or not. The objective
function of the model consists of two components.

Minimizing intra-cluster distances The first component of the ob-
jective function is to decrease the distance between the embedding of
words in the same texts. A certain number of word pairs are sampled
and distances between them are minimized as the following objec-
tive:

IT] |ti] |POS|

Gf(@l) = ZZ Z B, ~pr;(w)intra_dis(ew,;, ew,) (2)

i=1 j=1 k=1

where intra_dis is used to measure the distance between two
words in the same text. It penalizes the case where embeddings
of two words in the same text are far away from each other.
ti={Wi1,Wi2,.....W;)¢,| } denotes i, text and T={tyto,.....,t;7}
denotes the whole dataset. ¢, denotes the embedding of word w.
For each word w;;, |POS| words in the same text are sampled from
the distribution PT;(w) and distances between them are minimized.
Intuitively, it is better to shorten the distance between two related
words, like ‘amazing’ and ‘amazingly’, instead of ‘amazing’ and
‘the’. It is also favorable that the probabilities of words pairs being
sampled decline as their distance increases, since very distant word
pairs tend to share less relevant information. However, in this paper,
PT;(w) is just the uni-gram distribution of the i;, text. We find
this simple strategy works pretty well if the number of word pairs
sampled is large enough.

Maximizing inter-cluster distances The second component of the
objective function is to increase the distance between embeddings
of words in different texts. Word pairs are sampled from the whole
dataset and the following objective function is maximized:

IT] |ti] INEG]|

Gf(@l) = ZZ Z Eyympp (wyinter_dis(ew,; , €w,) (3)

where inter_dis is used to measure the distance between two words in
different texts. It penalizes the case where the embedding of words in
different texts are close to each other. For each training word, | N EG|
words are drawn from distribution P, (w), a uni-gram distribution
raised to the n-th power [19].
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The final objective function of the model is as follows:

G(61) = G1 (61) — G% (6-) )

The size of the global contexts is much larger than local contexts.
Intuitively, models require much more training time to exploit global
contexts. However, in this model, global information can be utilized
efficiently and effectively through sampling.

2.2.2  Centric Cluster-Driven (CCD)

In centric model, centroid vector which has the same dimension with
word embedding is introduced to denote the center of each cluster.
Instead of adjusting distances between the embedding of words di-
rectly, we adjust distances between centroid vectors and word em-
beddings. Like the pairwise case, the objective of the centric model
also consists of two components. The first component is to mini-
mize the distances between the centroid vector and the embedding of
words in the corresponding text:

IT] 1t

Z thra dis(ew,;, ct’ 5 Q)

=1 j=1

61,Ct

where cf' denotes the centroid vector of the text #;. By introducing
centroid vectors, we indirectly decrease the distances between all
word pairs in the text.

The second component of the objective is to maximize the dis-
tances between the centroid vector and the embedding of words in
different texts:

IT| INEG|*|t;]
GS (61,ct) = Z Z Eo, ~p, (wyinter_ dzs(ewk,ct) 6)
=1 k=1

|NEG| words are drawn from distribution P,(w) for each training
word. Namely, | NEG]| * |t;| words are drawn for text #; and dis-
tances between the centroid vector and the embedding of these sam-
pled words are maximized.

Empirically, the centric model requires less training time to
achieve comparable results with the pairwise model. However, the
centric model requires much more memory since each text has a u-
nique centroid vector. Besides that, The centric model performs rel-
atively poorly in sentence-level texts. We speculate the reason is that
too much noise is introduced when utilizing a vector to represent on-
ly a few words.

2.2.3 Distance Measures

Distance/Similarity measures reflect the degree of closeness or sep-
aration of two embeddings. They are important for the performance
of models. In this paper, different distance measures are used ac-
cording to whether two words are in the same text or not. Table 1
lists two sets of distance measures. To make sure that global objec-
tives are in the same numeric range with local objectives, we add
sigmoid function on distance measures since most objectives of the
local embedding models are trained by maximizing the conditional
probabilities of target words. When we use the second set of distance
measures, the centric model is similar to PV-DBOW, a variant of PV
[12]. PV-DBOW can be viewed as a special case of cluster-driven
models when only negative sampling is used as softmax.

Table 1. Different sets of distance measures.
Intra-cluster Inter-cluster
Measuresl | (o(e1Te2) —1)2 | —(o(e1Te2) —0)2

Measures2 log( log(o(—e1Te2))

1
0(€1T€2))

2.3 Integrated Model

The cluster-driven models can be integrated into existing word em-
bedding models by linearly combining the local and global objective
functions:

(1 =X)(-

By adjusting )\, we can easily balance the local and global informa-
tion during the training process. When A equals to zero, the model is
the same with existing local embedding models. More global infor-
mation is introduced into the model as X increases. When A equals to
one, only global information is utilized to train word embeddings. In
section 5.2, we will demonstrate that the embedding trained in local
manner tends to capture syntactic information while the embedding
trained in global manner tends to capture semantic information. As a
result, we can train word embeddings of different properties accord-
ing to where embeddings are used. Figure 2 shows the framework of
the integrated model.
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Figure 2. Illustration of the integrated model.

2.4 From Word Embedding to Text Embedding

PV and VecAvg are two approaches for learning text embedding from
word embedding in an unsupervised framework [12]. Here, we use
PV to refer to the process of learning text embedding by predict-
ing the words it includes. Assumption behind PV is that a good text
embedding should be able to predict the words it includes in larger
probabilities, while assumption behind VecAvg is that a good tex-
t embedding should be similar with the words it includes. They are
both essentially bag-of-words models and enjoy the advantages of
being efficient and robust. In this paper, we discover that with rich
semantic word embedding, neural bag-of-words models like PV and
VecAvg can still rival the models that learn complex compositionali-
ty upon word embeddings.
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3 Theoretical Analysis

To better understand the cluster-driven models, we further explore
them in co-occurrence matrices perspective though they do not re-
quire to construct co-occurrence matrices at all. Following the the-
oretical analysis, we factorize the shifted positive pointwise mutual
information matrix (SPPMI) of term-document type via singular val-
ue decomposition (SVD) to obtain text representations. Count-based
models usually serve as poor baselines or are even seldom taken into
consideration for generating text representation [16]. However, we
discover that when suitable weighted co-occurrence matrix is factor-
ized, count-based models can still achieve comparable results with
state-of-the-art models.

3.1 Co-occurrence Matrix Perspective for
Cluster-Driven Model

Take CCD for example, we begin by rewriting its objective:

|T| [t )
> > intradis(ew,;, ct’)
i=1j=1 8
[T INEG|*[t4] ) ®
- By P, (wyinter_dis(ew, , ')
=1 k=1

For specific term-document pair (wq,1 ), the objective is:

c(wa, ty) * intra_dis(e,, , ct®)
()
—|ty] * |[NEG| % Py (wa) * inter_dis(ey, , ct®)

where c¢(wq,1p) is the number of times word w, appears in text 7 .
From equation 9, we can see more clearly that our model utilizes no
more information than term-document co-occurrence matrices and
some other basic statistics, such as the length of texts and words dis-
tribution. Next, we rewrite the equation by replacing intra_dis and
inter_dis with concrete distance measures:

c(Wa, tp) * (U(ewaTctb) —1)2
(10)

—[ty| % INEG| * Pn(wq) * (—(0(ew,” ct®) — 0)?)

c(Wa, tp) * log(1/o(ew,  ct®))
an
—[ty| % INEG| * Pp(wa) * log(o(—ew,” ct®))

Following the work done by Levy and Goldberg [13], we assume
that the objectives of different term-document pairs are independent
to each other. Therefore we can directly optimize the objective of
each specific pair. Without loss of generality, 7 is chosen to be /. We
take derivatives of objectives in equation 10 and 11 with respect to
wXct® and compare them to zero. In both cases, the objectives are
optimized when the inner product of specific term-document pairs
equals to the shifted pointwise mutual information (SPMI) of them:

c(Wa, ty)

|tb|*P1(ﬂ)a))_log(‘NEG|) (12)

wa' ct’ = log(

Therefore, optimizing equation 8 is implicitly factorizing a SPMI
matrix of term-document type. For PCD, we can easily prove that
it utilizes no more information than term-term matrix and it is im-
plicitly factorizing SPMI matrix of term-term type.

It is worth mentioning that assuming the objectives of different
term-document pairs are independent is not realistic, especially in
term-document case. A word may occur in many texts and a text
always contains multiple words. A word can affect many objectives,
so does a text. The independence of the objectives is a hypothesis that
is far from the real situation. However, the analysis above inspires us
to factorize this matrix to obtain improved text representations.

3.2 Shifted Positive PMI Matrix of Term-document
Type Factorization

Shifted PMI matrix can not be directly factorized since it contains too
many —oo (log0) values, which correspond to the term-document
pairs that are never observed in the dataset. A well-known substi-
tution for PMI matrix is positive PMI (PPMI). We factorize shifted
positive PMI (SPPMI) matrix of term-document type and it is defined
as follows:

max(PMI(w,t) —log(|[NEG]),0) (13)

Levy and Goldberg [13] and Levy et al. [14] factorize SPPMI term-
term matrix via SVD for acquiring dense word and context vectors.
Since all negative values are replaced by zeros, SPPMI term-term
matrix lose the information about which term pairs are negatively
associated and to what extent.

However, it is not the case for SPPMI matrix of term-document
type. We find that PMI term-document matrix usually contains rare
negative values besides —oo . Moreover, it is better to assume term-
document pairs are uninformative rather than negatively correlated if
they are not found in the dataset, because a text only includes hun-
dreds of words, which is small compared to vocabulary size. Viewed
from this point, SPPMI is a relatively ideal matrix to be factorized.
Experimental results show that text representation obtained by fac-
torizing this novel co-occurrence matrix can compete with or even
outperform state-of-the-art baselines.

4 Word Analogy Experiment
4.1 Datasets and Experimental Setup

The word analogy dataset proposed by Mikolov et al. [18] is to eval-
uate linguistic regularities of word representations. Questions in this
dataset are in the form: ‘ais to b as c is to _?°, which are answered by
finding the nearest neighbor of e,-ey+e.. Training corpus used for
word analogy task varies among different published results, and we
choose a comparatively widely used corpora Wikipedia2010 * as the
training data. Pre-processing includes tokenization, lowercasing and
substituting number with special character.

Stochastic gradient descent (SGD) is used for objective optimiza-
tion. We find that two distance measures in table 1 can be used inter-
changeably as long as they are used with suitable hyper-parameters,
such as learning rate and epoches. Here, distance measure 1 is used
for PCD and distance measure 2 is used for CCD. Two state-of-the-
art local context embedding models, skip-gram (SG) and continues
bag-of-words (CBOW), are used as alternatives for integration. The
above training protocols are applied to all experiments in this paper.

4 http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
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4.2 Integrated Model vs Local Model

As shown in table 2, when the global information is introduced into
the models, significant improvements are obtained on semantic anal-
ogy questions. Intuitively, global information can hardly provide any
information for capturing syntactic regularities. In this sense, glob-
al information is the noise and may hurt the models performance in
syntactic analogy questions. However, to our surprise, accuracies on
syntactic analogy questions do not decline when a certain degree of
global information is introduced. Overall, significant improvements
on total accuracies are obtained.

To further understand why global information is beneficial for
capturing semantic analogy regularities, we analyze some mistakes
made by local models. We discover that local models give the wrong
answers mainly for the reason that they fail to distinguish words
which have similar semantic meanings. Take an analogy question
‘son, daughter, grandfather, _?” for example. The correct answer is
‘grandmother’, but the local model returns the wrong answer ‘grand-
daughter’. We notice that when the model is trained in local manner,
the embedding of these two words are very close. Local information
is not enough to distinguish these two words. However, more infor-
mation is available when global information is introduced. For exam-
ple, ‘aged’, ‘life’, ‘maternal’ frequently occur in the global contexts
of ‘grandmother’, while they seldom occur in the global contexts of
‘granddaughter’. These different global contexts can help to distin-
guish the semantics of these two words.

Table 2. Comparison of the local and integrated models. For PCD, X and
|POS]| are set to be 0.1 and 5 respectively. For CCD, ) is set to be 0.6.
Hyper-parameter settings of the local embedding models follow the
word2vec toolkit.

Dim. | Model Sem. Syn. | Model Sem. Syn.
CBOW 557 59.9 SG 459  50.7
50 +PCD +40 -06 | +PCD +3.7 403
+CCD +38 +1.6 | +CCD +44 425
CBOW 695 71.0 SG 627  66.0
100 +PCD +39 +0.1 | 4PCD  +3.7 +0.2
+CCD +5.1 +1.5 | +CCD +4.1 -0.1

4.3 Comparison of Word Embedding Models

Different state-of-the-art word embedding models are compared in
table 3. The corpus size has been shown to be a minor factor com-
pared to the embedding dimensions. Therefore, we group results ac-
cording to the dimensions. Here, we still list the corpus size for keep-
ing consistent with other researches.

We can observe that CBOW has provided strong baselines on word
analogy dataset. By introducing global information upon CBOW,
more competitive results are achieved. We can observe that our
models perform consistently better than previous state-of-the-art ap-
proaches in all dimension settings.

PDC and HDC also introduce global information into word em-
beddings. The source of superiority of our models to PDC and HDC
comes from the choice of A\ values, which controls the degrees of
global information utilized during the training. Suitable A can en-
hance the accuracy in semantic questions significantly without hurt-
ing the accuracy in syntactic questions. We also find that different
types of word analogy tasks favor different A, which will be further
explored in our future work.

Table 3. Comparison of different word embedding models on word
analogy task. The results are grouped according to the dimensions of word
embedding. The best methods in each group are underlined and the best in

the whole table are also in bold
Model Dim. Size Sem. Syn. Tot.
C&W[18] 50 0.66B 9.3 123 11.0
GCANLM[18] 50 1B 133 116 123
GLOVE|20] 50 6B 485 444 462

CBOW 50 IB | 557 599 583
SG 50 1B | 459 507 489
PDC[22] 50 IB | 612 551 579
HDC[22] 50 IB | 578 498 534
CCDcpow 50 IB | 595 615 60.7
CCDsc 50 1B | 503 3532 518
GLOVE[20] 100 1.6B | 675 543 603
CBOW 100 1B | 695 710 704
SG 100 IB | 627 660 64.7
PDC[22] 100 IB | 728 684 704
HDC[22] 100 IB | 69.6 643 66.7
CCDcpow 100 1B 746 725 733
CCDsc 100 1B | 668 659 663

GLOVE[20] 300 6B 774 610 717
GLOVE|20] 300 42B 819 693 750

CBOW 300 1B 746 740 742
PDC[22] 300 1B 796 705 748
HDC[22] 300 1B 797 617 73.1

CCDcpow 300 IB | 825 754 781

S Sentiment Analysis Experiment
5.1 Datasets and Experimental Setup

Four sentiment analysis datasets are used to evaluate the effective-
ness of our models. Datasets RT-s and Subj include sentence-level
texts while IMDB and RT-2k include document-level texts. Since RT-
s and RT-2k datasets only contain limited snippets or documents, ad-
ditional texts in IMDB dataset are added to them during the training
process.

Text embeddings obtained by our models can be regarded as texts
features and then fed to logistic regression classifier [6]. 10% of the
training set is selected as the validation set to identify optimal hyper-
parameters, such as learning rate, | POS| and A. IMDB dataset has
train/test split. The rest three datasets are evaluated by 10-fold cross-
validation.

5.2 Words Semantic and Syntactic Relatedness
Analysis

We evaluate the quality of word embeddings by judging if the top
k nearest neighbors are semantic or syntactic related to the target
word. Models are trained on a movie review dataset, IMDB. Both
qualitative and quantitative results are presented, which shed some
light on the reason why global information is preferred for sentiment
analysis tasks.

From Table 4, we can observe the local model tends to return syn-
tactic related words, while the global model tends to return seman-
tic related words. For example, word ‘best’ is the neighbor of word
‘worst” when the local model is used. Both words are superlative ad-
jectives, but they have opposite sentiment polarities. When trained
in global manner, word ‘worst’ has the neighbor word ‘0/10°, which
indicates the lowest user rating score in a movie review. Though they
have different POS tags, they share exactly the same sentiment ten-
dency.

In addition to just giving several examples and understanding them
intuitively, word embedding properties are further analyzed quantita-
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tively. Two widely used evaluation criteria in information retrieval lit-
erature, average mean precision and DCG@ 10, are respectively used
to evaluate the syntactic and semantic relevance of ranked neigh-
bor lists to the target words. Specifically, 100 target words are sam-
pled in the corpus, and top 30 neighbors of each word are obtained.
Whether two words are syntactically related are judged by checking
if they have the same POS tags. The semantic relatedness between t-
wo words are obtained from the average of judgments from 5 person-
s. Figure 3 demonstrates that when global information is increasingly
introduced into the model, the embeddings reflect more semantic in-
formation and are less constrained by syntactic regularities.

Table 4. Illustration of the nearest neighbors of the target words.

Neighbors
Target Word By Local Model £ By Global Model
amazing great, wonderful 10/10, amazingly
worst dumbest, best 0/10, zero
worthless talentless, untalented 1/10, lowest
14
0.9
0.8
2 0.7
% 0.6
Bos
2 04
5 03
0.2
0.1
0 !
lambda 0 0.33 0.5 0.67 1

Sem. Syn.

Figure 3. Evaluating the semantic and syntactic information contained in
word embedding quantitatively.

5.3 Sentiment Analysis Prefer Global Information

As discussed in Section 2.4, two simple neural bag-of-words meth-
ods, PV and VecAvg, are used for generating text embeddings. From
Figure 4, we can observe that more global information is preferred
for document-level sentiment analysis tasks. Nearly 5 percent im-
provements are witnessed when global information is introduced. In
fact, only about 2 percent improvements are obtained when word
order information is taken into consideration in [24]. In this sense
global information is of vital importance for document-level senti-
ment analysis. The performances of PCD and CCD are almost the
same on document-level dataset. Therefore, Figure 3 only shows ac-
curacies in the CCD case for the sake of space saving. For sentence-
level datasets, introducing global information can not improve ac-
curacy significantly since local windows usually already cover most
of the sentences. However, strong results are obtained by using the
cluster-driven models standalone, which requires less training time
and computational resources.

From Figure 4, we can also observe that PV does not perform bet-
ter than VecAvg. In contrast to the conclusion from [12], we discover
that PV is not superior to VecAvg. In fact, they are both essentially
bag-of-words models, where order information is totally ignored.

5 http://github.com/mesnilgr/iclrl5

Accuracies in IMDB dataset

Accuracies in RT-2k dataset

92, 91.1 g 90.4
90.7 1 90.0 7 90.0

P 91 90.5 g 0
2 90 T 8
& g 89
2 89 g 88
-] 87
< <

88 87.0 86

87 85

86 — > 84 -
lambda © 033 05 067 1 lambda 0 033 05 067 1

== VecAvg - PV — Concatenation - VecAvg = PV — Concatenation

Figure 4. Accuracies on two document level datasets when global
information is introduced in different degrees. Concatenation of PV and
VecAvg performs better.

Table 5. Results from row 3 and 4 are from Mesnil et al [17]. Their work
publishes the source code’ and argues that the results provided by Le and
Mikolov [12] can not be reproduced. For document-level datasets, integrated
models are used while for sentence-level datasets, the cluster-driven models
are used standalone. VecAvg is used to generate text embedding from word
embedding. CON. (row 9) represents the concatenation of VecAvg and PV.
The models are grouped according to how they exploit information in the
text. The best methods in each group are underlined and the best in the
whole table are also in bold.

Category Model RTs Subj IMDB RT2k

SVM-uni[24] 762 90.8 87.0 86.3
NBSVM-uni[24] | 78.1 924 88.3 87.8
PV-DM[17] 769 91.7 89.6 88.8
PV-DBOW[17] 76.1  90.1 89.1 88.7

bag-of-words DAN-RAND[9] | 773 - 88.8 -
DAN([9] 803 - 89.4 -

PCD 780 924 904 897

CCD 754 909 906  90.1

CON. 785 926 911 904

SVM-bi[24] 7177 91.7 89.2 87.4
NBSVM-bi[24] 794 932 91.2 89.5

words order NBSVM-tri[17] - - 91.9 -
RNN-LM[17] - - 86.6 -

Ensemble[17] - - 92.6 -

SA-LSTM([3] - - 92.8 -

CNN[10] 815 936 - -

DCNNI5] - - 89.4 -

RecNNJ[21] 71.7 - - -

complex structure | RecNN-RNN[15] - - 87.0 -
WNNI[15] 77.8 - 90.2 -

BENNT[15] 77.2 - 91.0 -

5.4 Comparison of Sentiment Analysis Models

In Table 5, our models are compared with state-of-the-art sentimen-
t analysis techniques, which are categorized according to how they
exploit information in the text. One of the simplest representations is
bag-of-words (BOW), where order information is totally discarded.
Though BOW seems to be oversimplified, it still enjoys the advan-
tages of being efficient, robust and concise. Word order is often im-
portant for text understanding. Bag-of-ngrams models use n-grams
as features to capture words order in short context. CNNs use convo-
lutional filters to extract n-gram information from texts. RNNs model
texts sequentially and in theory can capture long-distance patterns in
natural languages. Beyond word orders, more complex information
such as syntax, relations among sentences is considered to train better
text representations. Though information such as order and syntax is
important for understanding texts, it always comes at a cost. We sur-
prisingly observe that, even though our models are essentially bag-
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of-words models, they can even compete with models which exploit
complex information of texts. Since our models ignore word order
and syntactic information, they require less training time and com-
putational resources compared to other state-of-the-art approaches.

Our models are also robust and concise. They perform well on both
sentence and document level datasets. In contrast, models like CNNs
and RecNNs are hard to extend to document-level dataset. Besides
that, neural networks or their combinations usually have a large num-
ber of hyper-parameters and require careful hyper-parameter tuning.
Their performance also closely rely on several sub-tasks, such as pre-
trained word embedding and parsing.

5.5 Embedding Models vs. Count-based Models

Almost all the recent works on sentiment analysis take count-based
methods as poor baselines. However, work in section 3 inspires
us to factorize SPPMI matrix of term-document type. The hyper-
parameter includes shifted-constant | N EG/| and the threshold for re-
moving low frequency words, which are chosen by validation set. We
compare four approaches which utilize exact the same source of in-
formation: term-document co-occurrence matrix. As shown in table
6, the novel count-based method can achieve comparable accuracies
with state-of-the-art embedding methods such as PV-DBOM and C-
CD, and is even more robust when dataset is small. We can observe
that the performance of embedding models is poor on RT-2k dataset,
unless additional unlabeled data is included.

Table 6. Comparison between count-based and embedding methods for
sentiment analysis. Results of LSA are from Maas et al. [16]. Results of
CCD are different from table 5 since results in table 5 are obtained by using
both local and global information. Results of CCD in table 6 only utilize
global information, where only term-document matrix information is taken
into consideration.

Model IMDB | RT2k | RT2k+Unlabeled
SPPMI 89.6 89.2 89.7
LSA 84.0 82.8 -
PV-DBOW 89.6 85.4 89.5
CCD 90.5 85.7 90.0

6 Conclusion

In this paper, we introduce the cluster-driven models to exploit glob-
al information to learn better word and text embeddings. When the
models are used standalone, trained word embeddings can capture
rich semantics. The models can also be integrated into existing lo-
cal embedding models to introduce global information of different
degrees. Besides that, analyzing the model in co-occurrence matrix
perspective inspires us to factorize SPPMI matrix of term-document
type to obtain text representations. From experimental results we can
obtain several conclusions:

e Global information enriches the semantic information contained
in word embeddings. Improvements are witnessed on all experi-
ments by introducing global information into the models.

e Bag-of-words models can still compete with complex deep neural
networks when global information is exploited. We also discover
that the superiority of PV comes from the introduction of global
information. Training text embedding in prediction manner (PV)
is not superior to word embedding average (VecAvg).

e Count-based models are not inferior to embedding models. Strong
results on sentiment analysis are achieved by factorizing a novel
term-document matrix.
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