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Abstract

The existing word representation method-
s mostly limit their information source to
word co-occurrence statistics. In this pa-
per, we introduce ngrams into four repre-
sentation methods: SGNS, GloVe, PPMI
matrix, and its SVD factorization. Com-
prehensive experiments are conducted on
word analogy and similarity tasks. The
results show that improved word repre-
sentations are learned from ngram co-
occurrence statistics. We also demonstrate
that the trained ngram representations are
useful in many aspects such as finding
antonyms and collocations. Besides, a
novel approach of building co-occurrence
matrix is proposed to alleviate the hard-
ware burdens brought by ngrams.

1 Introduction

Recently, deep learning approaches have achieved
state-of-the-art results on a range of NLP tasks.
One of the most fundamental work in this field
is word embedding, where low-dimensional word
representations are learned from unlabeled corpo-
ra through neural models. The trained word em-
beddings reflect semantic and syntactic informa-
tion of words. They are not only useful in reveal-
ing lexical semantics, but also used as inputs of
various downstream tasks for better performance
(Kim, 2014; Collobert et al., 2011; Pennington
et al., 2014).

Most of the word embedding models are trained
upon <word, context> pairs in the local win-
dow. Among them, word2vec gains its popu-
larity by its amazing effectiveness and efficien-
cy (Mikolov et al., 2013b,a). It achieves state-

of-the-art results on a range of linguistic tasks
with only a fraction of time compared with pre-
vious techniques. A challenger of word2vec is
GloVe (Pennington et al., 2014). Instead of train-
ing on <word, context> pairs, GloVe directly uti-
lizes word co-occurrence matrix. They claim that
the change brings the improvement over word2vec
on both accuracy and speed. Levy and Goldberg
(2014b) further reveal that the attractive properties
observed in word embeddings are not restricted to
neural models such as word2vec and GloVe. They
use traditional count-based method (PPMI matrix
with hyper-parameter tuning) to represent word-
s, and achieve comparable results with the above
neural embedding models.

The above models limit their information source
to word co-occurrence statistics (Levy et al.,
2015). To learn improved word representation-
s, we extend the information source from co-
occurrence of ‘word-word’ type to co-occurrence
of ‘ngram-ngram’ type. The idea of using ngrams
is well supported by language modeling, one of the
oldest problems studied in statistical NLP. In lan-
guage models, co-occurrence of words and ngrams
is used to predict the next word (Kneser and Ney,
1995; Katz, 1987). Actually, the idea of word em-
bedding models roots in language models. They
are closely related but are used for different pur-
poses. Word embedding models aim at learning
useful word representations instead of word pre-
diction. Since ngram is a vital part in language
modeling, we are inspired to integrate ngram sta-
tistical information into the recent word represen-
tation methods for better performance.

The idea of using ngrams is intuitive. However,
there is still rare work using ngrams in recent rep-
resentation methods. In this paper, we introduce
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ngrams into SGNS, GloVe, PPMI, and its SVD
factorization. To evaluate the ngram-based mod-
els, comprehensive experiments are conducted on
word analogy and similarity tasks. Experimental
results demonstrate that the improved word repre-
sentations are learned from ngram co-occurrence
statistics. Besides that, we qualitatively evaluate
the trained ngram representations. We show that
they are able to reflect ngrams’ meanings and syn-
tactic patterns (e.g. ‘be + past participle’ pattern).
The high-quality ngram representations are useful
in many ways. For example, ngrams in negative
form (e.g. ‘not interesting’) can be used for find-
ing antonyms (e.g. ‘boring’).

Finally, a novel method is proposed to build n-
gram co-occurrence matrix. Our method reduces
the disk I/O as much as possible, largely alle-
viating the costs brought by ngrams. We uni-
fy different representation methods in a pipeline.
The source code is organized as ngram2vec toolk-
it and released at https://github.com/
zhezhaoa/ngram2vec.

2 Related Work

SGNS, GloVe, PPMI, and its SVD factorization
are used as baselines. The information used by
them does not go beyond word co-occurrence s-
tatistics. However, their approaches to using the
information are different. We review these meth-
ods in the following 3 sections. In section 2.4, we
revisit the use of ngrams in the deep learning con-
text.

2.1 SGNS

Skip-gram with negative sampling (SGNS) is
a model in word2vec toolkit (Mikolov et al.,
2013b,a). Its training procedure follows the ma-
jority of neural embedding models (Bengio et al.,
2003): (1) Scan the corpus and use <word,
context> pairs in the local window as training
samples. (2) Train the models to make words use-
ful for predicting contexts (or in reverse). The de-
tails of SGNS is discussed in Section 3.1. Com-
pared to previous neural embedding models, S-
GNS speeds up the training process, reducing the
training time from days or weeks to hours. Also,
the trained embeddings possess attractive proper-
ties. They are able to reflect relations between two
words accurately, which is evaluated by a fancy
task called word analogy.

Due to the above advantages, many models are

proposed on the basis of SGNS. For example,
Faruqui et al. (2015) introduce knowledge in lex-
ical resources into the models in word2vec. Zhao
et al. (2016) extend the contexts from the local
window to the entire documents. Li et al. (2015)
use supervised information to guide the training.
Dependency parse-tree is used for defining contex-
t in (Levy and Goldberg, 2014a). LSTM is used
for modeling context in (Melamud et al., 2016)
Sub-word information is considered in (Sun et al.,
2016; Soricut and Och, 2015).

2.2 GloVe
Different from typical neural embedding model-
s which are trained on <word, context> pairs,
GloVe learns word representation on the basis of
co-occurrence matrix (Pennington et al., 2014).
GloVe breaks traditional ‘words predict contexts’
paradigm. Its objective is to reconstruct non-zero
values in the matrix. The direct use of matrix
is reported to bring improved results and higher
speed. However, there is still dispute about the
advantages of GloVe over word2vec (Levy et al.,
2015; Schnabel et al., 2015). GloVe and other em-
bedding models are essentially based on word co-
occurrence statistics of the corpus. The <word,
context> pairs and co-occurrence matrix can be
converted to each other. Suzuki and Nagata (2015)
try to unify GloVe and SGNS in one framework.

2.3 PPMI & SVD
When we are satisfied with the huge promotions
achieved by embedding models on linguistic tasks,
a natural question is raised: where the superior-
ities come from. One conjecture is that it’s due
to the neural networks. However, Levy and Gold-
berg (2014c) reveal that SGNS is just factoring P-
MI matrix implicitly. Also, Levy and Goldberg
(2014b) show that positive PMI (PPMI) matrix
still rivals the newly proposed embedding mod-
els on a range of linguistic tasks. Properties like
word analogy are not restricted to neural model-
s. To obtain dense word representations from PP-
MI matrix, we factorize PPMI matrix with SVD, a
classic dimensionality reduction method for learn-
ing low-dimensional vectors from sparse matrix
(Deerwester et al., 1990).

2.4 Ngram in Deep Learning
In the deep learning literature, ngram has shown
to be useful in generating text representations. Re-
cently, convolutional neural networks (CNNs) are
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reported to perform well on a range of NLP tasks
(Blunsom et al., 2014; Hu et al., 2014; Severyn and
Moschitti, 2015). CNNs are essentially using n-
gram information to represent texts. They use 1-D
convolutional layers to extract ngram features and
the distinct features are selected by max-pooling
layers. In (Li et al., 2016), ngram embedding is in-
troduced into Paragraph Vector model, where tex-
t embedding is trained to be useful to predict n-
grams in the text. In the word embedding liter-
ature, a related work is done by Melamud et al.
(2014), where word embedding models are used
as baselines. They propose to use ngram language
models to model the context, showing the effec-
tiveness of ngrams on similarity tasks. Another
work that is related to ngram is from Mikolov et al.
(2013b), where phrases are embedded into vec-
tors. It should be noted that phrases are different
from ngrams. Phrases have clear semantics and
the number of phrases is much less than the num-
ber of ngrams. Using phrase embedding has little
impact on word embedding’s quality.

3 Model

In this section, we introduce ngrams into SGNS,
GloVe, PPMI, and SVD. Section 3.1 reviews the
SGNS. Section 3.2 and 3.3 show the details of in-
troducing ngrams into SGNS. In section 3.4, we
show the way of using ngrams in GloVe, PPMI,
and SVD, and propose a novel way of building n-
gram co-occurrence matrix.

3.1 Word Predicts Word: the Revisit of
SGNS

First we establish some notations. The raw input
is a corpus T = {w1,w2,......,w|T |}. Let W and C
denote word and context vocabularies. θ is the pa-
rameters to be optimized. SGNS’s parameters in-
volve two parts: word embedding matrix and con-
text embedding matrix. With embedding ~w ∈ Rd,
the total number of parameters is (|W|+|C|)*d.

The SGNS’s objective is to maximize the condi-
tional probabilities of contexts given center words:

|T |∑
t=1

[ ∑
c∈C(wt)

log p(c|wt; θ)

]
(1)

where C(wt) = {wi, t− win ≤ i ≤ t + win and i 6= t}
and win denotes the window size. As illustrat-
ed in figure 1, the center word ‘written’ predict-
s its surrounding words ‘Potter’, ‘is’, ‘by’, and

Figure 1: Illustration of ‘word predicts word’.

‘J.K.’. In this paper, negative sampling (Mikolov
et al., 2013b) is used to approximate the condition-
al probability:

p(c|w) = σ(~wT~c)
k∏

j=1

E
cj∼Pn(C)

σ(−~wT ~cj) (2)

where σ is sigmoid function. k samples (from c1
to ck) are drawn from context distribution raised
to the power of n.

3.2 Word Predicts Ngram
In this section, we introduce ngrams into context
vocabulary. We treat each ngram as a normal word
and give it a unique embedding. During the train-
ing, the center word should not only predict its sur-
rounding words, but also predict its surrounding n-
grams. As shown in figure 2, center word ‘written’
predicts the bigrams in the local window such as
‘by J.K.’. The objective of ‘word predicts ngram’
is similar with the original SGNS. The only differ-
ence is the definition of the C(w). In ngram case,
C(w) is formally defined as follows:

C(wt) =
N⋃

n=1

{wi:i+n|wi:i+n is not wt AND

t− win ≤ i ≤ t + win− n + 1}
(3)

where wi:i+n denotes the ngram wiwi+1...wi+n−1

and N is the order of context ngram. Two points
need to be noticed from the above definition. The
first is how to determine the distance between cen-
ter word and context ngram. In this paper, we use
the distance between the word and the ngram’s
far-end word. As show in figure 2, the distance
between ‘written’ and ‘Harry Potter’ is 3. As a
result, ‘Harry Potter’ is not included in the cen-
ter word’s context. This distance definition en-
sures that the ngram models don’t use the infor-
mation beyond the pre-specified window, which
guarantees fair comparisons with baselines. An-
other point is whether the overlap of word and n-
gram is allowed or not. In the overlap situation,
ngrams are used as context even they contain the
center word. As the example in figure 2 shows,
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Figure 2: Illustration of ‘word predicts ngram’.

ngram ‘is written’ and ‘written by’ are predicted
by the center word ‘written’. In the non-overlap
case, these ngrams are excluded. The properties
of word embeddings are different when overlap is
allowed or not, which will be discussed in experi-
ments section.

3.3 Ngram Predicts Ngram
We further extend the model to introduce ngram-
s into center word vocabulary. During the train-
ing, center ngrams (including words) predict their
surrounding ngrams. As shown in figure 3, center
bigram ‘is written’ predicts its surrounding word-
s and bigrams. The objective of ‘ngram predicts
ngram’ is as follows:

|T |∑
t=1

Nw∑
nw=1

[ ∑
c∈C(wt:t+nw )

log p(c|wt:t+nw ; θ)

]
(4)

where Nw is the order of center ngram. The defi-
nition of C(wt:t+nw) is as follows:

Nc⋃
nc=1

{wi:i+nc |wi:i+nc is not wt:t+nw AND

t− win + nw − 1 ≤ i ≤ t + win− nc + 1}
(5)

where Nc is the order of context ngram. To this
end, the word embeddings are not only affected
by the ngrams in the context, but also indirect-
ly affected by co-occurrence statistics of ‘ngram-
ngram’ type in the corpus.

SGNS is proven to be equivalent with factor-
izing pointwise mutual information (PMI) ma-
trix (Levy and Goldberg, 2014c). Following their
work, we can easily show that models in section
3.2 and 3.3 are implicitly factoring PMI matrix
of ‘word-ngram’ and ‘ngram-ngram’ type. In the
next section, we will discuss the content of intro-
ducing ngrams into positive PMI (PPMI) matrix.

3.4 Co-occurrence Matrix Construction
Introducing ngrams into GloVe, PPMI, and SVD
is straightforward: the only change is to replace

Figure 3: Illustration of ‘ngram predicts ngram’.

word co-occurrence matrices with ngram ones. In
the above three sections, we have discussed the
way of taking out <word(ngram), word(ngram)>
pairs from a corpus. Afterwards, we build the co-
occurrence matrix upon these pairs. The rest steps
are identical with the original baseline models.

Win Type #Pairs

2
uni uni 0.36B
uni bi 1.14B
uni tri 1.40B
bi bi 2.78B
bi tri 3.65B

5
uni uni 0.91B
uni bi 2.79B
uni tri 3.81B
bi bi 7.97B

Table 1: The number of pairs at different settings.
The type column lists the order of ngrams consid-
ered in center word/context vocabularies. For ex-
ample, uni bi denotes that center word vocabulary
contains unigrams (words) and context vocabulary
contains both unigrams and bigrams. The setting
of other hyper-parameters is discussed in Section
4.2.

However, building the co-occurrence matrix is
not an easy task as it apparently looks like. The
introduction of ngrams brings huge burdens on the
hardware. The matrix construction cost is closely
related to the number of pairs (#Pairs). Table 1
shows the statistics of pairs extracted from corpus
wiki2010 1. We can observe that #Pairs is huge
when ngrams are considered.

To speed up the process of building ngram
co-occurrence matrix, we take advantages of
‘mixture’ strategy (Pennington et al., 2014) and
‘stripes’ strategy (Dyer et al., 2008; Lin, 2008).
The two strategies optimize the process in differ-
ent aspects. Computational cost is reduced signif-
icantly when they are used together.

1http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
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When words (or ngrams) are sorted in descend-
ing order by frequency, the co-occurrence matrix’s
top-left corner is dense while the rest part is s-
parse. Based on this observation, the ‘mixture’
of two data structures are used for storing ma-
trix. Elements in the top-left corner are stored in
a 2D array, which stays in memory. The rest of
the elements are stored in the form of <ngram,
H>, where H<context, count> is an associative
array recording the number of times the ngram and
context co-occurs (‘stripes’ strategy). Compared
with storing <ngram, context> pairs explicitly,
the ‘stripes’ strategy provides more opportunities
to aggregate pairs outside of the top-left corner.

Algorithm 1 shows the way of using the ‘mix-
ture’ and ‘stripes’ strategies together. In the first
stage, pairs are stored in different data structures
according to topLeft function. Intermediate results
are written to temporary files when memory is full.
In the second stage, we merge these sorted tempo-
rary files to generate co-occurrence matrix. The
getSmallest function takes out the pair <ngram,
H> with the smallest key from temporary files. In
practice, algorithm 1 is efficient. Instead of using
computer clusters (Lin, 2008), we can build the
matrix of ‘bi bi’ type even in a laptop. It only re-
quires 12GB to store temporary files (win=2, sub-
sampling=0, memory size=4GB), which is much
smaller than the implementations in (Pennington
et al., 2014; Levy et al., 2015) . More detailed
analysis about these strategies can be found in the
ngram2vec toolkit.

4 Experiments

4.1 Datasets

The tasks used in this paper is the same with the
work of Levy et al. (2015), including six similarity
and two analogy datasets. In similarity task, a s-
calar (e.g. a score from 0 to 10) is used to measure
the relation between the two words. For example,
in a similarity dataset, the ‘train, car’ pair is giv-
en the score of 6.31. A problem of similarity task
is that scalar only reflects the strength of the rela-
tion, while the type of relation is totally ignored
(Schnabel et al., 2015).

Due to the deficiency of similarity task, anal-
ogy task is widely used as benchmark recently
for evaluation of word embedding models. To
answer analogy questions, relations between the
two words are reflected by a vector, which is
usually obtained by the difference between word

Algorithm 1: An algorithm for building n-
gram co-occurrence matrix

Input : Pairs P , Sorted vocabulary V
Output: Sorted and aggregated pairs

1 The 2D array A[ ][ ];
2 The dictionary D < ngram, H >;
3 The temporary files array tfs[ ]; fid=1;
4 for pair p < n, c > in P do
5 if topLeft(n, c) == 1 then
6 A[getId(n)][getId(c)] += 1;
7 else
8 D{n}{c} += 1;
9 if Memory is full or P is empty then

10 Sort D by key (ngram);
11 Write D to tfs[fid];
12 fid += 1;
13 end
14 end
15 end
16 Write A to tfs[0] in the form of < ngram, H >;
17 old = getSmallest(tfs) ;
18 while !(All files in tfs are empty) do
19 new = getSmallest(tfs) ;
20 if old.ngram == new.ngram then
21 old =

< old.ngram, merge(old.H, new.H) >;
22 else
23 Write old to disk;
24 old = new
25 end
26 end

embeddings. Different from a scalar, the vec-
tor provides more accurate descriptions of rela-
tions. For example, capital-country relation is
encoded in vec(Athens)-vec(Greece), vec(Tokyo)-
vec(Japan) and so on. More concretely, the ques-
tions in the analogy task are in the form of ‘a is
to b as c is to d’. ‘d’ is an unknown word in the
test phase. To correctly answer the questions, the
models should embed the two relations, vec(a)-
vec(b) and vec(c)-vec(d), into similar positions in
the space. Following the work of Levy and Gold-
berg (2014b), both additive (add) and multiplica-
tive (mul) functions are used for finding word ‘d’.
The latter one is more suitable for sparse represen-
tation in practice.

4.2 Pipeline and Hyper-parameter Setting

We implement SGNS, GloVe, PPMI, and SVD in a
pipeline, allowing the reuse of code and intermedi-
ate results. Figure 4 illustrates the overview of the
pipeline. Firstly, <word(ngram), word(ngram)>
pairs are extracted from the corpus as the input
of SGNS. Afterwards, we build the co-occurrence
matrix upon the pairs. GloVe and PPMI learn
word representations on the basis of co-occurrence
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Win Type Google Tot. / Sem. / Syn. MSR
Add Mul Add Mul

2

uni uni .579 / .543 / .608 .597 / .561 / .627 .513 .533

overlap uni bi .587 / .651 / .533 .626 / .681 / .580 .473 .508
uni tri .505 / .615 / .414 .553 / .657 / .466 .358 .396
bi bi .664 / .739 / .602 .680 / .739 / .631 .547 .575
bi tri .572 / .695 / .470 .601 / .713 / .508 .416 .447

non-overlap uni bi .610 / .558 / .653 .633 / .581 / .676 .568 .595
bi bi .644 / .607 / .674 .659 / .613 / .696 .590 .616

5

uni uni .653 / .669 / .639 .668 / .678 / .660 .511 .535

overlap uni bi .696 / .745 / .655 .714 / .752 / .683 .518 .542
uni tri .679 / .738 / .630 .699 / .750 / .657 .542 .549
bi bi .704 / .764 / .654 .718 / .764 / .681 .537 .560

non-overlap uni bi .696 / .722 / .675 .716 / .731 / .703 .549 .579
uni tri .687 / .711 / .668 .705 / .717 / .696 .542 .574
bi bi .712 / .745 / .684 .725 / .742 / .710 .569 .607

Table 2: Performance of (ngram) SGNS on analogy datasets.

Win Type Sim. Rel. Bruni Radinsky Luong Hill

2
uni uni .745 .586 .713 .635 .387 .419
uni bi .739 .600 .698 .627 .395 .429
uni tri .700 .535 .658 .591 .380 .415
bi bi .757 .574 .724 .644 .408 .407
bi tri .724 .564 .669 .605 .403 .412

5
uni uni .789 .648 .756 .652 .407 .401
uni bi .794 .681 .752 .653 .437 .431
uni tri .783 .673 .743 .652 .432 .436
bi bi .816 .703 .760 .671 .446 .421

Table 3: Performance of (ngram) SGNS on similarity datasets.

Figure 4: The pipeline.

matrix. SVD factorizes the PPMI matrix to obtain
low-dimensional representation.

Most hyper-parameters come from ‘corpus to
pairs’ part and four representation models. ‘corpus
to pairs’ part determines the source of information
for the subsequent models and its hyper-parameter
setting is as follows: low-frequency words (n-
grams) are removed with a threshold of 10. High-
frequency words (ngrams) are removed with sub-
sampling at the degree of 1e-5 2. Window size
is set to 2 and 5. Clean strategy (Levy et al.,
2015) is used to ensure no information beyond

2Sub-sampling is not used in GloVe, which follows its o-
riginal setting.

pre-specified window is included. Overlap setting
is used in default. For hyper-parameters of four
representation models, we use the embeddings of
300 dimensions in dense representations. SGNS is
trained by 3 iterations. The rest strictly follow the
baseline models 3. We consider unigrams (words),
bigrams, and trigrams in this work. The imple-
mentation of higher-order models and their results
will be released with ngram2vec toolkit.

4.3 Ngrams on SGNS

SGNS is a popular word embedding model. Even
compared with its challengers such as GloVe, S-
GNS is reported to have more robust performance
with faster training speed (Levy et al., 2015). Ta-
ble 2 lists the results on analogy datasets. We
can observe that the introduction of bigrams pro-
vides significant improvements at different hyper-
parameter settings. The SGNS of ‘bi bi’ type pro-
vides the highest results. It is very effective on
capturing semantic information (Google seman-
tic). Around 10 percent improvements are wit-

3http://bitbucket.org/omerlevy/
hyperwords for SGNS, PPMI and SVD;
http://nlp.stanford.edu/projects/glove/
for GloVe.
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Win Type Google MSR Sim. Rel. Bruni Radinsky Luong HillAdd Mul Add Mul

2 uni uni .403 / .441 / .372 .614 / .725 / .522 .235 .419 .709 .593 .705 .603 .293 .385
uni bi .403 / .550 / .281 .733 / .854 / .632 .241 .572 .731 .581 .721 .627 .341 .394

5 uni uni .423 / .505 / .355 .580 / .740 / .447 .198 .339 .721 .619 .712 .619 .252 .341
uni bi .453 / .590 / .338 .730 / .841 / .637 .281 .579 .707 .547 .696 .619 .296 .378

Table 4: Performance of (ngram) PPMI on analogy and similarity datasets.

Win Type Google MSR Sim. Rel. Bruni Radinsky Luong HillAdd Mul Add Mul

2 uni uni .535 / .599 / .482 .540 / .610 / .481 .444 .445 .681 .529 .698 .608 .381 .351
uni bi .543 / .601 / .493 .549 / .612 / .496 .464 .472 .686 .545 .695 .631 .389 .352

5 uni uni .625 / .689 / .572 .626 / .696 / .568 .476 .490 .747 .600 .735 .657 .389 .347
uni bi .631 / .699 / .575 .633 / .703 / .574 .477 .504 .752 .610 .737 .631 .395 .342

Table 5: Performance of (ngram) GloVe on analogy and similarity datasets.

Win Type Google MSR Sim. Rel. Bruni Radinsky Luong HillAdd Mul Add Mul

2 uni uni .419 / .388 / .446 .439 / .394 / .477 .321 .353 .714 .593 .712 .625 .410 .344
uni bi .387 / .322 / .440 .410 / .327 / .479 .372 .402 .739 .546 .688 .636 .427 .347

5 uni uni .433 / .426 / .439 .460 / .463 / .458 .290 .321 .752 .633 .731 .623 .411 .326
uni bi .410 / .340 / .468 .446 / .365 / .513 .374 .416 .751 .559 .698 .639 .426 .363

Table 6: Performance of (ngram) SVD on analogy and similarity datasets.

nessed on semantic questions compared with u-
ni uni baseline. For syntactic questions (Google
syntactic and MSR datasets), around 5 percent im-
provements are obtained on average.

The effect of overlap is large on analogy
datasets. Semantic questions prefer the overlap
setting. Around 10 and 3 percent improvements
are witnessed compared with non-overlap setting
at the window size of 2 and 5. While in syntac-
tic case, non-overlap setting performs better by a
margin of around 5 percent.

The introduction of trigrams deteriorates the
models’ performance on analogy datasets (espe-
cially at the window size of 2). It is probably be-
cause that trigram is sparse on wiki2010, a rela-
tively small corpus with 1 billion tokens. We con-
jecture that high order ngrams are more suitable
for large corpora and will report the results in our
future work. It should be noticed that trigram is
not included in vocabulary in non-overlap case at
the window size of 2. The shortest distance be-
tween a word and a trigram is 3, which exceeds
the window size.

Table 3 illustrates the SGNS’s performance on
similarity task. The conclusion is similar with the
case in analogy datasets. The use of bigrams is
effective while the introduction of trigrams deteri-
orates the performance in most cases. In general,
the bigrams bring significant improvements over
SGNS on a range of linguistic tasks. It is gener-
ally known that ngram is a vital part in tradition-
al language modeling problem. Results in table 2

and 3 confirm the effectiveness of ngrams again on
SGNS, a more advanced word embedding model.

4.4 Ngrams on PPMI, GloVe, SVD

In this section, we only report the results of mod-
els of ‘uni uni’ and ‘uni bi’ types. Using high-
er order co-occurrence statistics brings immense
costs (especially at the window size of 5). Levy
and Goldberg (2014b) demonstrate that traditional
count-based models can still achieve competitive
results on many linguistic tasks, challenging the
dominance of neural embedding models. Table 4
lists the results of PPMI matrix on analogy and
similarity datasets. PPMI prefers Multiplicative
(Mul) evalution. To this end, we focus on analyz-
ing the results on Mul columns. When bigrams are
used, significant improvements are witnessed on
analogy task. On Google dataset, bigrams bring
over 10 percent increase on the total accuracies.
At the window size of 2, the accuracy in semantic
questions even reaches 0.854, which is the state-
of-the-art result to the best of our knowledge. On
MSR dataset, around 20 percent improvements are
achieved. The use of bigrams does not always
bring improvements on similarity datasets. PPMI
matrix of ‘uni bi’ type improves the results on 5
datasets at the window size of 2. At the window
size of 5, using bigrams only improves the results
on 2 datasets.

Table 5 and 6 list GloVe and SVD’s results.
For GloVe, consistent (but minor) improvements
are achieved on analogy task with the introduction
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of bigrams. On similarity datasets, improvements
are witnessed on most cases. For SVD, bigram-
s sometimes lead to worse results in both anal-
ogy and similarity tasks. In general, significan-
t improvements are not witnessed on GloVe and
SVD. Our preliminary conjecture is that the de-
fault hyper-parameter setting should be blamed.
We strictly follow the hyper-parameters used in
baseline models, making no adjustments to cater
to the introduction of ngrams. Besides that, some
common techniques such as dynamic window, de-
creasing weighting function, dirty sub-sampling
are discarded. The relationships between ngrams
and various hyper-parameters require further ex-
ploration. Though trivial, it may lead to much bet-
ter results and give researchers better understand-
ing of different representation methods. That will
be the focus of our future work.

4.5 Qualitative Evaluations of Ngram
Embedding

In this section, we analyze the properties of n-
gram embeddings trained by SGNS of ‘bi bi’ type.
Ideally, the trained ngram embeddings should re-
flect ngrams’ semantic meanings. For example,
vec(wasn’t able) should be close to vec(unable).
vec(is written) should be close to vec(write) and
vec(book). Also, the trained ngram embeddings
should preserve ngrams’ syntactic patterns. For
example, ‘was written’ is in the form of ‘be + past
participle’ and the nearest neighbors should pos-
sess similar patterns, such as ‘is written’ and ‘was
transcribed’.

Table 7 lists the target ngrams and their top n-
earest neighbours. We divide the target ngram-
s into six groups according to their patterns. We
can observe that the returned words and ngram-
s are very intuitive. As might be expected, syn-
onyms of the target ngrams are returned in top po-
sitions (e.g. ‘give off’ and ‘emit’; ‘heavy rain’ and
‘downpours’). From the results of the first group,
it can be observed that bigram in negative form
‘not X’ is useful for finding the antonym of word
‘X’. Besides that, the trained ngram embeddings
also preserve some common sense. For example,
the returned result of ‘highest mountain’ is a list
of mountain names (with a few exceptions such
as ‘unclimbed’). In terms of syntactic patterns,
we can observe that in most cases, the returned
ngrams are in the similar form with target ngram-
s. In general, the trained embeddings basically re-

flect semantic meanings and syntactic patterns of
ngrams.

With high-quality ngram embeddings, we have
the opportunity to do more interesting things in
our future work. For example, we will construct
a antonym dataset to evaluate ngram embeddings
systematically. Besides that, we will find more
scenarios for using ngram embeddings. In our
view, ngram embeddings have potential to be used
in many NLP tasks. For example, Johnson and
Zhang (2015) use one-hot ngram representation as
the input of CNN. Li et al. (2016) use ngram em-
beddings to represent texts. Intuitively, initializing
these models with pre-trained ngram embeddings
may further improve the accuracies.

5 Conclusion

We introduce ngrams into four representation
methods. The experimental results demonstrate n-
grams’ effectiveness for learning improved word
representations. In addition, we find that the
trained ngram embeddings are able to reflect their
semantic meanings and syntactic patterns. To al-
leviate the costs brought by ngrams, we propose
a novel way of building co-occurrence matrix, en-
abling the ngram-based models to run on cheap
hardware.

Acknowledgments

This work is supported by National Natural Sci-
ence Foundation of China (Grant No. 61472428
and No. 71531012), the Fundamental Research
Funds for the Central Universities, the Research
Funds of Renmin University of China No. 14XN-
LQ06. This work is partially supported by ECNU-
RUC-InfoSys Joint Data Science Lab and a gift
from Tencent.

References
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